
Data Augmentation Using GANs

Data Augmentation Using

GANs

Project 236754

Dima Birenbaum

Supervisors:

Yaron Honen, Gary Mataev

Contents
Abstract .. 1

The Data ... 2

Data Augmentation by emotion transition using Generative Adversarial Networks .. 3

The Cycle GAN Model .. 3

Target and loss functions ... 3

What is Cycle in CycleGAN? ... 4

Anatomy of CycleGAN Generator and Discriminator .. 6

The Problems with native CycleGAN approach ... 7

The Improved Cycle GAN Model .. 7

The Wasserstein Cycle GAN Model .. 8

The Wasserstein GAN Architecture ... 9

The Visual Results .. 10

Implemented paper results, CycleGAN .. 10

Improved CycleGAN ... 11

The Wasserstein CycleGAN .. 12

The Classifier .. 13

Simple classifier model architecture and results ... 13

State of the Art classifier model architecture .. 14

Future Work and Summary .. 15

1

Abstract
The main goal is to generate synthetic data for projects, in the machine learning field, that deals with face

emotions classification.

To classify images with multiple class labels using only a small number of labeled examples is a difficult task.

Especially when the label (class) distribution is imbalanced. In face emotion classification we have imbalanced label

distribution because some classes of emotions are relatively rare comparing to others. For example, disgust emotion is

more rare than happy or sad.

 In this work, we propose a data augmentation method using generative adversarial networks (GAN). It can

complement and complete the data manifold and find better margins between neighboring classes. Specifically, for this

task, we are using classifiers based on Convolutional Neural Networks (CNN) and a variation of cycle-consistent

adversarial networks such as CycleGAN, Improved CycleGAN, and The Wasserstein CycleGAN. The CycleGAN is a direct

implementation of Emotion Classification with Data Augmentation Using Generative Adversarial Networks paper.

In order to improve the results and avoid problems that we faced we employ different variations of CycleGANs.

We show, that our empirical results can obtain a ~5% increase in the classification accuracy, after employing the GAN-

based data augmentation techniques.

https://arxiv.org/pdf/1711.00648.pdf

2

The Data

We are using FER2013 dataset. This dataset contains images of size 48x48 pixels and 7 emotion expressions:

Angry, Disgust, Fear, Happy, Sad, Surprise, Neutral.

The data distribution in FER2013 dataset is:

* - as you can see, the disgust class, contains a small number of images, which makes it hard to learn to any neural

network. The approach in this project, generates additional data from Disgust Class distribution, in order to unify data

distribution.

Data samples from FER2013

3

Data Augmentation by emotion transition using Generative Adversarial Networks

In this work, we propose 3 different approaches for augmented data generation.

The Cycle GAN Model
The project uses CycleGAN architecture, as a method, for image-to-image style transfer.

CycleGAN - is a two-way GAN, that consists of 2 Discriminators and 2 Generators.

The idea is to transfer input from one domain to another back and forth.

Theory Background:

Domains A, B, mapping functions: 𝐺: 𝐴 → 𝐵, 𝐹: 𝐵 → 𝐴, associated adversarial discriminators 𝐷𝐴, 𝐷𝐵

𝐷𝐵 encourages 𝐺 to translate 𝐴 into outputs indistinguishable from domain 𝐵, and vice versa, for 𝐷𝐴 and 𝐹.

