
 

 

AR Shadowing Project 
 

 

Project Team 

Almog Brand 

Dani Ginsberg 

Lior Wandel 

 

 

Project Leaders 

Yaron Honen 

Boaz Sternfeld 

Boris Van-Sosin 

 

 

Technion institute of technology 

GIP lab 

 

 

 

 

 

 

 

 

 

 



1. Hardware 
 

1.1. Introduction 
Augmented reality shadows are un-realistic compared to the shadows of “real 

world” objects created by the “real world” light module. 

In Order to build a light model that we can deploy to the AR system, we first needed 

a way to measure the room’s light.  

We came up with two main options –  

• Wide lens camera that will take a picture of the room, then running an 

image processing algorithm to find areas that are suspected to be a light 

source. 

• A dome shaped device with photoresistors on its arcs that will sample the 

light, then send the data to an algorithm that will build a light model. 

After we learned the basics of both fields – image processing and hardware design, 

we decided to go with the dome shaped device as we thought it will be more 

accurate in the positioning of the source of light.  

In order to decide if the light is coming from the ceiling or the walls, we planed the 

device with two verticals, half-cycled arcs. Each arc has seven photoresistors on it, 

positioned in 0°, 30°, 60°, 90°, 120°, 150°, 180° so that the photoresistor on 90° is 

shared for both arcs.  

We decided to use HTC Vive’s tracker to get the coordinates and rotation of the 

device any time we take samples. We set the diameter of each arc to 14 cm, so the 

distance between the center of the dome to each photoresistor is 7 cm. This is 

enough space for the HTC tracker to be attached in the middle of the dome.  

 

 

 

 

 

 

 

 Top view    Side view  

 

 

 

 



1.2. Hardware 1.0 
 

1.2.1. Notes 
We made some tests in order to decide how our device should be built, we divided the work 

to a few stages –  

Stage 1: fitting a resistor that will support a full analog range. We built a simple cycle 

to test the best resistors that fit our purpose – getting the maximum range of analog 

data from the Arduino. The result was 1K-ohm resistors that got us the full range 

Arduino-UNO supports – 0-1023. 

Stage 2: “noise avoidance” – A number of samples are needed so the result won’t be 

affected by a glitch. Although we didn’t run into a wrong sample in our tests, we 

coded the device so that it will sample each resistor 10 times and return their 

average. 

Stage 3: “hardware gap” – A code fix that covers for a hardware difference between 

sensors. We tested 13 identical photoresistors, positioned in the same direction, 

under a wide light source. The result showed a small difference in the sample, 

between 1-3 units (in a scale of 1024)  

In order to fix this “gap” we added a calibration mode that saves two values for each 

photoresistor –  

• Dark value that we sampled in the darkness 

• Bright value that we sampled with a strong close light source facing the device 

Then, we show each photoresistor’s private range, from dark value until bright 

value, on a 0-100 scale.  

We repeated the test again, this time all photoresistors showed the same value. 

Stage 4: We had to cover each photoresistor with a shrink in order to block light  

that hits the side of the photoresistor. Otherwise, a weak light from the side of the 

dome was interrupting the sample.  

 

1.2.2. Parts list 
Parts for hardware 1.0 

• Arduino UNO 

• Battery pack  

• Photoresistors X13 

• 1k ohm resistor X13 

• HTC-06 Bluetooth  

• MUX 

• Button  

• 2X16 LCD screen 

 



1.2.3. Scheme 
 

 

 

 

 

 

 

 

 

 

 
 

 

1.3. Hardware 2.0 
 

1.3.1. Notes 
After we built the first prototype, we could measure lights and start developing our 

algorithm. Doing that, we experienced the lack of user interface of our device – there was no 

option to retake samples, we needed to run a full sample just to get the value of each 

photoresistor, there were to many cables and resistors etc.  

We decided to focus on both algorithm developing along with making a new, better, version 

of the hardware.  

