
Corn Plant Segmentation
A DEEP LEARNING PROJECT FOR AGRICULTURAL PURPOSES

By Iliya Rubinchik and Snir Homsky ² 29/03/20

Corn segmentation project
� We will be using Mask R-CNN, a segmentation neural network, which outperforms the COCO 2016

challenge winners.

� The challenge in this project, is to take a small dataset, of just 45 annotated images, and by using Data

Augmentation, create a large dataset, which the neural network can train on.

� Another challenge is, that each image contains plants which are annotated, and plants which are

not.

Corn segmentation project
� We will be using Mask R-CNN, a segmentation neural network, which outperforms the COCO 2016

challenge winners.

� The challenge in this project, is to take a small dataset, of just 45 annotated images, and by using Data

Augmentation, create a large dataset, which the neural network can train on.

� Another challenge is, that each image contains plants which are annotated, and plants which are

not.

Project Goals

Project Goals

Segmentation of corn leaves

Using the Mask R-CNN neural network

Example only:

Project Goals

Segmentation of corn leaves

Separate between different leaves

Example only:

Project Goals

Segmentation of corn leaves

Separate between different leaves

Number the leaves from youngest
to oldest

1

2

3

4

Example only:

Project Goals

Segmentation of corn leaves

Separate between different leaves

Number the leaves from youngest
to oldest

Find start and end points of each leaf

Example only:

Project Goals

Segmentation of corn leaves

Separate between different leaves

Number the leaves from youngest
to oldest

Find start and end points of each leaf

NOTE: this was not possible, since the

notated data we were given, was

wrong in regard the numbering of the

leaves

Example only:

Visualizing the annotations

� As you can see, not all plants are annotated.

Another Example
� Again, not all plants are annotated, and cropping out only the

annotated plants is a problem.

Dataset preparations - problem
� Before we can start using data augmentation techniques, we

realized, we have a problem, not all plants are annotated.

Not all plants in this image are

annotated.

If we use images like this, Mask R-CNN

will learn to differentiate between

plants that were annotated, and

plants that weren't.

Dataset preparations - solution
1. Cut the images to individual corn plants.

Include also images with multiple plants (ROIs).

2. Remove backgrounds. This is done to remove any untagged plant.

� For example:

Dataset preparations -solution
� Another example�

Dataset preparations - Background

We·ve decided to create the background out of the original

images, in hopes that it will help Mask RCNN differentiate between

the background and the plants.

Dataset preparations ²solution

Notice there are still leaves
after deletion

The white border represents
the ROI

3.2 we crop out the annotated

plants and leave only the ROI.

3. Creating the background

3.1 we take one of the

original images.

Dataset preparations -solution

� However, since the annotations aren't perfect,

we are left with parts of the leaves.

Dataset preparations -solution

4. So we used: erosion and

smoothing.

Dataset preparations -solution: Filling the Holes left

by the cropped plants.

5. We stacked the images one on top of the other, until all holes were filled

Dataset preparations -solution: Filling

the Holes left by the cropped plants.
But there were still problems ² as you can see, there are still plants in the background

Elaborating on the background

creation process
Create histogram of leaf colors from the cropped images.

Only most dominant colors are chosen.

Compute a color histogram for each plant

Take 20 most common colors from each plant (~3000 colors overall)

Dilute the list by only choosing colors which are at least 10 units apart (Cartesian
Length)

We end up with ~ 150.

Create tiles of backgrounds without leaves in them
(compare all pixels to the leaf colors).

Trim tiles to standard sizes (e.g. 113X503 ->100X500)

Construct bigger backgrounds by combining tiles.

Trim the edges

Result of dataset preparations

Result of dataset preparations

Data Augmentation - finally

First we tried doing it ourselves

We·ve implemented:

Horizontal flip

Vertical flip

Rotate

Stretch

Brightness adjustment

This required a lot of effort, since editing

images takes a lot of time, we had to

use multiprocessing to cut down times.

Training time

As we implemented more data augmentation techniques, the datasets grew,

and the training time grew as well. It took us up to 30 hours to train a network.

So at first, we tried to switch to data augmentation while running the trainings,

since we thought maybe the reading time from the disk took too long.

However, the results were even slower.

On a positive note, implementing the data augmentation this way made it

easier to find good data augmentations, since there is no need to create a

new dataset each time.

Next, we tried rescaling the image sizes to 256x256 - and it worked, we cut

down training time by 800%.