To further regularize the mappings, used two-cycle consistency loss. The main intuition, that when translating from

one domain to another and back again, the model should arrive at where it started. Two-cycle consistency loss consists

of:

(𝑎) Forward cycle-consistency: 𝑎 → 𝐺(𝑎) → 𝐹(𝐺(𝑎)) ≈ 𝑎

(𝑏) Backward cycle-consistency: 𝑏 → 𝐹(𝑏) → 𝐺(𝐹(𝑏)) ≈ 𝑏

Target and loss functions
● Adversarial loss:

𝓛𝐺𝐴𝑁(𝐺, 𝐷𝐴, 𝐴, 𝐵) = 𝔼𝑎~𝑝𝑑𝑎𝑡𝑎(𝑎)[(𝐷𝐴(𝑎) − 1)2] + 𝔼𝑏~𝑝𝑑𝑎𝑡𝑎(𝑏) [(𝐷𝐴(𝐺(𝑏)))
2
]

● Cycle consistency loss:

𝓛𝑐𝑦𝑐(𝐺, 𝐹) = 𝔼𝑎~𝑝𝑑𝑎𝑡𝑎(𝑎) [‖𝐹(𝐺(𝑎)) − 𝑎‖
1
] + 𝔼𝑏~𝑝𝑑𝑎𝑡𝑎(𝑏) [‖𝐺(𝐹(𝑏)) − 𝑏‖

1
]

● Full objective:

𝓛(𝐺, 𝐹, 𝐷𝐴, 𝐷𝐵) = 𝓛𝐺𝐴𝑁(𝐺, 𝐷𝐵, 𝐴, 𝐵) + 𝓛𝐺𝐴𝑁(𝐹, 𝐷𝐴, 𝐴, 𝐵) + 𝜆𝓛𝑐𝑦𝑐(𝐺, 𝐹)

● Target function:

𝐺, 𝐹̂ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝐺,𝐹

𝑚𝑎𝑥
𝐷𝐴,𝐷𝐵

𝓛(𝐺, 𝐹, 𝐷𝐴, 𝐷𝐵)

4

What is Cycle in CycleGAN?

In a paired dataset, every image, say 𝑖𝑚𝑔𝐴, is manually mapped to some image, say 𝑖𝑚𝑔𝐵, in target domain,

such that they share various features. Features that can be used to map an image (𝑖𝑚𝑔𝐴/𝑖𝑚𝑔𝐵) to its correspondingly

mapped counterpart (𝑖𝑚𝑔𝐵/𝑖𝑚𝑔𝐴).

Basically, pairing is done to make input and output share some common features. This mapping defines the meaningful

transformation of an image from one domain to another. So, when we have paired dataset, generator must take an

input, say 𝑖𝑛𝑝𝑢𝑡𝐴 , from domain 𝐷𝐴 and map this image to an output image, say 𝑔𝑒𝑛𝐵 , which must be close to its

mapped counterpart. But we don't have this luxury in the unpaired dataset, there is no pre-defined meaningful

transformation that we can learn, so, we will create it. We need to make sure that there is some meaningful relation

between input image and generated. So, Generator will map input image (𝑖𝑛𝑝𝑢𝑡𝐴) from domain 𝐷𝐴 to some image in

the target domain 𝐷𝐵, but to make sure that there is a meaningful relationship between these images, they must share

some feature, features that can be used to map this output image back to the input image, so there must be another

generator that must be able to map back this output image back to the original input. So, you can see this condition

defining a meaningful mapping between 𝑖𝑛𝑝𝑢𝑡𝐴 and 𝑔𝑒𝑛𝐵.

In a nutshell, the model works by taking an input image from domain 𝐷𝐴 which is fed to first

generator 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝐴2𝐵 whose job is to transform a given image from domain 𝐷𝐴 to an image in the target

domain 𝐷𝐵. This new generated image is then fed to another generator 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝐵2𝐴 which converts it back into an

image, 𝐶𝑦𝑐𝑙𝑖𝑐𝐴, from the original domain 𝐷𝐴. And as we discussed before, this output image must be close to the

original input image to define a meaningful mapping that is absent in an unpaired dataset.

As you can see in above figure, two inputs are fed into each discriminator (one is original image corresponding

to that domain and other is the generated image via a generator) and the job of discriminator is to distinguish between

them, so that discriminator is able to defy the adversary (in this case generator) and reject images generated by it.

