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Recently, much work has been done 
on the topic of generation from a 
disentangled space, usually by first 
using some form of encoding to 
disentangle the space.

This has made generation problems 
simpler to tackle by allowing to 
directly and precisely change a single 
factor of variation.



However, training an autoencoder for the disentanglement of a feature is 

expensive in time (both computationally and that put in by the engineer of the 

system) and resources (a highly varied and expansive data set is required).

This sets a barrier, allowing only those highly trained in such systems and 

equipped with a lot of data to effectively evoke these models for generation.



IDEA

 One would expect, however, that a 
sufficiently disentangled space would 
isolate many features to a reasonably 
linear degree.

 This would allow for a simpler model 
to be applied onto the disentangled 
latent space in order to isolate the 
needed features.



We suggest that this model of work can be 
automated and repurposed for many 
features and could thus offer a framework 
by which much more generation work can 
be done.



IN THIS WORK

 We demonstrate this using NVidia 
StyleGAN’s latent space and the age 
feature, showing that we can age an 
individual using only a linear regression 
model with comparatively very little 
data.

 We benchmark our results against a 
deep learned direction for aging 
created by Puzer as well as our own 
shallow (2-hidden layer) neural network.



Aging was picked for two reasons:

1. Aging data is readily and freely 
available online by looking up “A 
Photo a Day” on YouTube. 

2. Aging is useful to demonstrate the 
limited data needed to learn the 
distribution. Many previous works 
on aging relied on a much more 
expansive data set, while we 
mainly use 3 videos to achieve our 
results.



StyleGAN is a “style based” 
generative adversarial network.

We use it to generate our images, 
as well as its latent space for 
extrapolation.

It was picked for its advertised 
excellent interpolatability in the 
latent space, as well its excellent 
generated photo quality.



NVIDIA RELEASED THE DECODER FOR STYLEGAN, AND WE 

USE THIS TO DECODE OUR LATENT REPRESENTATIONS INTO 

ACTUAL IMAGES.

HOWEVER, NVIDIA HAD NOT RELEASED THE 

ENCODER FOR STYLEGAN, WHICH IS WHY WE USE 

PUZER’S ENCODER TO ENCODE OUR IMAGES AND 

RECEIVE OUR LATENT REPRESENTATIONS.



Puzer’s encoder is a 3rd party deep-
learned tool to encode photos into 
StyleGAN’s latent space.

We use this tool to encode our images.

Additionally, Puzer learned a direction 
for aging in StyleGAN’s latent space 
using a 2-layer hidden network; this 
was the inspiration for the project.



“A Photo a Day” videos from YouTube.

Download using YouTube-DL.

Cutting videos to frames using 
OpenCV.

Comparing frames based on the L0 
norm.



encode images 
[Puzer]

Encode using Puzer’s encoder to get latent representations of the video 
frames.

rename2.py Rename again after manual clean.

manual clean Manually clean data (usually no more than 2-3 frames).

align images 
[Puzer]

Align images using Puzer’s encoder.

decimate.py Decimate a certain amount of frames (because of computational limit).

rename.py Rename each frame to its appropriate age (in days).

image_compare.py Compare between images to remove duplicates.

video_to_frames.py Convert the video to frames.



Receive input for the 
test with relevant 
parameters and data.

Train the model 
according to the 
relevant parameters.

Test the model on 
internal and external 
data.

Create an “Error vs. 
Age” chart.

Predict latent 
representations of 
aging video frames for 
a given test subject.

Convert latent 
information to actual 
images using 
StyleGAN’s decoder.

Create an aging GIF of 
real and fake data, side 
by side, using the 
FFmpeg tool.



Given two points 𝑝1, 𝑝2 in the latent space, each corresponding to a photo 
of the same individual at ages 𝑡1, 𝑡2, we define the following interpolator:

𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑜𝑟(𝑡) = 𝑝1 +
𝑡 − 𝑡1 ⋅ (𝑝2 − 𝑝1)

𝑡2 − 𝑡1

This model was tested on:

 Start and end points at different distances apart.

 A subset of the latent space components.

 Averaging of multiple photos to find the initial 𝑝1 and 𝑝2.

Error was measured in MSE between the interpolated photo and the 
original photo at that age in the latent space.

This is also the case for all other models (unless stated otherwise).





Results were obscure and led to the decision to 
move on to a more complex model than linear 
interpolation (by Elad’s advice).

SUM UP



We tested a linear regression model fitted on linear least
squares.

