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Overview 
 The main goal of the first part of the project was to perform an Iterative Closest Point 

registration on two depth maps obtained using the Kinect depth sensor in C++ on the 

windows platform. 

The other purposes of this first part was to learn how to integrate alone big libraries 

(dynamic or not) to the project and to handle with the difficulties of implementing an 

algorithm on the different classes of the libraries whom do not match necessarily one with 

the other. 

The second part of the project was to bond, two by two with the precedent algorithm, 

different scan frames get by the Kinect with the help of its motor to get a whole body depth 

image. 

 

Development of the project 
After reading the papers of Hao-Ii, Besl & McKay and Rusinkiewicz & Levoy we first tried, 

with different interfaces, to obtain the two frames of the depth map. We chose the OpenNi 

interface to get the wanted depth frames. 

To implement the rigid ICP algorithm we had to use a library matrix handler, after searching 

some libraries (armadillo and others), we used (by Yonathan guidance) the OpenCV library 

for the matrices calculation need and the depth images displaying. 

Then we developed the simplest rigid Iterative Closest Point algorithm (as describe below) 

same as in the Besl and McKay's paper. 

Thereafter, in order to ensure the success of our project we decided to improve our 

algorithm as describe below. 

Then we had to control the motor, which had the consequence to back to a previous version 

of OPENNI (from 2.0 to 1.5, the development of this tool may have been stopped when 

PrimeSens get bought by Apple) and learn how to move it for our purpose. 

After the fusion of the scans we decided to save the results in some formats to allow the 

user choose the interface he wants to process the depth results (for MeshLab and Matlab 

process/display)  

 

 

 

 



 
 

4 
 

Papers 
The first paper we red was the Hao-Li one. The purpose of his paper was to reconstruct with 

a Kinect a full body in 3-D with the multiple frames of the body got with the Kinect motor 

and the rotation of the body on itself to scan all the parts of the body. 

The reconstruction was divided in pipeline's stations where the first one: scanning, fusion 

and segmentation were the goal of the entire project. To perform this first part we need, 

after the body scan, to use the rigid ICP algorithm to bond the different frames together to 

get the whole body depth image. 

Thus we had to implement the rigid ICP. 

The second was Besl & McKay's paper. In this paper all the theory of the first (rigid) iterative 

closest point algorithm is described. After some mathematical preliminaries the paper 

focused on the representation of the data as the one which interested us: the Point sets (as 

the Kinect) and it describes the Corresponding Registration to apply. 

The algorithm is based on two main actions on a picture. Given a model shape and a 

measured shape, we will apply on each point of the measured data set a rotation and a 

translation in the space. The goal is to optimize those transformations by minimizing the 

distance square error of the transformation on the measured shape to the model as: 

 

In order to not affect the performances we cannot pass on all the data points of the images, 

then we have to select a part of them randomly.  

To the algorithm understand where the two shapes (points cloud) are in the space we first 

calculate the center of mass of the two given shapes and get the cross covariance matrix to 

know what is the link between the two shapes points in the space. 

After optimization calculations we are able to obtain a unit quaternion vector which will give 

us the rotation transformation. Then after the rotation transform we can apply the 

translation transform relatively to the center of mass of the model. We can calculate now 

the new mean square error and check if the performances are satisfying. 

The third paper was the paper of Rusinkiewicz & Levoy.  This paper checked the 

performances of the different variants of the rigid ICP algorithm. We then checked which 

variance will be good enough for our purpose. 

ICP algorithm is divided in five main steps. 

Selection of points:  we deduced from the paper and the supposed shape of the body (like 

the "wave " scene) that the random sampling give a good convergence but we also 

implemented the uniform sampling method which were supposed to improve only a little 

the performances but in our case the improvement was really important . 



 
 

5 
 

 

Matching points:  the closest point algorithm (as described in Besl & McKay paper) gives a 

reasonable convergence rate for shapes like bodies. 

 

 

The weighting and rejecting of pairs and the error metric minimization were not used in our 

algorithm, the initial rigid ICP paper did not treat those variants.    
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Project algorithm 
Using the OpenNI interface we can get two depth frames from the Kinect. Threads assure 

the user to see itself and let him time to stand in front the camera where to get a good 

scanning of the body. 

To get the frames we had to control the kinect motor. After several research about the 

properties about the motor, we find that it can tilt the field of view using the tilt motor in 

the sensor. The motor allows an additional [+/-31] degrees.  

