
Project by Jacob Sela and Shavit Borisov

Supervised by Elad Richardson

Recently, much work has been done
on the topic of generation from a
disentangled space, usually by first
using some form of encoding to
disentangle the space.

This has made generation problems
simpler to tackle by allowing to
directly and precisely change a single
factor of variation.

However, training an autoencoder for the disentanglement of a feature is

expensive in time (both computationally and that put in by the engineer of the

system) and resources (a highly varied and expansive data set is required).

This sets a barrier, allowing only those highly trained in such systems and

equipped with a lot of data to effectively evoke these models for generation.

IDEA

 One would expect, however, that a
sufficiently disentangled space would
isolate many features to a reasonably
linear degree.

 This would allow for a simpler model
to be applied onto the disentangled
latent space in order to isolate the
needed features.

We suggest that this model of work can be
automated and repurposed for many
features and could thus offer a framework
by which much more generation work can
be done.

IN THIS WORK

 We demonstrate this using NVidia
StyleGAN’s latent space and the age
feature, showing that we can age an
individual using only a linear regression
model with comparatively very little
data.

 We benchmark our results against a
deep learned direction for aging
created by Puzer as well as our own
shallow (2-hidden layer) neural network.

Aging was picked for two reasons:

1. Aging data is readily and freely
available online by looking up “A
Photo a Day” on YouTube.

2. Aging is useful to demonstrate the
limited data needed to learn the
distribution. Many previous works
on aging relied on a much more
expansive data set, while we
mainly use 3 videos to achieve our
results.

StyleGAN is a “style based”
generative adversarial network.

We use it to generate our images,
as well as its latent space for
extrapolation.

It was picked for its advertised
excellent interpolatability in the
latent space, as well its excellent
generated photo quality.

NVIDIA RELEASED THE DECODER FOR STYLEGAN, AND WE

USE THIS TO DECODE OUR LATENT REPRESENTATIONS INTO

ACTUAL IMAGES.

HOWEVER, NVIDIA HAD NOT RELEASED THE

ENCODER FOR STYLEGAN, WHICH IS WHY WE USE

PUZER’S ENCODER TO ENCODE OUR IMAGES AND

RECEIVE OUR LATENT REPRESENTATIONS.

Puzer’s encoder is a 3rd party deep-
learned tool to encode photos into
StyleGAN’s latent space.

We use this tool to encode our images.

Additionally, Puzer learned a direction
for aging in StyleGAN’s latent space
using a 2-layer hidden network; this
was the inspiration for the project.

“A Photo a Day” videos from YouTube.

Download using YouTube-DL.

Cutting videos to frames using
OpenCV.

Comparing frames based on the L0
norm.

encode images
[Puzer]

Encode using Puzer’s encoder to get latent representations of the video
frames.

rename2.py Rename again after manual clean.

manual clean Manually clean data (usually no more than 2-3 frames).

align images
[Puzer]

Align images using Puzer’s encoder.

decimate.py Decimate a certain amount of frames (because of computational limit).

rename.py Rename each frame to its appropriate age (in days).

image_compare.py Compare between images to remove duplicates.

video_to_frames.py Convert the video to frames.

Receive input for the
test with relevant
parameters and data.

Train the model
according to the
relevant parameters.

Test the model on
internal and external
data.

Create an “Error vs.
Age” chart.

Predict latent
representations of
aging video frames for
a given test subject.

Convert latent
information to actual
images using
StyleGAN’s decoder.

Create an aging GIF of
real and fake data, side
by side, using the
FFmpeg tool.

Given two points 𝑝1, 𝑝2 in the latent space, each corresponding to a photo
of the same individual at ages 𝑡1, 𝑡2, we define the following interpolator:

𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑜𝑟(𝑡) = 𝑝1 +
𝑡 − 𝑡1 ⋅ (𝑝2 − 𝑝1)

𝑡2 − 𝑡1

This model was tested on:

 Start and end points at different distances apart.

 A subset of the latent space components.

 Averaging of multiple photos to find the initial 𝑝1 and 𝑝2.

Error was measured in MSE between the interpolated photo and the
original photo at that age in the latent space.

This is also the case for all other models (unless stated otherwise).

Results were obscure and led to the decision to
move on to a more complex model than linear
interpolation (by Elad’s advice).

SUM UP

We tested a linear regression model fitted on linear least
squares.