Experiment #1 ² affine data

augmentation

The affine augmentation is composed of:

1. Resizing the image

2. Translate ² moving the image

3. Rotate

4. Shear ² stretch the image

Dataset size: ~3200 images

Experiment #2 and #3 ² data

augmentation

The augmentation is composed of:

1. Affine

2. Invert ² inverts the pixel value per channel

3. Hue and saturation

4. Contrast normalization

5. Flip ² both vertical and horizontal

Dataset size #2: ~3200 images

Dataset size #3: ~6400 images

Experiment #4 ² affine and emboss

The augmentation is composed of:

1. Affine

2. Emboss

Dataset size: ~3200 images

Experiment #5 ² affine and flip

The augmentation is composed of:

1. affine

2. flip

Dataset size: ~3200 images

Experiment #6 ² data

augmentation ² affine and gauss

The affine augmentation is composed of :

1. affine

2. gauss

Dataset size: ~3200 images

Experiment #7 ² data

augmentation ² affine and hue

The affine augmentation is

composed out of affine and :

1. hue

Dataset size: ~3200 images

Affine ² Flip (best result)

Problem, since

we gave Mask

RCNN only

images with one

plant in them, the

resulted NN

couldn·t handle

multiple plants in

one image.

We couldn·t

see this, until

we colored the

masks.Mask Results

Affine ² Flip (best result)

Ground Truth

Mask Results

Affine ² Flip (best result)

Ground Truth

Affine ² Flip (best result)

All Results
Type of images affine affine All

hue, invert, flip,
contrast

emboss flip gauss hue

3200
steps

6400
steps

IOU on
original
images

from test
set (ROIs)

Original
size~3000x4000

9% 9% 11% 10% 13% 10% 8% 9%

$V�\RX�FDQ�VHH��WKH�UHVXOWV�ZHUHQ·W�JRRG�DV�ZH�

expected, so we thought that maybe if we change the

image size of the original test image, we would get

better results.

All Results
Type of images affine affine All

hue, invert, flip,
contrast

emboss flip gauss hue

3200
steps

6400
steps

IOU on
original
images

from test
set (ROIs)

Original
size~3000x4000

9% 9% 11% 10% 13% 10% 8% 9%

Min(width,height)=
1024

11% 11% 8% 8% 12% 10% 9% 9%

Max(width,height)=
1024

12% 11% 8% 11% 14% 10% 9% 7%

50% of the original
size

9% 11% 9% 10% 14% 10% 9% 8%

:H�ZHUH�ZURQJ��FKDQJLQJ�WKH�RULJLQDO�LPDJH�VL]H�GLGQ·W�KHOS�

So we ran the NN on the augmented images from the test set.

Mask Results

Affine ² Flip

(best result on augmented plants)

Ground Truth

Affine ² Flip

(best result on augmented plants)

All Results
Type of images affine affine All

hue, invert, flip,
contrast

emboss flip gauss hue

3200
steps

6400
steps

IOU on
original
images

from test
set (ROIs)

Original
size~3000x4000

9% 9% 11% 10% 13% 10% 8% 9%

Min(width,height)=
1024

11% 11% 8% 8% 12% 10% 9% 9%

Max(width,height)=
1024

12% 11% 8% 11% 14% 10% 9% 7%

50% of the original
size

9% 11% 9% 10% 14% 10% 9% 8%

IOU on cropped out single plants
from test set

49% 57% 49% 57% 54% 44% 53% 54%

Conclusions

Possible reasons for the low IOU results:

The custom backgrounds:

still have cut-outs in the shape of leaves that may confuse the

network.

might have small leaves that we and the script missed.

One plant per image.

Improvement Ideas

Use random backgrounds from the internet.

Add hand picked backgrounds cropped

out of the original images, to eliminate

detection of objects in the background as

leaves.

Place a few plants in each image

Random location and rotation

2-5 plants, mask per plant

Mask Results

2-5 plants, mask per plant

Ground Truth

2-5 plants, mask per plant

Mask Results

2-5 plants, mask per plant

Ground Truth

Rethinking Our Strategy

Using one mask for each plant we didn·t get good enough results, so

we tried training using one mask for each leaf.

