
By: Ido Galil, Or Farfara

Supervisor: Yaron Honen

Sponsor: Technion’s libraries



 This project comes to supply the Technion’s libraries with a 
people counting system, to monitor the amount of people 
in the libraries at any given time.

 This goal is achieved by the combination of two 
components: a detector component using a Convolutional 
Neural Net (YOLO) detecting people on the frame, and a 
tracking component utilizing a tracking algorithm (CSRT) 
which updates those people positions on the next frames.



Background

 In the near past, the ability of identifying people and tracking 
them in a video and doing so in real-time was very challenging: it 
required a lot of computational resources and was immensely 
hard to develop.

 With the rapid development of neural networks in recent years, 
this task became more plausible for general use, and could be 
applicable to solve many problems.



Background

 One such problem is counting the amount of people entering or 
exiting a building through specific entrances.

 A counting system intended for this problem could add value for 
various different scenarios (knowing the amount of people in a 
building in case of an emergency, allocating an area’s resources 
according to how populace each building or floor in it is etc…).



Motivation

 The library today performs the people counting task using 
the following architecture:



Motivation

1) IP cameras are located overhead in the libraries 
entrances and send live stream video

2) A video processing component (already existing today) 
gets this live feed from the cameras, processes it and 
translates it into count events: ins and outs.

3) The events are sent to a summation system, that sums 
the ins and outs and sends them to the database every 5 
minutes

4) The database stores the data in 5-minute resolution

5) The data is made available for queries and displayed to 
the end users



Motivation

 The current state of the architecture suffers due to large 
inaccuracies in its counting capabilities, as can be shown in this 
daily counting graph:



Motivation

 The blue line represents the number of people within one of the 
Technion’s libraries, from its opening until its closing (when there 
are no more people left within it). As can be seen, while the 
library should be empty and contain 0 people, the system 
believes there are around 600 – which goes to show the 
inaccurate counting of the video processing throughout the day 
compounding to this level. 



Hypothesis

 Using a combination of a Deep Neural Net to identify 
people on the frame (every few frames) and a good tracking 
algorithm to keep track of the detected people on the frame 
should provide with good accuracy.



 The creation of a people’s counting system, able to count 
people entering and leaving an entrance with precision.

 The system must be easy to set up for new entrances to 
serve future expansion plans by the Technion’s libraries.

 The system must be able to work in real-time, given the 
basic hardware (strong PC with GPU) to function.

 The system should be able to work over the internet, 
receiving its feed from live stream IP cameras.





 Input & Output: The system receives a video stream from the 
cameras, and outputs events whenever a person was detected 
entering or exiting the entrance (with the corresponding “in” or 
“out” event).

 Internally, the system has two main components:

The basic structure of the solution



 Detector: a component detecting objects it classifies as human 
(implemented with YOLOv3), and either identifies them as 
objected already detected in the past (in which case their 
positions will be updated) or as new objects (and then adds new 
objects to the people’s positions array).

 The detector attempts to make detections only every ‘N’ frames 
in order to lower the computational cost of the system.

The basic structure of the solution



 Tracker: this component tracks the locations of already existing 
people (previously detected by the detector) and updates their 
positions in the array. Implemented by Open-CV’s CSRT tracker 
algorithm.

 In our implementation, each person has his own tracker object.

 Every time a person has changed his position from the entrance 
exterior region to the interior region (which is marked by a line 
or polygon), a counting event occurs and an “in” or “out” event 
is sent from the system.

The basic structure of the solution



 We have discovered the basic structure of a detector component 
and a tracker component do a reasonable job, but not achieving 
high enough accuracy as required.

 Lots of small improvements were added to the system, trying to 
solve accuracy issues.

System improvements: developing from experiments



System improvements: developing from experiments

 The most significant issues: Detector & Tracker failures

 Detector: 

1) Missing the best frames to detect a person’s 

movements due to interval

2) Confidence threshold being too high for edge 

cases

 Tracker: losing tracked people without having the 

detector to fallback upon due to interval

 Solution: “Detection slowdown” mode

 Results: raising test results to 100% accuracy

If only we 

could detect 

every 

frame…









In total: 97% accuracy

*And we suggest simple ways we believe will boost accuracy even more!

Library Ins Outs
Total 

Accuracy

Total 38/40 28/28 97%

Central 8/8 4/4 100%

Architectur

e
6/6 3/3 100%

Mechanical 6/6 3/3 100%

Electrical 6/6 7/7 100%

Medical 12 / 14 11/11 92%



 We used the Central library test video to measure the 
system’s speed, which is a 320 seconds video at 12 FPS as 
received.

 With doing nothing more than streaming the modified 
video (adding the counting line and bounding boxes on it) 
and recording (to the file-system, a costly operation), it 
took 229.5~ seconds.

 Without recording the modified video, it took 192
seconds.

 Without even showing the modified video, only counting 
the people in the video, it took 182.5 seconds.

Speed



 The system achieves high accuracy without being heavy on 
computational resources (relatively to the task). If we were 
to summarize all people entering and exiting in all of the 
test videos, we would stand on 97% accuracy in counting.

 We avoided overfitting to any specific library by limiting the 
amount of factors we could change (the most significant 
one being Maximum Continuous Detector Failure).

 Our benchmark test videos were 12 FPS, but higher FPS 
should provide better accuracy (though it might be slow 
the system and will change the optimality of the 
parameters we’ve found).



 Mask R-CNN paper: https://arxiv.org/abs/1703.06870

 YOLOv3 paper: https://arxiv.org/abs/1804.02767

https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1804.02767


 Increasing FPS of videos from cameras and adjusting the 
system’s parameters accordingly to increase accuracy even 
further.

 Changing cameras positions to center bottlenecks. 
Optionally, adding a physical bottleneck if the entrance 
lacks any.

 Use even a better detector or tracker in the future when 
such will emerge. The system was built in a modular way 
to allow the easy switching of models.