Given a set of 𝑛 data points:
{((𝑠𝑡𝑎𝑟𝑡𝑃ℎ𝑜𝑡𝑜𝑖 , 𝑠𝑡𝑎𝑟𝑡𝐴𝑔𝑒𝑖 , 𝑡𝑎𝑟𝑔𝑒𝑡𝐴𝑔𝑒𝑖), 𝑡𝑎𝑟𝑔𝑒𝑡𝑃ℎ𝑜𝑡𝑜𝑖)}𝑖=1

𝑛

We found the function:
𝑓 𝑠𝑡𝑎𝑟𝑡𝑃ℎ𝑜𝑡𝑜, 𝑠𝑡𝑎𝑟𝑡𝐴𝑔𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡𝐴𝑔𝑒 = 𝑡𝑎𝑟𝑔𝑒𝑡𝑃ℎ𝑜𝑡𝑜

such that we minimize:

𝐸𝑟𝑟𝑜𝑟(𝑓) =

𝑖=1

𝑛

(𝑓(𝑠𝑡𝑎𝑟𝑡𝑃ℎ𝑜𝑡𝑜𝑖 , 𝑠𝑡𝑎𝑟𝑡𝐴𝑔𝑒𝑖 , 𝑡𝑎𝑟𝑔𝑒𝑡𝐴𝑔𝑒𝑖) − 𝑡𝑎𝑟𝑔𝑒𝑡𝑃ℎ𝑜𝑡𝑜𝑖)
2

 We trained the model to learn the result
directly.

 Using our videos we produced the data
set as follows:

 Pick the youngest photo for each person
and create pairs with that photo as the
start photo and any later photo as the
target photo.

 The process was done for three videos.

 Use all previous tools to conduct multiple
tests.

Original Result

Internal Data

External Data

 While results were good when using the
model on one of the videos that we trained on
(with different target ages than the ones
trained on), the result on external data was far
from optimal.

 We decided to try to learn the offset rather
than the result.

SUM UP

 In order to find a better fit, we trained for offset instead of
direct interpolation.

 Based on a linearity test we devised, we added a few more
weighting options for the different components.

 Given a video of individual aging {𝑝𝑖}𝑖=1
𝑛 , we define

{𝑑𝑖}𝑖=1
𝑛−1 where 𝑑𝑖 = 𝑝𝑖+1 − 𝑝𝑖.

 We find the variance of each component of 𝑑𝑖 and sort the
indices by increasing variance.

 Alternatively, we first normalize {𝑑𝑖}𝑖=1
𝑛−1 by

dividing each component by the greatest
absolute value of any 𝑑𝑖 in that component.

 We call the sorted indices list
𝑚𝑜𝑠𝑡𝐿𝑖𝑛𝑒𝑎𝑟 𝑖=1

512⋅18 and the normalized sorted

indices list 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑀𝑜𝑠𝑡𝐿𝑖𝑛𝑒𝑎𝑟 𝑖=1
512⋅18.

512 ⋅ 18 components

𝑘 components

𝑛 vectors

…

𝑛 − 1 difference vectors

…

…

512 ⋅ 18 sequences of 𝑑𝑖 , ∀𝑖 ∈ [𝑛 − 1]
…

…

𝑛 − 1 variances of

members

…

𝑘 most linear

components

Maximal

component

…

𝑛 − 1 variances of

members

…

𝑘 normalized

most linear

components

This, along with a limitation on the
number of dimensions taken for the
regression, gives us 3 new models:

1. Offset Linear Regression on first 𝑛
components (referred to from now on as
the firstmethod).

2. Offset Linear Regression on most linear 𝑛
components (referred to from now on as
the linearmethod).

3. Offset Linear Regression on normalized
most linear 𝑛 components (referred to
from now on as the normmethod).

Jacob Shavit Earl

Relevant GIFs can be found in the report.

https://docs.google.com/document/d/1DC6SfjVyKHy0BKeRXRJV06X712L1GD0OMMX9OSS-u2E/edit?usp=sharing

 We can certainly see aging.

 We now need to benchmark our results.
SUM UP

To benchmark the quality of our results, we compare them to a
shallow MLP. Specifically, we tested the presented 2-hidden-
layer network, with the following hyperparameters:

 The data couplings (limitations on the distance between start
and target, quantity).

 Size of hidden layer (10, 100, 1000, 512⋅18).

 Input features (All 512⋅18 components, 180 most linear
components, 180 normalized most linear components).

 Activation function on hidden-layer (sigmoid, relu, tanh).

 Learning rate (0.1, 0.01, 0.001).

 Regularization (none, l1 - 0.001, l1 - 0.0001, l2 - 0.001, l2 -
0.0001).