Given a set of 𝑛 data points:
{((𝑠𝑡𝑎𝑟𝑡𝑃ℎ𝑜𝑡𝑜𝑖 , 𝑠𝑡𝑎𝑟𝑡𝐴𝑔𝑒𝑖 , 𝑡𝑎𝑟𝑔𝑒𝑡𝐴𝑔𝑒𝑖), 𝑡𝑎𝑟𝑔𝑒𝑡𝑃ℎ𝑜𝑡𝑜𝑖)}𝑖=1

𝑛

We found the function:
𝑓 𝑠𝑡𝑎𝑟𝑡𝑃ℎ𝑜𝑡𝑜, 𝑠𝑡𝑎𝑟𝑡𝐴𝑔𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡𝐴𝑔𝑒 = 𝑡𝑎𝑟𝑔𝑒𝑡𝑃ℎ𝑜𝑡𝑜

such that we minimize:

𝐸𝑟𝑟𝑜𝑟(𝑓) = 

𝑖=1

𝑛

(𝑓(𝑠𝑡𝑎𝑟𝑡𝑃ℎ𝑜𝑡𝑜𝑖 , 𝑠𝑡𝑎𝑟𝑡𝐴𝑔𝑒𝑖 , 𝑡𝑎𝑟𝑔𝑒𝑡𝐴𝑔𝑒𝑖) − 𝑡𝑎𝑟𝑔𝑒𝑡𝑃ℎ𝑜𝑡𝑜𝑖)
2



 We trained the model to learn the result 
directly.

 Using our videos we produced the data 
set as follows:

 Pick the youngest photo for each person 
and create pairs with that photo as the 
start photo and any later photo as the 
target photo.

 The process was done for three videos.

 Use all previous tools to conduct multiple 
tests.



Original Result

Internal Data

External Data



 While results were good when using the 
model on one of the videos that we trained on 
(with different target ages than the ones 
trained on), the result on external data was far 
from optimal.

 We decided to try to learn the offset rather 
than the result.

SUM UP



 In order to find a better fit, we trained for offset instead of 
direct interpolation.

 Based on a linearity test we devised, we added a few more 
weighting options for the different components.

 Given a video of individual aging {𝑝𝑖}𝑖=1
𝑛 , we define 

{𝑑𝑖}𝑖=1
𝑛−1 where 𝑑𝑖 = 𝑝𝑖+1 − 𝑝𝑖.

 We find the variance of each component of 𝑑𝑖 and sort the 
indices by increasing variance.



 Alternatively, we first normalize {𝑑𝑖}𝑖=1
𝑛−1 by 

dividing each component by the greatest 
absolute value of any 𝑑𝑖 in that component.

 We call the sorted indices list 
𝑚𝑜𝑠𝑡𝐿𝑖𝑛𝑒𝑎𝑟 𝑖=1

512⋅18 and the normalized sorted 

indices list 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑀𝑜𝑠𝑡𝐿𝑖𝑛𝑒𝑎𝑟 𝑖=1
512⋅18.



512 ⋅ 18 components



𝑘 components



𝑛 vectors



…

𝑛 − 1 difference vectors



…



…



512 ⋅ 18 sequences of 𝑑𝑖 , ∀𝑖 ∈ [𝑛 − 1]
…



…

𝑛 − 1 variances of 

members



…

𝑘 most linear 

components



Maximal 

component



…

𝑛 − 1 variances of 

members



…

𝑘 normalized

most linear 

components



This, along with a limitation on the 
number of dimensions taken for the 
regression, gives us 3 new models:

1. Offset Linear Regression on first 𝑛
components (referred to from now on as 
the firstmethod).

2. Offset Linear Regression on most linear 𝑛
components (referred to from now on as 
the linearmethod).

3. Offset Linear Regression on normalized 
most linear 𝑛 components (referred to 
from now on as the normmethod).



Jacob Shavit Earl



Relevant GIFs can be found in the report.

https://docs.google.com/document/d/1DC6SfjVyKHy0BKeRXRJV06X712L1GD0OMMX9OSS-u2E/edit?usp=sharing


 We can certainly see aging.

 We now need to benchmark our results.
SUM UP



To benchmark the quality of our results, we compare them to a 
shallow MLP. Specifically, we tested the presented 2-hidden-
layer network, with the following hyperparameters:

 The data couplings (limitations on the distance between start 
and target, quantity).

 Size of hidden layer (10, 100, 1000, 512⋅18).

 Input features (All 512⋅18 components, 180 most linear 
components, 180 normalized most linear components).

 Activation function on hidden-layer (sigmoid, relu, tanh).

 Learning rate (0.1, 0.01, 0.001).

 Regularization (none, l1 - 0.001, l1 - 0.0001, l2 - 0.001, l2 -
0.0001).