While the generator would like to make sure that these images get accepted by the discriminator, so it will try to

generate images which are very close to original images in Class 𝐷𝐵. (In fact, the generator and discriminator are

playing a game whose Nash equilibrium is achieved when the generator's distribution becomes same as the desired

distribution)

5

Forward and Backward Cycles zoom in

The Model: Forward Cycle A2B

The Model: Backward Cycle B2A

6

Anatomy of CycleGAN Generator and Discriminator

The Generator:

The Generator consists of 3 parts:

● Decode (downsampling)

● Transferring (6 residual blocks)

● Encode (upsampling).

The Discriminator:

The Discriminator - a simple CNN network,

that determinates if the image is fake or real.

7

The Problems with native CycleGAN approach

Problems that have been encountered during the project:

● “Dirty” dataset, unbalanced classes, mislabeled data

● Similarity between classes (for example fear-angry, sad-neutral)

● Lack of data (for example Disgust Class – 550 images)

● During the training, the Discriminator learns faster than the Generator.

● Vanishing gradient

● Quality and artifacts of output images

Possible solutions are:

● Data augmentation, transform on training

● Different learning rates for generator and discriminator: 0.0002, 0.0001

● Learning rate decay

● Soft labels for discriminator: Real target: 0.9 (instead of 1)

● Or, a different approach…

The Improved Cycle GAN Model

Sometimes early in training, we observe cases where the generated image is very unrealistic and cycle

consistency doesn’t even make sense. In fact, once stuck in local modes, the generators are unlikely to escape due to

the cycle consistency loss. Therefore, enforcing cycle consistency on cycles where generated images are not realistic

hinders training. To solve this issue, we need to weight cycle consistency loss by the quality of generated images, which

we obtain using the discriminators’ outputs. So the new cycle consistency loss:

ℒ𝑐𝑦𝑐(𝐺, 𝐹, 𝐷𝐴, 𝐴, 𝛾) = 𝔼𝑎~𝑝𝑑𝑎𝑡𝑎(𝑎) [𝐷𝐴(𝑎) ∙ [𝛾 ∙ ‖𝑓𝐷𝐴 (𝐹(𝐺(𝑎))) − 𝑓𝐷𝐴(𝑎)‖1
+ (1 − 𝛾) ∙ ‖𝐹(𝐺(𝑎)) − 𝑎‖

1
]]

 Where: 𝛾 ∈ [0, 1] – linearly increase with epochs, to 1,𝑓𝐷(∙)- is the future extractor using the last layer of 𝐷(∙)

Such a change dynamically balances GAN loss and cycle consistency loss early in training. It essentially urges

the generators to first focus on outputting realistic images and to worry about cycle consistency later. It is worthwhile

to note that the gradient of this loss should not be backward propagated to 𝐷(·) because cycle consistency is a

constraint only on generators.

So final objective updated to:

ℒ(𝐺, 𝐹, 𝐷𝐴, 𝐷𝐵) = ℒ𝐺𝐴𝑁(𝐺, 𝐷𝐵, 𝐴, 𝐵) + ℒ𝐺𝐴𝑁(𝐹, 𝐷𝐴, 𝐴, 𝐵) + 𝜆 ∙ ℒ𝑐𝑦𝑐(𝐺, 𝐹, 𝐷𝐴, 𝐴, 𝛾) + 𝜆 ∙ ℒ𝑐𝑦𝑐(𝐺, 𝐹, 𝐷𝐵, 𝐵, 𝛾)

8

The Wasserstein Cycle GAN Model

So how can we improve the stability of training? The answer is - The Wasserstein distance.

Wasserstein CycleGAN - is a two-way Wasserstein GAN, that consists of 2 Critics and 2 Generators.

The idea is, for distribution of mass 𝜇(𝑥) on a space 𝑋 , we wish to transport the mass in such a way that it is

transformed into the distribution 𝜈(𝑥) on the same space.