 In order to tune our hyperparameters, we
performed a grid test for the size, activation,
learning rate, regularization, and input features.

 We found the optimal data set through random
search.

 We defined our space of possible data points
as:

ራ

𝑖=1

3

𝑃𝑖 ∪ 𝑎𝑔𝑒 ∪ 𝑎𝑔𝑒 × 𝑃𝑖

Where 𝑃𝑖 is the set of photos for person 𝑖.

In each test, we randomly sampled a subset of the
data and used it for training.

The model we have found to work best
(and subsequently chose as our
benchmark) is the following:

 Data - 6100 samples picked randomly
from the above set.

 Size of hidden layer - 1000.

 Input features - All 512⋅18.

 Activation function - tanh.

 Learning rate - 0.01.

 Regularization - none.

Relevant GIFs can be found in the report.

https://docs.google.com/document/d/1DC6SfjVyKHy0BKeRXRJV06X712L1GD0OMMX9OSS-u2E/edit?usp=sharing

Finally, we wanted to test Puzer’s
original vector to again
benchmark our results, this time
against a known, working, deep-
learned direction.

 As we can see, our results beat a naively put
together and trained MLP.

 Unsurprisingly, it can’t beat Puzer’s 2-hidden-
layer learned direction (an example of a well
put together and trained MLP).

 Although the results weren’t perfect, they can
be significantly improved with minor changes
(will be discussed later).

SUM UP

We have achieved our goal of generating
convincing aging videos.

Certain features of aging such as beard
growth, wrinkle formation, face
restructuring, and receding hair are
present in one model or another.

This was done using a small data set of
just 610 original photos, a few orders of
magnitude smaller than needed to train
state of the art generation models which
rely heavily on unsupervised learning.

We also demonstrate that it is not trivially simple to
replace our models with a superior MLP, as it is

difficult to tune an MLP to such a high dimensional
space with such a small amount of data.

We rely only on a linear function to interpolate rather
than the more common piecewise linear or slerp and

using the comfortably familiar L2 as our metric.

We achieved this goal with arguably simplermethods
than those of other latent interpolation techniques.

 The most realistic looking result is from the
regression on normalized most linear
components model with half the
dimensions taken as input.

 It kept a relatively low error rate on the
train data that translated well into the test
data and is the most generalizable.

 It avoids many of the deformations and
artifacting that results from the other
models, namely the facial deformities
common in the regular regression, and the
lighting issues in the regression on the
most linear components without
normalization.

 When we expand the number of components taken to three quarters, we again see
some of this artifacting and deformities, meaning that they were likely features
encoded in the components dropped when only half the components are taken.

 This model performs better than the naive MLP, indicating that we succeeded in our
initial goal.

Though we do not match Puzer’s learned direction, we did not expect to – there is still no

doubt that a well-trained network will outperform any simple model, given it is trained

correctly.

However, Puzer used FFHQ as data and a more complex model.

 A simple feature extraction method applied before
we use a learning model, more akin to classical
computer vision techniques, is still easier and
simpler to implement than many of the modern
models (which would learn such a feature “on their
own”).

 Specifically, features based on time or other metric
that gives order or sequence are notoriously hard to
learn.

We trained a simple model with a small
data set to generate aging videos by

utilizing StyleGAN’s latent space.

These methods can be used on other latent
spaces for generation with a single (or a

few) factors of variation in mind.

We believe that a promising avenue of generation would be simple, portable models
for latent extrapolation and the creation of general latent spaces as that created by
NVidia, rather than the end-to-end, complex models that are more common today.

We can expand on the work done
here by:

• Comparing more classical learning
techniques on this latent space.

• Finding more easily extractable and
relevant features in a latent space.

• Expanding tests to other latent spaces.

• Testing applicability for more features
and factors of variation.

Another interesting direction for
future work can be on the

effectiveness of a data set in
capturing the signal for a certain

factor of variation based on its
distribution.

Special thanks to Elad Richardson for supervising this
project.

Project by Jacob Sela and Shavit Borisov

Supervised by Elad Richardson

 Neural Network archetype useful for image analysis.

 Distinguishing features:

 Convolutional layers.

 Local Connectivity.

 Pooling.

 Shared Weights.

 Strengths:

 Translational Invariance.

 Smaller than fully-connected networks.

 Weight sharing further minimizes weights to be learned.

 This makes them well suited for vision problems.

 Made up of:

 Generative network – suggests candidates.

 Discriminative network – decides if
candidate is within distribution.