The Arduino-UNO was replaced with the Olimex ESP32-Poe-ISO - A faster and smaller 

developing card, with a built-in WiFi, Bluetooth, ethernet and SD card slot. The ESP32 also 

has a wider analog range 0-4095, which gives us better accuracy. 

The battery pack was replaced with a small Lipo battery. 

The simple 2X16 LCD screen was replaced with a big, colorful, touch LCD screen –which 

allows us to build a user interface with a flexible menu – retake or accept samples.  

The photoresistors were replaced with better isolated photoresistors so we don’t need to 

cover them with shrinks in order to block a light that hits their side.  

For the calibration we added two features – the first is an option to skip calibration and use 

a default value of dark and bright values. The second is a unique way of bright sampling – a 

counter of 10 seconds that allows us to light every spot of the dome for the calibiration.   

 



We added a demo mode – a graphical display of the device with its 13 photoresistors, each 

is represented with a small circle that contains a numeral value between 0-100 according to 

its sample reading. The value is also shown as a fill color of the cycle in greyscale, black for 0 

value and white for 100 value.  

 

 

 

 

 

 

 

 

We ran into some Issues on the way: 

• RGB color fixing – when we tried to upload a background picture to our screen, we 

found out there are only a few colors available in the screen’s code package. We 

then found out that each color is represented in 16bit instead of full 24 bit (one byte 

for each red-green-blue color). By adding our own function that fixes the missing 

range for each color, we were able to display a full RGB image on the screen.  

 

 

 

• Bitmap loading speed – displaying the background image pixel by pixel was a slow 

and visible process. We replaced this with loading the full image at once – a process 

that consumes a lot of memory from the developing card. We finally loaded the 

bitmap on an SD card, and loaded the picture in two stages – first half and second 

one. This solution was fast so the user can’t notice the uploading process and it 

saves memory as the bitmap is stored on an external SD card.  

 

 



In order to make the arcs steady, we designed a 3D sketch using Pro Engineer (aka Crio). We 

also positioned the LCD screen in between the arcs, so its light won’t affect the samples, 

this, of course together with making the screen as dark as possible while taking a sample.  

 

 

 

 

 

 

 

 

1.3.2. Parts list 
Parts for hardware 2.0 

• Olimex ESP32-Poe-ISO 

• Lipo Battery  

• Electricity switch 

• 1k ohm resistor 

• Photoresistors X13 

• MUX 

• LCD touch screen  

 

1.3.3. Scheme 

 

 

 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

1.4. Data Transfer flow 
 

The data is transferred via Bluetooth from the device to a computer with a Bluetooth dongle. 

After each sample the device sends 14 values to the Bluetooth serial – first value is for 

communication protocol, if its 253 (a new sample), 254 (accept a sample), 255 (Done) and the 

rest 13 are for sample, each representing a number between 0 – 100 for each of the 13 

photoresistors input.  

The moment the data is received, we sample the HTC tracker and save the coordinates and 

rotation of the device the way it is located during the current sample.  That way, if the user 

chooses to retake the sample, the tracker’s data will be updated as well.  

 

 



When the user clicks the Done button the 255 signal is sent and the software closes two output 

files – first with the samples data, each line represents a sample with 13 values. Second is for 

tracker’s data for each sample, each line shows the (x, y, rotation) of the tracker according to the 

sample in the same line in the other file.  

 

 

1.5. Software  
We built a software that runs the entire process –  

1. The user chooses the computer Bluetooth serial port and click “Open” 

 

 

 

 

 

 

 

 

2. A failure will pop up an error message “cannot open port” that indicates the Bluetooth 

connection failed, the user needs to make sure the port number is correct. 

3. A success will activate the “Get Data” button, clicking on it will set the software ready to 

get the data from the device.  

4. When the user clicks “Done” on the device, the software will prepare the files and then 

run our algorithm. The output will be a Visual Studio Project with a light module that 

matches the real world. (Detailed in part 2. The Fusion Algorithm) 

5. Clicking the “Reset” button will clear saved date and prepare the environment to a new 

light model building.  

