Banana Plants Treatment Classification

Itamar Gozlan 23/04/2020

Introduction

Introduction

- Banana plants are very important and are a big part of the nutrition of many parts of the world. more than 100 billion bananas are eaten every year in the world, making them the most popular agricultural product
- Banana plants may have all kinds of diseases and there is all sort of kinds of treatments
- In This project, we will try to distinguish between 4 kinds of Banana treatments by observing the pictures only
- There are 120 plants treated with 4 different levels of water and fertilizer stress
- Photographed daily, 17 days consecutively, 11-28 September 2018 (except 19/09)
- The images resolution is (4032 x 3024)

Introduction

- the plants are getting 4 different treatments (A, B, C, D)
- Where the quality of the treatment is from A, that includes the highest quality treatment to D which get the lowest quality treatment

20180924 A 06

20180918 B 05

20180922 C 21

20180928 D 04

The data

- There are about 2000 pictures from 4 categories (500 each)
- Each photo contains it's plant ID and the date that it was pictured
- To avoid bias that might arise from identifying the same plant there is a complete separation between Train\Test and Validation
- ▶ ID's 05, 15, 25 are used for validation only
- Rest of the dataset is randomly distributed between test (0.2) and train (0.8)

Goals and motivation

- Are the differences between the pictured banana <u>plants can be noticed</u> by a Convolutional Neural Network?
- Compare several convolutional neural networks architectures and data inputs, analyze results and draw insights
- Obtain a prediction that gives the <u>possibility to distinguish</u> between different banana plants that got different treatment

Experiment 1 - With Full Background

Experiment methods

- Using Native (CIFAR-10 based) neural network and transfer Learning (MobileNet, GoogleNet)
- Perform the same experiment with and without data augmentations
- CIFAR-10 network
 - ► 400 epochs
 - Batch size 32
- Transfer Learning networks
 - ▶ 300 epochs
 - Batch size 32
- Augmentations:
 - Horizontal Flip, Vertical Flip, Width shift, Height shift, Shear, Rotation

Results & Observations

GoogleNet		Mobi	leNet	CIFAR-10 Based	
Non-Aug	With-Aug	Non-Aug	With-Aug	Non-Aug	With-Aug
53%	48%	51%	61%	69 %	72%

- The architecture is important
- There is a notable difference in the pictures between the different treatments, although might not seem very obvious to a non-expert viewer
- Too much information is confusing!
 - GoogleNet performs better without augmentation
 - Transfer learning yields lower accuracy in total
 - But more data from the same kind yields better results!

Predictions (CIFAR-10 Based)

True Predictions

20

False Predictions

Experiment 2 -Without Background (Segmented)

Moving forward - old data in new representation

- Working with the same data BUT without the background
- How much information does the background add to the classification?
- Labels on the pictures! Need to isolate the main features the network learns from

Moving forward - old data in new representation

20180917 A 04:

Moving forward - old data in new representation

20180926 C 21

Experiment Method

- Using cropped plants as is
- Train the same Network from the previous experiment (CIFAR-10 Based)
- Train the top Transfer Learning networks from before (MobileNet, GoogleNet)
- Use Keras built-in data augmentation and also try running without any augmentations
- CIFAR-10 network
 - ► 400 epochs
 - Batch size 32
- Transfer Learning networks
 - ▶ 300 epochs
 - Batch size 32
- Augmentations:
 - ▶ Horizontal Flip, Vertical Flip, Width shift, Height shift, Shear, Rotation

Result & Observations

Experiment	GoogleNet		MobileNet		CIFAR-10 Based	
	Non-Aug	With-Aug	Non-Aug	With-Aug	Non-Aug	With-Aug
Original pictures	53%	48%	51%	61%	69 %	72%
Segmented Pictures	25%	-	36%	-	72%	81.8%

- There is a notable difference between the categories no labels on the picture
- Too much information is confusing!
 - Transfer Learning almost fails completely
 - BUT additional relevant data, using augmentations on a network that wasn't trained before improves accuracy
- The background only interrupts! Without the background, on a native network the accuracy is higher
- With the background the results of the Transferred learning networks is better that in a way is sanity check (because we expect it to handle a lot of details better)

CIFAR-10 based network - By Day

accuracy = 0.7254

CIFAR-10 based network - False Predictions

False Predictions

y_true = C y_res = D False Prediction Date 20180920

True Predictions

y_true = C y_res = C True Prediction Date 20180912

y_true = B y_res = D False Prediction Date 20180913 y_true = B y_res = B True Prediction Date 20180916

Experiment 3 Following A Hint

Experiment 3 - Introduction

- Following an experts "hint" about the connection between the treatment to the leaves growth rate
- Introducing a novel concept of Augmentation that aids exploiting data that has some sort of sequential connection

