Project Efraim
Robatic arm handling fruit using RealSense. Yolact & Arduing

Students : Yonatan Gershon, Annael Abehssera

Supervisors: Yaron Honen, Roman Rabinovich, Andrey Zhitnikav

Efraim, the
agricultor.

- . ¢ . - . . -
e R B B X i TR B BB RN OB X i N R KW X L)

®
&

)

Project plan

oal:Builda system that can locate a fruit in 3D using an Intel RealSense D433 and handle it with the help of a robotic arm.

Steps:
Image processing

a) Articles about the domain

b) Defining image processing model

) Test the accuracy of the image processing model

Guide the robatic arm to the fruit using the coordinates extracted from the Intel RealSense camera
a) Locate the fruit with the camera

b) Simulation of the robotic arm

RealSense coordinates to Robotic arm movement
a) Convert color pixel to coordinates
b) Calculate arm angles with coordinates

Robotic arm calibration to the RealSense Camera
a) Calibrate armto servos angles
) Configurate Limitations

) Image processing
a) Articles about the domain

& Weread articles regarding YOLO and Yolact.
& Understood generally how deep learning works and how a model is trained.

% Decided to use COCO model for our image processing

— (oal: recognize fruit with YOLO image segmentation

— Conclusion: integrate Yolact model & COCO trained model with the RealSense camera in order to locate the fruit
in 30 coordinates

) Image processing
b) Defining image processing model

& Used Yolact to segment specific items (hananas in our case)

% Integrated Yolact github code with the RealSense camera to receive 30 coordinates for segmented image

& Isolate the fruit from its surroundings.

& Calculate the best location to grip the fruit.

-~ O

) Image processing -
c) Test the accuracy of the image processing model

Main challenge found using Yolact & RealSense

% Segmentation wasn't accurate or stable. The segmentation would sometimes focus on the fruit and abruptly include the

surroundings of the fruit. This would cause the COM (center of mass) to be extremely unstable and in practice wasn't able to
locate the fruit with certainty.

& Measuring the distance from the fruit and comparing with Efraim’s distance numbers we found large inaccuracies which we
believed were caused by the segmentation crudeness.

— Conclusion:
A solution must be found to locate the fruit with high certainty and decide when the location calculated is valid.

/) Robotic arm movement
a) Locate the truit with the camera

Improving segmentation:

% We used heuristics to remove from the segmentation any pixels that were 20cm further than the closest point of the banana.

& After the heuristics the COM became more stable but wasn't yet accurate enough. We viewed the mask matrix and noticed
that many pixels would receive a ‘0" in the depth dimension due to synchronization between the RGB camera and the ‘cloud
points’. Removing all the pixels with no depth dimension resulted with an accurate distance & stable COM.

»

— LONCLUSION : Aaartionat neuristics Is needed in order to aetermine the Truit LUM COOraINates.

/) Robotic arm movement
b) Simulation of the robotic arm

Robotic arm autonomous movement:

& The robot decides he knows the correct COM of the banana if he counts 5 consecutive frames with the COM within
the margin of 2Zcm.

% Robotic arm movement is calculated using inverse kinematics from the default arm location to the COM of the
banana.

3) RealSense coordinates to Robotic arm movement

a) Convert color pixel to coordinates

Goal: simulate the fruit COM by clicking with the cursor on a pixel

of the RealSense RGB camera and retrieving the 30 coordinates.

% Mouse pointer selects pixel in color frame. The reason we pick the pixel from the color frame IS
because the Image Processing is done on this frame.

& Convert pixel from color frame to depth frame using RealSense library function:
rs2_praject_color_pixel_to_depth_pixel

% Convert depth pixel to real life coordinates using RealSense library function:
rsZ_deproject pixel_ta_point

3) RealSense coordinates to Robotic arm movement
b) Calculate arm angles with coordinates

The base angle calculation:

=%* arctan(z/ x)

3) RealSense coordinates to Robotic arm movement
b) Calculate arm angles with coordinates

The arm angle calculation:

% Servo A angle calculation:

=\/x2 + 2

o R — S8 5
angle_a=arccos(7+ T3)

& ServoBangle calculation:

2 — 1482 — 1352

angle_b=arccos(—7 %135 * 148)

Removing 4cm from z since gripper is always parallel
to x,z plane

4) Robotic arm calibration to the Realdense Camera
a) Calibrate arm to servos angles

The base angle calibration:

& Adjust the (0.0,0) coordinates from the RealSense camera to the robotic arm base: x -=0.02, y +=0.04, 2 +=0.06

& Calculate the Base angle rotation using the ratio between the number of teeth of the 2 gears in Efraim’s base:
Angle factor =2

4) Robotic arm calibration to the Realdense Camera
a) Calibrate arm to servos angles

The servo angle calibration was done at all 90 degrees

4) Robotic arm calibration to the Realdense Camera
b) Limitations

Arm movement limitation
hase angle =25 - 165 | red arm = 55 - 140 | white arm =55 - 145

RealSense camera limitation

The RealSense camera can only calculate the depth of objects from Tacm away and the arm can only
reachasfaras19cm = Efraimhasonly4cm of operationalarea

Etraiml Overview

hﬁ »
LEATse S 8Ny h N

References

& https:/[towardsdatascience.com/yolo-you-only-look-once-real-time-object-detection-explained-

492dc9230006

& https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088

& https://github.com/dbolya/yolact

& https://github.com/IntelRealSense/librealsense/wiki/Projection-in-RealSense-SOK-2.0#point-cloud

https://towardsdatascience.com/yolo-you-only-look-once-real-time-object-detection-explained-492dc9230006
https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
https://github.com/dbolya/yolact
https://github.com/IntelRealSense/librealsense/wiki/Projection-in-RealSense-SDK-2.0#point-cloud