The frames are converted to OpenCV Mat type to deal with displaying, filtering and 

registration on the depth images. 

After getting the two frames, we will filter the depth image by distance: all the objects far 

from this distance and then the useless background will be deleted (zero value pixel). This 

step is also in the Hao-Li paper (part 3.2) but in our case any sophisticated segmentation 

algorithms were used but only "distance" filtering.  

Then the floor have not been removed that is why the position of the user and the field of 

view of the Kinect must not scan the floor in any frames. If not the algorithm will fail for 

sure, sampled points won't match between the body and the floor.  

As said above we have implemented the simple Besl & McKay ICP algorithm we will describe 

it here: 

We first randomly/uniformly sampling a fixed number of points whom values are different 

from zero (just the interesting shape) in the two pictures. There possibly are the same pixels 

chosen many times in the case of the random point selection. For uniform sampling a grid 

has been used.                   

With the OpenCV matrices calculation tool we will be able to compute all the vectors, 

matrices, eigenvectors needed in the algorithm. 

We first compute the closest point in the two pictures by calculating the minimum Euclidean 

distance between all pair of points (in the shape and the model).            
 

Then we can calculate all the matrices needed and the transformations to apply on each one 

of the sampled points. We check if the algorithm's convergence is satisfying enough and we 

decide to continue or stop it (the convergence to a local minimum have been proved in the 

MacKay paper). 

We keep the rotation and translation transformation of each iteration in an accessible list 

for the user. 

Texturization: body reconstruction by Poisson reconstruction or triangles meshing have been 

done on Matlab but because both the not incredibly good results and the Matlab and not 

C++ implementation have convinced us to not add it to the project. (The code and results are 

existing and can be given if asked). The RGB representation needs a triangulation to be 

display that is why it is not a part of the results. 
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Results  
Other results can be found at the end of the report. 

 

Input Frames: 

First frame    20th Frame   50th Frame 

    

 

 

 

Output: 

     Matlab Result Displaying 
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MeshLab Result 

 

MeshLab Result 
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MeshLab Result 

 

MeshLab Result 
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Methods 
 

Problem: 

The main problem is the initial position of 2 frames. If they are not close enough the 

algorithm may converge to a local minimum instead of the global. ¢ƘŀǘΩǎ ǿƘȅ ǘƘŜ ōƛƎƎŜǎǘ 

challenge is to find the right match. The sampling is then the most important step. 

The third problem is the depth frame return by the Kinect is of a poor quality which means 

that in addition of the transformation the matching point is difficult because the 2 frames 

are different and find correspondences can be a more difficult task. 

Solution: 
We start by improving the method of the sampling, from random to uniform. The algorithm 

passes on the entire matrix on a grid, by sampling only depth values greater than zero (not 

background). 

The Openni Camera driver provides default camera models out-of-the-box with reasonably 

accurate focal lengths (relating 3D points to 2D image coordinates). They do not model lens 

distortion, but fortunately the Kinect uses low-distortion lenses (|k1|  ~= 0.1), so even the 

edges of the image are not displaced by more than a few pixels.   Since our application 

requires maximum accuracy from the Kinect's 3D data we should to perform a rigorous 

calibration.  

But finally, since our application would be used by different users with different Kinect we 

decided to perform a general, average calibration with an average intrinsic matrix 

calibration. More precise calibration will improve the performances and the final result but 

ask from the user a tiresome calibration step.  

In each execution the algorithm, as said before, has to find a sequence of rotation and 

translation; ǘƘŀǘΩǎ ǿƘȅ ǿŜ ǿŀƴǘŜŘ ǘƻ άƘŜƭǇέ ǘƘŜ ŀƭƎƻǊƛǘƘƳ ōȅ giving him a prior rotation that 

it needs to perform. For that we had to know an average angle covered by the Kinect 

between two frames.  

Below we joined the rotation matrix for a given angle:     

The Rotation of the motor is really not accurate. We noticed that the motor move are not 

the same (not same angle) at each iterationΦ {ƻ ǿŜ ŘŜŎƛŘŜŘ ǘƻ ƴƻǘ άƘŜƭǇέ ǘƘŜ ŀƭƎƻǊƛǘƘƳ ǿƛǘƘ 

the first matrix rotation (this try did not really improve the results). 