Experiment 3 - Introduction

- With the triplets, augmentation each image separately is possible, thus getting a substantial augmentation boost compared to a single image.
- Using this new method, we can increase augmentation exponentially by augmenting each picture in the sequence separately
- Forming triplets from sequential days to create "new" data set as a form of augmentation

Experiment Method

- Using plants as triplets
- Train the same Network from the previous experiment (CIFAR-10 Based)
- Train the top Transfer Learning networks from before (MobileNet, GoogleNet)
- Use Keras built-in data augmentation and also try running without any augmentations
 Without horizontal flip to maintain the order
- with the plants as triplets
 - Every 3 consecutive pictures were transformed to a triplet
 - For example:
 - 53722_20180911_153147_RGB_Treat_A_04.jpg
 - 53717_20180912_160043_RGB_Treat_A_04.jpg
 - 53721_20180913_151116_RGB_Treat_A_04.jpg
 - Result: 53722_53717_53721_20180911_20180912_20180913_RGB_Treat_A_04.jpg
- Distribution to Test\Train\Validation in the same way as Experiment I
 - Plants 05,15,25 were separated as validation group (as triplets)
 - Other plants were randomly distributed to train and test with the ratio of 0.2 test, 0.8 train

Result & Observations

Experiment	GoogleNet		MobileNet		CIFAR-10 Based	
	Non-Aug	With-Aug	Non-Aug	With-Aug	Non-Aug	With-Aug
Original pictures	53%	48%	51%	61%	69 %	72%
Segmented Pictures	25%	-	36%	-	72%	81.8%
Triplets	34%	25%	25%	32%	74%	84%

- The CIFAR-10 network architectures allow a certain flexibility in the input data form
 - Excelled among the other experiments with augmentation and without in all forms of data (with background, without background and with triplets)
- Improvement can be acquired by exploiting the sequential connection

Experiment 4 A vs ALL

Further questions

- Can we use another hint to improve accuracy even more?
- Heading a new direction with 2-treatment categorization (A vs the rest)
- How much flexible the CIFAR-10 network can be?
- 2-category prediction A vs ALL (B,C,D)
- What about A vs A/B/C? what will be the hypothesis?
 - Following the previous knowledge we have on the dataset we might expect higher accuracy when the treatment is the farthest from A (in quality)
- What can we say about the prediction by day?

A vs. ALL - Experiment Method

- Using cropped plants as is
- Data/Train/Validation contains only A and 0.33 of each shuffled category (0.33 from B,C and D regardless to the date)
- Plants with ID 05,15,25 are strictly reserved for validation
- Train the same Network from the previous experiment (CIFAR-10 Based)
- CIFAR-10 network
 - ► 400 epochs
 - Batch size 32

A vs ALL (B,C,D)

Loss by Epochs - Test accuracy: 0.8137255

y_true = C y_res = NOT_A True Prediction Date 20180923

y_true = NOT_A y_res = A False Prediction Date 20180921

A vs. Each - Experiment Methos

- Using cropped plants as is
- Data/Train/Validation contains only A and B/C/D each at the time
- Plants with ID 05,15,25 are strictly reserved for validation
- Train the same Network from the previous experiment (CIFAR-10 Based)
- CIFAR-10 network
 - ► 400 epochs
 - Batch size 32

Results Summary

TRUE PRED	DICTION	FALSE PREDICTION		
BY DATE		BY DATE		
20180911	: 16	20180911	: 8	
20180912	: 15	20180912	: 9	
20180913	: 17	20180913	: 7	
20180914	: 16	20180914	: 8	
20180915	: 17	20180915	: 7	
20180916	: 18	20180916	: 6	
20180917	: 16	20180917	: 8	
20180918	: 16	20180918	: 8	
20180920	: 16	20180920	: 8	
20180921	: 16	20180921	: 8	
20180922	: 17	20180922	: 7	
20180923	: 11	20180923	: 12	
20180924	: 17	20180924	: 7	
20180925	: 17	20180925	: 7	
20180926	: 17	20180926	: 7	
20180927	: 16	20180927	: 8	
20180928	: 11	20180928	: 7	