 

 

 

 

 

 

 

 



1.6. Testing 
In Order to test the device with the algorithm we designed a test sheet to be placed under the 

device. This helped us testing the light from known and precise angles so we could match them 

to the algorithm’s output.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. The Fusion Algorithm 

 

2.1. Introduction 

The Fusion Algorithm is the linking part between the receptions made by the hardware 

and the light source formed by Unity. 

 

2.1.1. HTC VIVE Tracker 

In order to consider the hardware’s position in space, we used the HTC VIVE Tracker 

and its self-location data in order to fit each measurement to the same initial axis 

system aligned to the first sample taken. 

The tracker position is given as a quaternion [x, y, z, w] - a complex number with ‘w’ 

as the real part and x, y, z as imaginary parts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure 11 

In order to extract the rotation details in degrees (the basic format is given in Euler 

angles) we used conversion function as part of the script running in the HTC Unity 

environment. 

                                                           
1 figure 2-1- https://answers.unity.com/questions/147712/what-is-affected-by-the-w-in-quaternionxyzw.html 

https://answers.unity.com/questions/147712/what-is-affected-by-the-w-in-quaternionxyzw.html
https://answers.unity.com/questions/147712/what-is-affected-by-the-w-in-quaternionxyzw.html


According to the way we designed the device, the Roll and Pitch rotations are 

fixed, therefore we are only interested in the Yaw rotation relative to Z axis. 

 

 

 

 

 

 

 

figure 22 

The tracker location is saved for each sample and in case the sample is approved 

(and not retaken) the position is recorded into the position log file. 

 

2.2. Constraints 

While working on the algorithm and the light model creation we had several constraints 

regarding the type of light source and the location of the device during the 

measurements: 

1. Focused light - the measured light source needs to be narrow spotlight and not 

wide directional light. 

2. The device position - the device should be found in the center of the light beam 

and not on the edge of the spotlight. 

3. Taking the measurements - it’s required that for each measurement one arc will 

be directed to the light source.  

 

 

 

 

 

 

 

 

 

                                                           
2 Figure 2 – The 3D axis rotations. 



2.3. The Algorithm Operation 

2.3.1. Inputs and Outputs 

The algorithm is capable of taking the samples of light from the device’s samples of 

the environment and creating a light model of a single directional light source 

equivalent to it. 

Input: The algorithm uses several input files: 

1. input.txt – contains the measurements made by the hardware: 

 

 

figure 33 

2. position.txt – contains the tracker’s data (x , y , rotation) for each 

corresponding measurement: 

 

 

figure 44 

3. fitting.txt – contains basic data for the light’s distance -> light intensity 

and light intensity -> distance conversion functions: 

 

 

 

figure 5 5 

Output: The algorithm’s output is four directional light sources, one for each quarter, 

with its intensity and rotation angles (Yaw and Pitch): 

 

 

 

 

Figure 6 6 

 

                                                           
3 Figure 3 – input example 
4 Figure 4 – position example 
5 Figure 5 – the fitting file 
6 Figure 6 – the output file 



 

2.3.2. The Algorithm functionality 

After we are done taking our measurements, the samples are sent to the fusion 

algorithm. 

 This algorithm has 4 main stages: 

1. Stage 1 – The sample fitting 

For each sample taken, the first action performed is to calculate the different 

measurements and divide them into four quarters. 

The sample fitting is performed in the “getCoordinates” method, which 

receive a sample (array of 13 measurements) and tracker rotation arguments. 

The 13 measurements represent the receptions of the 13 photoresistors as 

follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure 77 

According to photoresistor position and the tracker rotation, each 

measurement is then inserted into a matrix that holds the (x, y, z) position 

data of each measurement. 

For example, the measurement of photoresistor number 2 is calculated as 

follows: 
 

[rot_x(cos_theta(90), sin_theta(90) * cos_alpha(30),rot), 

rot_y(cos_theta(90), sin_theta(90) * cos_alpha(30),rot), 

sin_theta(90) * sin_alpha(30)] 

                                                           
7 Figure 7– scheme of the photoresistors positions on the dome. 



 

The rotation value is calculated by combining the hardware rotation (45° as 

we can see on figure 3) and the tracker rotation given from the tracker. 