At the beginning, we tried to perform ICP between a frame and the result of the all 

precedent frames bonded together. But after some execution, the result, due to the 

accumulated noiseΣ ƛǎ ŦŀǊ ŦǊƻƳ ǘƘŜ ǊŜŀƭƛǘȅ ŀƴŘ ǘƘŜ ŀƭƎƻǊƛǘƘƳ ŘƻƴΩǘ ŦƛƴŘ ǊƛƎƘǘ ƳŀǘŎƘ ōŜǘǿŜŜƴ 

the new frame and the precedent bonded result. So we found better to perform ICP 

between pair of frames. It is an application of the transitivity law: if the transformation 

between frame i an d frame i-1 is optimal and the transformation between i+1 and i is 

optimal too, then the transformation sequence between i+1 and i-1 is optimal:   
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( ) ( )( )( )1 1 1( ) ..n n n n n n nTr F R F T Tr Tr Tr F-= + = » , with F the frame, Tr the transformation, 

R and T the corresponding Rotation translation. 

The last methods that we used to reduce noise accumulation was to add only the new data 

part of the new frame at the bottom of the picture.  

Performances 
Our ICP algorithm and the ICP algorithm in general does not give good performances for big 

moves of the shapes. Only little rotations can converge in a satisfying way. Translation is not 

a problem, the calculation of the center of mass give us quickly the translation to apply even 

for big distances. 

One of the problems of the closest point matching part is that for rotation of the body the 

distance can match points in the two pictures that are totally different but because of the 

rotation are at the same depth distance. The big number of samples and the small moves of 

the user seems solve this problem. 

As said above, for big moves ICP algorithm can give bad results, sometimes it would appear 

it converges to a wrong local minimum (as described in the Besl & McKay paper). 

Even for big moves the algorithm converges quickly enough: from 1-3 iterations for small 

moves or simple shapes (like lines created artificially in the code) to about 10 iterations for 

big rotations (without or with translations) where it seems not converging well at all. 

One of the implementation problems is the loss of data when converting from infinitesimal 

values of the vectors to indexes in the matrices for displaying that is the reason of the zero 

value pixel lines on the shape registration. One solution is to use a filter (median) but in 

some cases it can affects the displayed image (depends on the type of pixels around). 

¢ƘŜ ōŀŘ ǊŜǎƻƭǳǘƛƻƴ ƻŦ ǘƘŜ YƛƴŜŎǘ ŀŦŦŜŎǘǎ ǘƘŜ ƛƳŀƎŜΩs acquisition: holes in the target shape. 

At the optimization step, we faced a tradeoff: good fusion result vs time. We test all our 

methods explain before with different parameters. 

The number of sampling has the most critical influence on the performanceΣ ƛǘΩǎ ǾŀǊƛŜǎ 

between 8000 or less for bad results to 12000 or more for good results. 

Another parameter was the threshold and the number of iteration in each ICP algorithm, 

after several test we fixed the threshold at 0.001. 

As explain above for big rotation it seems not converging well at all, ǘƘŀǘΩǎ ǿƘȅ ǿŜ ŘŜŎƛŘŜŘ 

to perform the algorithm in each frames and not by step of two, despite the fact that the 

time would have been then divided. 

Then we can say that the average time for the ICP running step is between 1.2~3mn 

depending on the number of sampled points. The scanning and reconstructing time is about 

less than one minute. Finding a correspondence radius can improve the closest point search 

step but all is a matter of wanted performances.  

Another critical point is the presence of noise in the picture. The resolution of the Kinect is 

bad and it returns sometimes irrelevant pixels whom are critical and make the algorithm fail. 
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About the project 

The reading of the papers was very interesting and introduced us to the world of computer 

& geometric vision and to the academic space. 

The lack of good materials (good computers) at the beginning of the project and the ability 

of solve computer maintenance problem both in hardware and software were very difficult 

for us, but thanks to google we gone through it (almost). 

We lost a lot of time by understanding by our own the way the libraries work and their 

inabilities to deal with simple problems like casting in OpenCV in matrices conversions etc. 

the software problems did not help us too. 

We think support the students on all this maintenance will save lot of time and let the 

students more time to improve the project itself and not to throw them to DƻƻƎƭŜΩǎ help to 

deal with those new problems never seen before in regular courses at CS or EE. Today we 

certainly know others libraries and tools would have make the project easier and better. 

We would like to thank all the peoples from the Laboratory whom help us to complete this 

project. 
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