SHADOW GAMES

Bringing Yu-Gi-Oh! cards game to life using AR

By: Or-Eli Pilosof, Yael Tsafrir, Rafi Cohen

Supervisors: Boaz Sterenfeld, Yaron Honen
PROJECT GOALS

• Create a real-life version of a cards game
• The game will be played using the actual cards
• Apply in-game shadows according to user’s input

https://youtu.be/2ot9eV9Dybl?t=605
PROJECT OBJECTIVES

• Creating AR objects when looking at real cards
• Distinguish between different cards
• Enabling the user to adjust the AR shadows manually
• Providing interactive AR game objects
• Create a game experience where the user plays against the computer
CHALLENGES

1. **Identifying unique cards via HoloLens camera**
 ✓ We integrated the Vuforia SDK.
 ✓ We create a database of pictures and upload it to Vuforia. Vuforia then creates a unique image target for each picture, which can be added to our scene and be captured by Vuforia’s AR camera.
 ✓ Each image target captured by the AR camera triggers an event.
 ✓ We created our own event handler to handle what happens with each picture the AR camera captures.

➢ **Using Vuforia created another challenge for us** – It doesn’t integrate well with the HoloLens when using newer versions of Unity.
2. **Realtime shadow adjustment by the user**

- In Unity the light is produced by an object of ‘directional light’.
- When we change the rotation of the directional light in the X axis & Y axis – we change the shadows casted by the directional light.
- We created a scene for shadows adjustment, where the user can press on 4 buttons, left, right, up, down, and can see how the shadows change accordingly.
- These settings are then saved and passed on to the game scene.
3. Making Interactable AR objects

- In the real-life game, the user physically moves the cards. We wished to allow a similar experience, where the user can choose any of his monsters and set their next action.
- Each monster has a different shape, size. We cannot handle them all as one.
- The ‘Compound Button’ script provided by Microsoft HoloToolkit enables us to extend button-like properties to any game object, that is the identification of clicks and other inputs from the user.
- We added that script and a collider to each monster in the game, each was fitted to match exactly that monster.
- We made a vast use of Unity event system to enable different actions on the monsters.
4. Working in parallel

➢ We managed our project in Git.

➢ Working in parallel on the same scene and objects in Unity may cause many merge conflicts.

✓ We started dividing the project into smaller parts, so that each one of us can work on a different element without fear of conflicts.

✓ After we combined all our parts to one main project, we had to start coordinating before each merge, and try to avoid working on the same scene in parallel.

✓ Because most of the project is composed of smaller parts, working in parallel was mostly fine.
5. Creating a real-like game experience

➢ We wanted to create a real game experience – where the user plays against the computer.
✓ We designed a game manager script which manages the flow of the game, and calls for each player’s move at his turn.
✓ We planned a basic AI for the computer player.
✓ We made vast use of Unity events system to manage the user game input.
✓ We designed an informative and easy-to-use UI to navigate the game phases.
1. Many Unity models: Unity Assets Store
 https://assetstore.unity.com
2. Swordswoman model: https://www.mixamo.com/
3. Yu-Gi-Oh and some monster models:
 https://www.models-resource.com/
ALWAYS BELIEVE IN THE HEART OF THE CARDS