The data is then passed to rot_x and rot_y methods that calculate the actual 

rotation in space according to these formulas: 

 

 

 

 

 

 

 

figure 88 

The result of this part is a matrix containing the fitted sample according to 

the light intensity measured on each photoresistor and the device’s rotation 

in space. For example, this is the intermediate result for the input shown in 

figure 3: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 99       Figure 1010 

                                                           
8 Figure 8 – the calculation of rotated x position and y position 
9 Figure 9 – the matrix for the first input sample 
10 Figure 10 – the matrix for the second input sample 



 

2. Stage 2 – Light intensity do distance conversion 

 

For getting only the lighted part of the matrix, we need to multiply the 

rotated matrix with equivalent distance of the measured light intensity. 

  

Therefore, we need to build a non-linear conversion function that will 

convert every light intensity to accurate distance. 

 

In order to find the exact function, we used an online tool 11 with our fitting 

samples (figure 5) and got the following function: 

 

𝑓(𝑥) =
𝐴 − 𝑑

1 + (
𝑥
𝑐
)
𝑏 + 𝑑 

 

 While using this function and our fitting samples with the curve_fit optimize 

library in python we received this function graph: 

 

 

 

 

 

 

 

 

 

 

 

Figure 1112 

 

 

 

 

 

 

 

                                                           
11 https://mycurvefit.com/  
12 Figure 11 – the curve_fit function graph of distance as function of the light power 

https://mycurvefit.com/
https://mycurvefit.com/


 

Using this function, we converted our measurements into a distance and 

multiplied it with the previous matrix: 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 
Figure 1213        Figure 1314 
 

3. Stage 3 – Unifying Coordinate Systems 

 

The next part of the algorithm is determining the base to our coordinate 

system. 

Therefore, we decided to choose the first (x, y) data from the tracker as our 

center of the coordinate system and any additional sample will be calculated 

relatively to it. 

 

In order to perform this unifying process, we take every individual 

measurement (it’s x, y coordinates) and transform it to the unified coordinate 

system while taking in consideration the current tracker location. 

 

 

 

 

 

                                                           
13 Figure 12 – the calculated matrix for the first input sample 
14 Figure 13 – the calculated matrix for the second input sample 



The next step is to determine in which quarter each measurement is found 

and classify the measurements into one of the four quarters. 

Then, we calculate in each quarter it’s summed location and setting one 

location for each quarter: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1415 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
15 Figure 14 – the final 4 light sources, one for each quarter 



4. Stage 4 – Create final light source 

 

At this point we have four light source positions, and we want to determine 

its intensity and direction. 

Therefore, we first need to calculate the opposite conversion function the 

same way we did in part 2 of the algorithm. 

We used the same online tool16 and received the following function: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
    Figure 1517 
 

The conversion result in our case is: 

 

 

 

 

 

 

 

 

 
Figure 1618 

 

 

 

 

 

 

                                                           
16 https://mycurvefit.com/ 
17 Figure 15 – the curve_fit function graph of light power as function of the distance 
18 Figure 16 – result of light source power after the conversion 

https://mycurvefit.com/
https://mycurvefit.com/


The final action will be to calculate the rotation angle and the elevation angle 

of the light source, and we will do that using the (x, y, z) positions of the light 

sources. 

In addition, for compatibility with the Unity coordinate system (in the 

measured room environment) we needed to rotate our result by 180 

degrees. 

 

The final result for each quarter in will be: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1719 

 

 

 

 

                                                           
19 Figure 19 – the final output that will be passed on to Unity 



3. Unity, Hololens & HTC Vive Tracker 

3.1. Unity & Hololens 

After all the data is ready from the device and the algorithm, we then need to show the 

finished result within unity, and the Hololens.  