Our main goal and bottleneck are to create data, that has the same distribution as the targeted domain, one of the

most suitable and available methods for this task is The Wasserstein distance.

 The Wasserstein distance is the minimum cost of transporting mass in converting the data distribution 𝒒 to

the data distribution 𝒑 . The Wasserstein distance for the real data distribution 𝑷𝒓⁡ and the generated data

distribution 𝑷𝒈 is mathematically defined as the greatest lower bound (infimum) for any transport plan.

The Wasserstein distance loss:

𝑊(ℙ𝑟, ℙ𝑔) = inf
𝛾∈Π(ℙ𝑟,ℙ𝑔)

𝔼(𝑥,𝑦)~𝛾[‖𝑥 − 𝑦‖]

 Where 𝛱(ℙ𝑟 , ℙ𝑔) – denotes the set of all joint distributions 𝛾(𝑥, 𝑦), whose marginals are respectively 𝑃𝑟⁡ and 𝑃𝑔.

However, the equation for the Wasserstein distance is highly intractable. Using the Kantorovich-Rubinstein

duality, we can simplify the calculation to:

𝑊(ℙ𝑟, ℙ𝜃) = sup
‖𝑓‖𝐿≤1

𝔼𝑥~ℙ𝑟[𝑓(𝑥)] − 𝔼𝑥~ℙ𝜃[𝑓(𝑥)]

 Where 𝑠𝑢𝑝 is the least upper bound and 𝑓 is a 1 − 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 following this constraint:

|𝑓(𝑥1) − 𝑓(𝑥2)| ≤ 1 ∙ |𝑥1 − 𝑥2|

So, to calculate the Wasserstein distance, we just need to find a 1-Lipschitz function.

We build a deep network to learn it. This network is very similar to the discriminator 𝐷, just without the sigmoid

function and outputs a scalar score rather than a probability.

9

The Wasserstein GAN Architecture

The main change in the Wasserstein GAN model is that discriminator is changed. We removed the Sigmoid

activation function at the end. This discriminator called - Critic. The generator is the same as in CycleGAN.

10

The Visual Results

Implemented paper results, CycleGAN

11

Improved CycleGAN

12

The Wasserstein CycleGAN

13

The Classifier

As we saw, we can see the transformation in the proper direction, but does it suits our goals? We need some

numeric results on our work, to see does it improves the dataset, or not. For this purpose we will create a classifier, to

see how data augmentation actually affects classification results. We added 500 images from Angry, Surprise, Sad,

Happy and Disgust classes.

Results were checked on two different classifiers:

- Simple (~65%)

- Current State of the art (73%)

Simple classifier model architecture and results

14

The results:

As you can see, data augmentation slightly improved classifier accuracy on classes that we added.

But, the neutral class, that are a reference class, has lower accuracy.

State of the Art classifier model architecture

The state-of-the-art classifier is 𝑉𝐺𝐺19.

The results:

Sadly, this approach doesn’t improve the state-of-the-art but also doesn`t decrease the baseline accuracy. So

there a lot of future work that can improve the results.

15

Future Work and Summary

Conclusion:

This project has showed that we can get an astonishing result and create additional data. However, to be sure

that we are creating suitable data, we need to ensure, that the distribution of generated data is the same as targeted

one, so classifiers can learn more from it.

The very challenging task is to improve the state-of-the-art results by this approach, so more steps need to be done in

order to get better results.

Future work:

● Further work with generated data:

○ Analyze distribution

○ Analyze similarity of generated and original images, by using ssim()

● Can we improve the state-of-the-art results?

● Generation of Neutral Class for FER2013, using Fake GAN

● Improvement Fake GAN by using WGAN-GP

● Put all together:

○ Use Fake Gan as part of Cycle GAN architecture

○ Analyze the difference between Cycle GAN, Improved Cycle Gan and Wasserstein GAN

● Testing performance on generated data while training on original and vice versa