A vs B

Loss by Epochs - Test accuracy: 0.7745098

y_true = A y_res = A <u>True Prediction</u> Date 20180912

y_true = A y_res = B False Prediction Date 20180917

A vs B

TRUE PREDICTION	FALSE
BY DATE	PREDICTION BY
20180911 : 5	DATE
20180912 : 4	20180911 : 1
20180913 : 6	20180912 : 2
20180914 : 5	20180914 : 1
20180915 : 5	20180915 : 1
20180916 : 6	20180917 : 2
20180917 : 4	20180918 : 2
20180918 : 4	20180920 : 2
20180920 : 4	20180921 : 2
20180921 : 4	20180922 : 1
20180922 : 5	20180923 : 4
20180923 : 2	20180924 : 1
20180924 : 5	20180926 : 1
20180925 : 6	20180927 : 2
20180926 : 5	20180928 : 1
20180927 : 4	
20180928 : 5	

accuracy = 0.7745098039215687

A vs C

Loss by Epochs - Test accuracy: 0.9313725

y_true = A y_res = A <u>True Prediction</u> Date 20180928

y_true = C y_res = A False Prediction Date 20180923

A vs C

TRUE PREDICTION
BY DATE
20180911 : 5
20180912 : 5
20180913 : 5
20180914 : 5
20180915 : 6
20180916 : 6
20180917 : 6
20180918 : 6
20180920 : 6
20180921 : 6
$20180927 \cdot 6$
$20100722 \cdot 0$ $20180023 \cdot 1$
$20100723 \cdot 4$
20100924 : 0
20180925 : 5
20180926 : 6
20180927 : 6
20180928 : 6

FALSE PREDICTION BY DATE 20180911 : 1 20180912 : 1 20180913 : 1 20180914 : 1 20180923 : 2 20180925 : 1

accuracy = 0.93137

A vs D

Loss by Epochs - Test accuracy: 0.99019605

y_true = A y_res = A <u>True Prediction</u> Date 20180926

A vs D

20180928 : 6

FALSE PREDICTION BY DATE 20180923 : 1

accuracy = 0.99

Main conclusions

- Notable differences between A,B,C,D
- The treatment scale is well expressed in the pictures and the network succeeds in finding it
- The CIFAR-10 network architectures allow a certain flexibility in the input data form and works very well on this dataset
- Higher accuracy rates around 14/09/2018 and 24/04/2018 but not in a notable way

Supplementary Material

Future work

How much can we push the CIFAR-10 network?

- Different datasets?
- Close dataset? (Thermal)
- Can we exploit the triplets idea even more? Augmentation for each picture separately, exploit similar links in other datasets with sequential connection
- What about other "pre-trained" networks? Other architecture will work well on the same dataset?
- Is the high accuracy more a data-set quality or architecture dependent?

Common Terms

- epochs: Integer. Number of epochs to train the model. An epoch is an iteration over the entire (X,Y) data provided - iterations on a dataset (Train and Test)
- batch_size: Integer or None. Number of samples per gradient update. In this project I used 32, so that means that each time the weights get updated it will consider 32 pictures
- steps_per_epoch: Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. To cover all the dataset I used "train_size / batch_size"

When do the weights get updated?

- The weights get update when ever a batch is done
- For example, if we have 400 epochs, the dataset is 1600 and the batch size is 32:

```
\frac{dataset\ size\ 1600}{batch\ size\ 32} = 50\ times\ each\ epoch
```

- ▶ $50 \cdot 400 = 20,000$ times per train
- Example from Keras outputs (every line is an update):

Epoch	1/400
1/50	[] - ETA: 7:32 - loss: 2.0419 - accuracy: 0.2188
2/50	[>] - ETA: 3:48 - loss: 2.1069 - accuracy: 0.2188
3/50 •	[>] - ETA: 2:34 - 1055: 1.9851 - accuracy: 0.2292
• 47/5	0 [====================================
48/5	0 [==========================>] - ETA: 3s - loss: 1.4253 - accuracy: 0.2600
49/5	0 [==================================
50/5	0 [================================] - 97s 2s/step - loss: 1.4228 - accuracy: 0.2639
51/5	0 [====================================

Augmentations

Data Augmentations

Horizontal Flip

Vertical Flip

Data Augmentations

Width shift

Height shift

Data Augmentations

CIFAR 10-KERAS BASED MODEL ARCHITECTUE

Itamar Gozlan

The complete architecture

- Input dimension is depends on the experiment. initial experiment dimensions: (336, 252)
- Conv2D: 32 filters, kernel size 3x3
- Relu activation layer
- Conv2D: 32 filters, kernel size 3x3
- Relu activation layer
- MaxPooling2D pool size (2,2)
- Dropout rate 0.25

- Conv2D: 64 filters, kernel size (3,3)
- Relu activation layer
- Conv2D: 64 filters, kernel size (3,3)
- Relu activation layer
- MaxPooling2D pool size (2,2)
- Dropout rate 0.25

- GlobalAveragePooling2D Global average pooling operation for spatial data.
- Dense (densely-connected NN layer)
- Relu activation layer
- Dropout rate 0.5
- Dense (densely-connected NN layer)
- Softmax