During this process we encountered a few difficulties we shall elaborate about here: 

- Hololens limitations. 

- Unity shaders. 

3.1.1. Hololens limitations 
As part of our project, we were assigned the hololens in order to show the light 

model after all measurements were done. 

While dealing with the hololens a few issues came up: 

- The hololens file system: 

Our original plan was to “pull” the data from within the scene through a unity 

C# script. But after trying to do so we concluded that after deploying the 

scene and starting to run it on the hololens there isn’t access from the 

hololens to the pc’s file system while connected via USB, or from the pc’s file 

system to the hololens’s.  

Because the light is created after the scene starts running, and obviously the 

location is unknow prior to taking the samples with the device, meaning the 

C# script runs in the scene, not prior to the scene. Because the scene starts 

on the hololens. 

So, we needed to find a way to plant the data within the C# script before we 

deploy the project to the hololens.  

To solve this issue, we put a “~” character in the C# script which is later 

substituted with the output from the algorithm. This means that instead of us 

being able to run the measurements while the scene is running and then 

when the output is ready the light is created, we need to take the 

measurements, deploy the scene to the hololens and then run it. 

- The hololens color: 

The unity projects its AR scene onto reality by projecting the digital scene 

related objects onto the lenses of the glasses, that fact means that anything 

black does not show up on the hololens, as there isn’t a way to project black. 

Shadows by default, are shown in unity to be black, to change them to a 

different color we need to use a custom shader. 

- The hololens quality: 

The whole scene and scene calculations are done on the hololens. This means 

that its calculations aren’t as strong as ones run on a pc, this leads to poorer 

performance when calculating real time shadows. We can’t use baked 

shadow maps, as the light source location is not known prior to the scene 

running, and the objects in the scene are not static, both are a must for using 

baked shadow maps. 



The poor performance on the real time shadow calculations lead to the 

shadows not looking as good on the hololens as they do in the unity editor. 

A lot of tweaking and setting changes were needed in order to get the 

shadows looking better on the hololens, closer to how they look in the unity 

editor. 

 

 

 

 
 

 

 

 
 

 
 
 
 
 

 
Pictures above show the progress made with the shadow quality until our 

final result. 

 

 

 

 

 

 

 



3.1.2. The unity shaders 

Part of the requirements were to show the result of the light module creation 

in the augmented reality, part of it is showing she shadows on the real floor, 

rather than a digital floor.  

The built-in unity shaders don’t show shadows on non-augmented objects. 

Because of this fact, together with the fact mentioned before about the color 

black in the hololens, we needed to create custom shaders to use in our 

projects. 

Custom shaders, to try and get the quality of the shadows to look better on the 

hololens, to get the shadows in a different color, initially red, then on to a grey 

color to better match real life shadows, and most importantly to get shadows 

to cast on the real-life objects. 

  

 

An example of how well shadows look in unity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.2. HTC Vive Tracker 

 
As mentioned previously we used the HTC Vive’s tracker, in order to retrieve the 

location and rotation of the device while taking the samples of the room’s light 

module.  

In order to work better with the Hololens, we had to use Microsoft’s AR Toolkit. 

It allowed us to set up and work better in building the scene and setting it up for the 

hololens. 

To work with the HTC Vive, we needed to work with Steam VR, and also, we 

couldn’t get the tracker to work independently without the headset. 

So, we decided to work with the HTC vive’s headset connected. 

When we tried to insert the Steam VR plugin into the hololens’s project, there were 

problems that came from different settings each plugin wanted to set, Steam VR 

and AR Toolkit. As the needed data from the tracker can and is moved via the 

filesystem, we decided we can run two separate projects on the pc, one for the HTC 

Vive, and another for the hololens. 

So, that is what we do, run the HTC Vive’s project which is pretty much empty, 

solely for the purpose of retrieving the trackers location into an output file located 

on the pc’s filesystem, and run the hololens’s project so after the output from the 

algorithm is done, we can deploy and run the scene. 

 

 