 Each learns to increase the other’s loss
in a 0-sum game.

 Unsupervised.

 Can be used in image synthesis.

 Nvidia’s GAN.

 Proposes new architecture for generator.

 Intermediate latent space (independent of the data
distribution).

 Latent representation (style) is fed at every layer.

 Stochastic noise at every layer.

 Latent space is disentangled.

 Style mixing allows generation of images with features from
multiple sources.

Given a photo, generate an
aging video/a-photo-a-day.

This could be possible using
existing tools such as
StyleGAN.

We would like to (eventually)
do this through supervised
learning.

FINDING OUR
FEET

 We started by trying to think of ways to automate
the data collection process.

 Downloading videos – youtube-dl

 Photo/video manipulation – OpenCV

 Image Comparison – using L0 norm

TESTING
LINEARITY

 Before using neural networks and more
advanced techniques we wanted to gain
some intuition.

 Additionally, we wanted to practice
abduction.

 Features should be linear in StyleGAN’s
latent space, at the very least continuous.

 We wanted to find a way to test this.

 Given two data points, how well do they approximate the rest of the data between
them?

 We take two real points, and evenly interpolate between them, compare that to real
data, and Puzer’s latent direction

 If the data is linear, the interpolation should be relatively accurate

Top row is truth.

Mid row is Puzer’s latent

direction.

Bottom row is our linear

interpolation.

Given two real data points, how well
do they approximate the rest of the
data between them?

Across different amounts of time?

Across different people?

Etc…

Latent

representation

of frames

Cleaned and

aligned frames

We wanted to automate the data processing pipeline:

Video Automated Process

encode images
[Puzer]

Encode using Puzer’s encoder to get latent representations of the video
frames.

rename2.py Rename again after manual clean.

manual clean Manually clean data (usually no more than 2-3 frames).

align images
[Puzer]

Align images using Puzer’s encoder.

decimate.py Decimate a certain amount of frames (because of computational limit).

rename.py Rename each frame to its appropriate age (in days).

image_compare.py Compare between images to remove duplicates.

video_to_frames.py Convert the video to frames.

 Given a data set, we need a method to easily carry
out experiments.

 Most experiments’ independent variable is the
interpolation method used.

 Since we are currently only testing linear
interpolators, we built a function that finds the error
of a linear interpolator, given the expected value.

Given two points 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, we are interested in the following:

𝑓 𝑡 = 𝑠𝑡𝑎𝑟𝑡 + 𝑒𝑛𝑑 − 𝑠𝑡𝑎𝑟𝑡 ∗ 𝑡

𝑠𝑡𝑎𝑟𝑡

𝑒𝑛𝑑

𝑑 = (𝑎 − 𝑝) − ((𝑎 − 𝑝) ⋅ 𝑛)𝑛

We find how close our line gets to

the real value:

def findError(real, interpolator):

line = interpolator(1) - interpolator(0)

normalizedLine = line * (1/np.linalg.norm(line))

distanceLine = interpolator(0) - real – normalizedLine *

np.dot((interpolator(0) - real), normalizedLine)

return real + distanceLine, np.linalg.norm(distanceLine)

 Do the above for all points in the data set.

 Compare over different start and end points and different videos.

VIDEO START AGE END AGE AVERAGING RATIO DIMENSIONS IN
LATENT SPACE TO BE

TESTED

INTERPOLATION
METHOD (STANDARD

/ PUZER)

With this information we are able

to produce the plot of age vs. MSE

and real vs. fake videos of aging.

Videos Create aging video of real data and of fake data, using FFmpeg.

Fakes Convert fake latent representations to fake data (actual images), using
StyleGAN’s decoder.

Latents Create latent representations of newly generated fake images.

CSV
Generate CSV file with age vs. MSE data, using the appropriate
interpolator for the experiment and the linear interpolation described
previously.

Input Receive input.

This strange phenomenon persisted over:

 Different sizes of age gap for interpolation (different values
for |𝑠𝑡𝑎𝑟𝑡 − 𝑒𝑛𝑑|).

 Different videos.

 Brute force search for closest match (instead of the analytic
option shown earlier).

 Averaging batches of data.

 Using Puzer’s latent direction for aging.

Start End

Start End

Start End

Account for more noise

Check error only on certain dimensions

(earlier dimensions are weightier in the

look of the image)

Average results over multiple

experiments/people

Use a more complex model

Linear regression

Neural Networks (maybe LSTM)

Until next time…
THANK YOU FOR

YOUR TIME

