

1

THE SECRET OF MAGIC - VR GAME

AMIT SHUSTER

MICHAL GUTTMANN

2

TABLE OF CONTENTS

Table of contents 2

Introduction 3

System 4-5

Game overview 6

CNN development process 7-9

Game development process 10

3

INTRODUCTION

We developed a VR game that uses a convolutional neural network (CNN) to

identify commands from the user, drawn using the controller. The game was inspired

by Harry Potter and the Philosopher’s Stone (2001).

The main goal of our project was to involve a Deep Learning mechanism in the VR

development environment. After a lot of research, we decided to build a CNN by

ourselves and use it in our game.

Our Game simulates several waves in which the player encounters different numbers

of zombies that are trying to reach him and defeat him. The Players' goal is to defeat

the zombies by using magic spells before they defeat him. To activate the magics,

the player chooses a 'spell' and draws the glyph with his controller. Then, the game

preprocesses the image and sends it into a pre-trained CNN model that identifies,

with 90.196% accuracy, the glyph. The game gets from the model the classification

and activates the chosen magic in the pointed direction.

4

 SYSTEM

We developed a game that runs on PC and is played with VR gear, targeted

specifically for the HTC Vive.

The game was developed using Unity game engine, scripted with C# in Visual

Studio.

Microsoft Visual Studio is an integrated development environment (IDE)

from Microsoft. It is used to develop computer programs, as well as

websites, web apps, web services and mobile apps. Visual Studio uses

Microsoft software development platforms.

Unity is a cross-platform game engine developed by Unity

Technologies.

Unity gives users the ability to create games in both 2D and 3D. The

engine offers a primary scripting API in C#, for both Unity editor in the

form of plugins and games themselves, as well as drag and drop

functionality.

The HTC Vive is a virtual reality headset developed by HTC and Valve

Corporation. The headset uses 'room scale' tracking technology,

allowing the user to move in 3D spaces and use motion-tracked

handheld controllers to interact with the environment.

5

Equipment required:

1. HTC-Vive Headset

2. HTC-Vive controller

Relevant links:

https://unity3d.com/

https://www.vive.com/us/product/vive-virtual-reality-system/

https://unity3d.com/
https://www.vive.com/us/product/vive-virtual-reality-system/

6

GAME OVERVIEW

The game occurs in one scene, this scene is a 360° arena where the player

encounters enemies from any direction. The game includes waves of undead

enemies, in which the player needs to kill the enemies. To do so, the player should

use his magic spells, which can be triggered by drawing one of these glyphs:

Each glyph will trigger a different spell, which will kill the undead enemy on hit. The

enemy waves start from easy difficulty to hard. On the first wave there is a standing

undead enemy, follow by two standing undead enemies, on the third wave the

zombies start walking toward the player, when the enemies reach a defined radius,

they will start attacking. On the fourth wave the sun sets and the game continues in

dark environment.

The higher the wave the more undead enemies that spawn, from more directions,

forcing the player to search for enemies all around him. For each enemy the player

kills, he will receive score points. When the game is over the high score will be

updated if the player achieved more points than the current score. If an enemy was

able to get to the player, the game will be over, and all the current undead

enemies will be destroyed.

7

CNN DEVELOPMENT PROCESS

The main goal of our project was to involve a Deep Learning mechanism in the VR

development environment. We decided to use a CNN (Convolutional Neural

Network) to identify the players' gestures and translate them to magics that will help

the player to win the game. The use of the CNN in the game is through a function

that identifies when the player draws a gesture with his controller in the 3D

environment, converts the 3D image to a 2D image by projecting them on the

players' view plane, and calls a python script that returns the desired magic of the

player.

CNN Development:

At the beginning we wanted to use a trained model from an online open source.

After investigating a few, including implementing then and running tests, we chose

to build a CNN by ourselves. We had two main candidates, which were built to

identify hundreds of drawings of symbols, signs and objects (while we wanted to

identify 8 symbols). We got medium results – around 70% accuracy and therefore

started to implement out CNN.

Our CNN architecture:

The network is built of:

• Two convolution layers

• 4 FC layers.

• ReLU & MaxPool activation

The input dimension is the dimension of each image – 3x32x32 and the output

dimension is the digit prediction vector – 1x8. The number of parameters in the

network is – 38,523,912.

The Classifier Training:

In order to train our model, we recorded through our game in unity (as it is used in

the game) 307 drawings that look like these examples:

8

Then, we started the training process that included few steps:

Preprocess the images:

• Load the recorded images and give them their label (from image name)

• Split into train and test set – 256 for the train and 51 for the test

• Strengthen the symbol by dilating the drawing
• Normalize the images

• Expand the train set by augmenting the 256 images with scaling and rotating

– the train set grew to 512 images

Example of five train images after preprocessing:

Classifier Training:

To find the optimal hyper parameters we tested few parameters:

and got the best results for these parameters:

Training process data:

9

To tune the model, we used the augmented train set we mentioned in the

preprocess section. The final accuracy we got for the mentioned hyper parameters

is – 90.196% and here is a demonstration graph of our results:

10

GAME DEVELOPMENT PROCESS

For the game development, we used Unity and SteamVR. We used multiple assets

including: AirSig which we based our data collecting on, Realistic Effects Pack v4 for

the spell's effects, and Heroic fantasy creatures full pack where the undead enemy

is taken from.

Image samples collection for CNN Training:

To collect the samples, we implemented a system that draws particles following the

controller, in which the player clicks and holds the trigger button to draw the desired

glyph. Then, we take the collected 3d vectors and transform them from world

coordinates to screen coordinates, save it in a jpg file and send it to the neural

network to process. The neural network python process is run in a different thread

making the game smooth without having to wait for the result, during this time, the

player’s controller will glow in purple and the player will see a thin laser beam which

helps him aim the spells.

The main game components are:

• Effects manager – which will manage all the active spells, their instantiate,

lifetime timer, and destruction.

• Gestures manager – collects the data (which is drawn by the player). Once

new data is available, it creates an image by transferring the world to screen

point, setting the relevant pixel on a smaller Texture2D, and encodes it to JPG.

This manager is also the one that starts the python process on another thread.

• Enemy behavior – controls the enemy animator which change the animation

according to the radius from the player, rotates the enemy to the players

location, kill the enemy on collision with a spell, start a co-routine to kill the

enemy after the death animation is done, and adds the score for the enemy

kill.

• Game manager – controls the sun and light effects, switch between day and

night, updates the wave text and spawn the enemies for the current wave,

starts the next wave when the current one is finished and controls the game

over behavior.

Main challenges:

• Transfer coordinates from world to screen

• connect python to unity – including running different process for the

classification