 In order to tune our hyperparameters, we 
performed a grid test for the size, activation, 
learning rate, regularization, and input features.

 We found the optimal data set through random 
search.

 We defined our space of possible data points 
as:

ራ

𝑖=1

3

𝑃𝑖 ∪ 𝑎𝑔𝑒 ∪ 𝑎𝑔𝑒 × 𝑃𝑖

Where 𝑃𝑖 is the set of photos for person 𝑖.

In each test, we randomly sampled a subset of the 
data and used it for training.



The model we have found to work best 
(and subsequently chose as our 
benchmark) is the following:

 Data - 6100 samples picked randomly 
from the above set.

 Size of hidden layer - 1000.

 Input features - All 512⋅18.

 Activation function - tanh.

 Learning rate - 0.01.

 Regularization - none.



Relevant GIFs can be found in the report.

https://docs.google.com/document/d/1DC6SfjVyKHy0BKeRXRJV06X712L1GD0OMMX9OSS-u2E/edit?usp=sharing


Finally, we wanted to test Puzer’s 
original vector to again 
benchmark our results, this time 
against a known, working, deep-
learned direction.





 As we can see, our results beat a naively put 
together and trained MLP.

 Unsurprisingly, it can’t beat Puzer’s 2-hidden-
layer learned direction (an example of a well 
put together and trained MLP).

 Although the results weren’t perfect, they can 
be significantly improved with minor changes 
(will be discussed later).

SUM UP



We have achieved our goal of generating 
convincing aging videos.

Certain features of aging such as beard 
growth, wrinkle formation, face 
restructuring, and receding hair are 
present in one model or another.

This was done using a small data set of 
just 610 original photos, a few orders of 
magnitude smaller than needed to train 
state of the art generation models which 
rely heavily on unsupervised learning.



We also demonstrate that it is not trivially simple to 
replace our models with a superior MLP, as it is 

difficult to tune an MLP to such a high dimensional 
space with such a small amount of data.

We rely only on a linear function to interpolate rather 
than the more common piecewise linear or slerp and 

using the comfortably familiar L2 as our metric.

We achieved this goal with arguably simplermethods 
than those of other latent interpolation techniques.



 The most realistic looking result is from the 
regression on normalized most linear 
components model with half the 
dimensions taken as input.

 It kept a relatively low error rate on the 
train data that translated well into the test 
data and is the most generalizable.

 It avoids many of the deformations and 
artifacting that results from the other 
models, namely the facial deformities 
common in the regular regression, and the 
lighting issues in the regression on the 
most linear components without 
normalization.



 When we expand the number of components taken to three quarters, we again see 
some of this artifacting and deformities, meaning that they were likely features 
encoded in the components dropped when only half the components are taken.

 This model performs better than the naive MLP, indicating that we succeeded in our 
initial goal.



Though we do not match Puzer’s learned direction, we did not expect to – there is still no 

doubt that a well-trained network will outperform any simple model, given it is trained 

correctly. 

However, Puzer used FFHQ as data and a more complex model.



 A simple feature extraction method applied before 
we use a learning model, more akin to classical 
computer vision techniques, is still easier and 
simpler to implement than many of the modern 
models (which would learn such a feature “on their 
own”).

 Specifically, features based on time or other metric 
that gives order or sequence are notoriously hard to 
learn.



We trained a simple model with a small 
data set to generate aging videos by 

utilizing StyleGAN’s latent space.

These methods can be used on other latent 
spaces for generation with a single (or a 

few) factors of variation in mind.



We believe that a promising avenue of generation would be simple, portable models 
for latent extrapolation and the creation of general latent spaces as that created by 
NVidia, rather than the end-to-end, complex models that are more common today.



We can expand on the work done 
here by:

• Comparing more classical learning 
techniques on this latent space.

• Finding more easily extractable and 
relevant features in a latent space.

• Expanding tests to other latent spaces.

• Testing applicability for more features 
and factors of variation.

Another interesting direction for 
future work can be on the 

effectiveness of a data set in 
capturing the signal for a certain 

factor of variation based on its 
distribution.



Special thanks to Elad Richardson for supervising this 
project.
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 Neural Network archetype useful for image analysis.

 Distinguishing features:

 Convolutional layers.

 Local Connectivity.

 Pooling.

 Shared Weights.

 Strengths:

 Translational Invariance.

 Smaller than fully-connected networks.

 Weight sharing further minimizes weights to be learned.

 This makes them well suited for vision problems.



 Made up of:

 Generative network – suggests candidates.

 Discriminative network – decides if 
candidate is within distribution.