2-5 plants, mask per leaf

Mask Results

2-5 plants, mask per leaf

Ground Truth

2-5 plants, mask per leaf

Mask Results

2-5 plants, mask per leaf

Ground Truth

4-10 plants, mask per leaf

Mask Results

4-10 plants, mask per leaf

Ground Truth

4-10 plants, mask per leaf

Mask Results

4-10 plants, mask per leaf

Ground Truth

Results
Type of images 2-5 plants per image 4-10 plants per image

mask per plant mask per leaf mask per plant mask per leaf

IOU on original images from the
test set (ROIs)

32% 55% - 61%

IOU on cropped out single plants
from test set

53% 59% - 59%

New IOU
IOU on original

images from test
set (ROIs)

IOU average 32% 60% - 64%

clashes 18% 2% - 3%

Incorrect 0% 23% - 20%

Not found 43% 40% - 39%

New IOU - match result segments to ground truth segments

Clash ² two or more result segments match the same ground truth segment (percent of all result segments)

Incorrect ² a result segment which does not match any ground truth segment (percent of all result segments)

Not Found ² a ground truth segment which was not matched to any result segment (percent of all ground truth segments)

Incorrect Mask Example

Conclusions

More plants per image perform better, since we then get more
overlapping between plants, as we have in the original images.

:H�VWLOO�GRQ·W�JHW�JRRG�HQRXJK�UHVXOWV�

Probably because there is not enough variation ² we use the
same 160 plants and augment them.

Solution

Create new plants of the individual leaves to increase variation.

Creating New Plants

Problems

How to Align the leaves so that the bottom of the leaf is at the bottom of

the image? (the provided annotations were inconsistent)

How to assemble a plant that looks real?

:H·YH�DOUHDG\�UHDFKHG�WKH�PD[LPXP�5$0����*%��RQ�WKH�VHUYHU��+RZ�GR�

we lower the size of the masks?

Heuristic for Aligning Leaves

Per plant, we created a polygon for each leaf.

For each leaf we got the two most distant points in the polygon

For all the points we gathered(2n points, since we have n leaves), we

searched for the closest n points

We took the n points and averaged them, the result is the center

point of the plant

Now that we know the center of each plant, we can infer the

bottom (and top) of each leaf.

Results:

Assembling a plant

We choose a random set of 3 to 7 leaves

we sort the leaves by size from small to big

for each leaf in the random set

Each odd leaf we place at 0 degrees + a random degree

between -30 and 30

Each even leaf we place at 180 degrees + a random degree

between -30 and 30

Samples of Assembled plants

4-10 assembled plants, mask per leaf

Mask Results

4-10 assembled plants, mask per leaf

Ground Truth

4-10 assembled plants, mask per leaf

Mask Results

4-10 assembled plants, mask per leaf

Ground Truth

Using The Assembled Plants

4-10 plants
mask per leaf

IOU on images from test
(original ROIs)

56%

IOU on cropped out single plants from
test:

60%

New IOU
on images from

test
(original ROIs)

IOU average 60%

clashes 5%

Incorrect 16%

Not found 39%

No significant

improvement

We thought that maybe the plants should be better separated to look more
like the original images, and to limit them from overlapping too much.

We created new images, with multiple plants in each image.

1. For each image, we randomly selected if it was going to have 1, 2, or 3
rows and 1, 2, or 3 columns. So each image had 1 to 9 plants in it.

2. Each plant was placed randomly in one of the cells in order to mimic the
original images (e.g. you can·t have the base of two plants in the same
coordinate).

Unfortunately, this did not improve the results.

More Improvements

Training images - better separated plants

1. Using affine augmentation and color augmentation didn·t really help, the only thing that did

was flipping horizontally/vertically.

2. Categorizing all plants as one class when they look so different from one another was a

mistake. A better approach would have been to create 2 classes - one for old plants, and a

second one for young plants.

3. Creating backgrounds out of the given dataset was a waste of time, we saw no difference

when using generic backgrounds.

4. Working with images above 1024x1024 was a waste of time for epochs larger than 1800

images and training session with 30 epochs. Each training session took a minimum of 20 hours.

5. Training MASK R-CNN on images with single plants resulted in bad IOU since all the grown

plants intersect consistently in images from the original dataset.

In conclusion, if we had split the dataset to a dataset of young plants and grown plants, we

would have gotten much better results. In addition, images with all the plants annotated in them

would have helped too, since then we could have used data augmentation on them directly.

Conclusions

1. Build a better data augmentation - synthesize a plant that resembles a grown plant

from the ground truth. Perhaps only leaves from grown plants should be used for that

purpose.

2. Create an image with multiple grown plants that overlap and then minimize it to

1024x1024.

Further Work and Suggestions