 Each learns to increase the other’s loss 
in a 0-sum game.

 Unsupervised.

 Can be used in image synthesis.



 Nvidia’s GAN.

 Proposes new architecture for generator.

 Intermediate latent space (independent of the data 
distribution).

 Latent representation (style) is fed at every layer.

 Stochastic noise at every layer.

 Latent space is disentangled.

 Style mixing allows generation of images with features from 
multiple sources.



Given a photo, generate an 
aging video/a-photo-a-day.

This could be possible using 
existing tools such as 
StyleGAN.

We would like to (eventually) 
do this through supervised 
learning.



FINDING OUR 
FEET

 We started by trying to think of ways to automate 
the data collection process.

 Downloading videos – youtube-dl

 Photo/video manipulation – OpenCV

 Image Comparison – using L0 norm



TESTING 
LINEARITY

 Before using neural networks and more 
advanced techniques we wanted to gain 
some intuition.

 Additionally, we wanted to practice 
abduction.

 Features should be linear in StyleGAN’s 
latent space, at the very least continuous.

 We wanted to find a way to test this.



 Given two data points, how well do they approximate the rest of the data between 
them?

 We take two real points, and evenly interpolate between them, compare that to real 
data, and Puzer’s latent direction

 If the data is linear, the interpolation should be relatively accurate



Top row is truth.

Mid row is Puzer’s latent 

direction.

Bottom row is our linear 

interpolation.



Given two real data points, how well 
do they approximate the rest of the 
data between them?

Across different amounts of time?

Across different people?

Etc…





Latent 

representation 

of frames

Cleaned and 

aligned frames

We wanted to automate the data processing pipeline:

Video Automated Process



encode images 
[Puzer]

Encode using Puzer’s encoder to get latent representations of the video 
frames.

rename2.py Rename again after manual clean.

manual clean Manually clean data (usually no more than 2-3 frames).

align images 
[Puzer]

Align images using Puzer’s encoder.

decimate.py Decimate a certain amount of frames (because of computational limit).

rename.py Rename each frame to its appropriate age (in days).

image_compare.py Compare between images to remove duplicates.

video_to_frames.py Convert the video to frames.



 Given a data set, we need a method to easily carry 
out experiments.

 Most experiments’ independent variable is the 
interpolation method used.

 Since we are currently only testing linear 
interpolators, we built a function that finds the error 
of a linear interpolator, given the expected value.



Given two points 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, we are interested in the following:

𝑓 𝑡 = 𝑠𝑡𝑎𝑟𝑡 + 𝑒𝑛𝑑 − 𝑠𝑡𝑎𝑟𝑡 ∗ 𝑡

𝑠𝑡𝑎𝑟𝑡

𝑒𝑛𝑑



𝑑 = (𝑎 − 𝑝) − ((𝑎 − 𝑝) ⋅ 𝑛)𝑛

We find how close our line gets to

the real value:



def findError(real, interpolator):

line = interpolator(1) - interpolator(0)

normalizedLine = line * (1/np.linalg.norm(line))

distanceLine = interpolator(0) - real – normalizedLine * 

np.dot((interpolator(0) - real), normalizedLine)

return real + distanceLine, np.linalg.norm(distanceLine)

 Do the above for all points in the data set.

 Compare over different start and end points and different videos.



VIDEO START AGE END AGE AVERAGING RATIO DIMENSIONS IN 
LATENT SPACE TO BE 

TESTED

INTERPOLATION 
METHOD (STANDARD 

/ PUZER)

With this information we are able 

to produce the plot of age vs. MSE 

and real vs. fake videos of aging.



Videos Create aging video of real data and of fake data, using FFmpeg.

Fakes Convert fake latent representations to fake data (actual images), using 
StyleGAN’s decoder.

Latents Create latent representations of newly generated fake images.

CSV
Generate CSV file with age vs. MSE data, using the appropriate 
interpolator for the experiment and the linear interpolation described 
previously.

Input Receive input.













This strange phenomenon persisted over:

 Different sizes of age gap for interpolation (different values 
for |𝑠𝑡𝑎𝑟𝑡 − 𝑒𝑛𝑑|).

 Different videos.

 Brute force search for closest match (instead of the analytic 
option shown earlier).

 Averaging batches of data.

 Using Puzer’s latent direction for aging.



Start End



Start End



Start End



Account for more noise

Check error only on certain dimensions 

(earlier dimensions are weightier in the 

look of the image)

Average results over multiple 

experiments/people

Use a more complex model

Linear regression

Neural Networks (maybe LSTM)





Until next time…
THANK YOU FOR 

YOUR TIME


