
CutOutRL - Visualizing Neural Networks with
Scribbles

Yonatan Zarecki & Ziv Izhar, supervised by Elad Richardson

July 5, 2017

1

Contents
1 Abstract 4

2 Introduction 4
2.1 General Project Progress . 5

3 Technical Background 6
3.1 NN & CNN Background . 6

3.1.1 Neural Networks . 6
3.1.2 Convolutional Neural Networks 7

3.2 Reinforcement Learning Background 7

4 CutOut Game Implementation & Experiments 10
4.1 Looking for a basic RL implementation 10
4.2 CutOut Game Definition & Implementation 10

4.2.1 Tensorflow - An open-source software library for Machine
Intelligence . 12

4.3 Experiments . 13
4.3.1 First Results - Off-the-shelf Model 13
4.3.2 Improvment Iterations . 13

5 Summary 17

6 Bibliography 18

2

List of Figures
1 Other visualization techniques for CNNs 5
2 Example NN structure . 6
3 Example CNN activations for each layer 7
4 The typical RL setup . 8
5 Deep RL with a policy-based method 9
6 Training graphs for PONG and Breakout

x axis - the number of epochs
y axis - the accumulated score, returned by the environment . . . 10

7 Atificial faces dataset [2] . 11
8 The action space A - each point can move 8 direction 11
9 CutOut environment observation example 11
10 CutOut reward function rt - Intersection-over-union 12
11 Results using off-the-shelf implementation 13
12 Observation change for the CutOut environment 13
13 Changing the LR - A visualization of the output line, and the

training graph . 15
14 Enlarging steplen - IoU score over hours spent training 15
15 Enlarging the input image’s size - IoU score over hours spent

training . 16

3

1 Abstract
Deep neural networks (DNNs) have been very successful in recent years, achiev-
ing state-of-the-art results in a wide range of domains, such as voice recognition,
image segmentation, face recognition and more. In addition, reinforcement-
learning (RL) training methods combined with DNN models (deep RL) have
been able to solve a wide variety of games, from PONG to Mario, purely by
looking at the pixel values of the screen.

Various “games” have been proposed for challenging neural networks, testing
their capacity to learn complex tasks. Some tasks are designed to give us hu-
man insight about the way the model operates.

In this project, we challenged a deep RL model with the task of segmenting
an image using scribbles. We force it to achieve good segmentations by using
scribble-based segmentation in a way similar to humans. We hope to gain in-
sight on the way the network does segmentation by looking at the scribbles it
generates.

2 Introduction
Neural network have been successful at a wide range of task, however, little is
known about their inner working and what makes them tick.

Some work have been done on the visualization of NNs, for example by calculat-
ing the de-convolution of an highly activated neuron and watching the resulting
image. Attention has also been used as a way to see what the model “focused
on”.
Not much work have been done on forcing NNs to work with “human tools”,
tools that by using them we can gain insight on what the model “think”. Our
project was born from an idea Elad had of forcing a NN to use his tool “CutOut”,
meant to help humans segment images and training the network to use it for
segmentation.

4

Figure 1: Other visualization techniques for CNNs

2.1 General Project Progress
The project’s first stage consisted on us acquiring the theoretical and practical
knowledge needed for implementing it. We’ve learned about CNNs in a previous
project, and expanded our knowledge for CNNs in reinforcement-learning tasks.
After acquiring the knowledge we needed, we looked online for a basic model
work with, a model that works for a wide variety of RL tasks, such as PONG
and Breakout.
After getting to know the code and the framework we implemented the segmen-
tation game environment (will be discussed further) and trained the model on
it. After each training round ended, we would look at the results and hypothe-
size solutions for the problems we were seeing, implementing them for the next
training iteration.

5

3 Technical Background

3.1 NN & CNN Background
Our model is based on convolutional neural networks (CNNs), trained with re-
inforcement learning (RL) algorithms for the segmentation task.

We’ll elaborate more on NNs, CNNs and RL in the following subsections.

3.1.1 Neural Networks

The simplest definition of a neural network, more properly referred to as an
’artificial’ neural network (ANN), is provided by the inventor of one of the first
neurocomputers, Dr. Robert Hecht-Nielsen. He defines a neural network as:

“...a computing system made up of a number of simple, highly
interconnected processing elements, which process information by
their dynamic state response to external inputs.”
In "Neural Network Primer: Part I" by Maureen Caudill, AI Expert,
Feb. 1989

NNs are processing devices (algorithms or actual hardware) that are loosely
modeled after the neuronal structure of the brain but on much smaller scales.
A large NN might have hundreds or thousands of processor units, whereas a
brain has billions of neurons. Neural networks are typically organized in layers.
Layers are made up of a number of interconnected ’nodes’ which contain an
’activation function’. Patterns are presented to the network via the ’input layer’,
which communicates to one or more ’hidden layers’ where the actual processing
is done via a system of weighted ’connections’. The hidden layers then link to
an ’output layer’ where the answer is output as shown in the graphic below.

Figure 2: Example NN structure

Training NNs usually involves using the back-propagation algorithm [3]. The
algorithm calculates the gradient for our network in an efficient way, using the
structure of NN as layers. This algorithms was a crucial step toward the using
NNs effectively.

6

3.1.2 Convolutional Neural Networks

Convolutional Neural Networks are very similar to ordinary Neural Networks
from the previous subsection: they are made up of neurons that have learn-
able weights and biases. Each neuron receives some inputs, runs its “activation
function” and sends out the output to other nodes. The whole network still
expresses a single differentiable score function: from the raw image pixels on
one end to class scores at the other.
So what does change? CNNs architectures make the explicit assumption that
the inputs are images, which allows us to encode certain properties into the
architecture. These then make the forward function more efficient to implement
and vastly reduce the amount of parameters in the network. By knowing the in-
put is an image, we can use convolutions (hence the name) on the image, which
are known from CV algorithms to extract good properties from the image such
as edges. Example activations for each layer of the CNN can be seen in Figure
3.
CNNs became very popular in recent years, starting with AlexNet, developed by
Alex Krizhevsky, Ilya Sutskever and Geoff Hinton. The AlexNet was submitted
to the ImageNet ILSVRC challenge in 2012 and significantly outperformed the
second runner-up (top 5 error of 16% compared to runner-up with 26% error).
The success of AlexNet sparked an interest in CNNs which dominated the fol-
lowing years ImageNet challenge (almost all of the competitors used CNNs), and
inspired researchers and practitioners to apply Deep NN to various other tasks
such as speech-recognition [5], face-recognition[4], NLP tasks [6] and more.

Figure 3: Example CNN activations for each layer

3.2 Reinforcement Learning Background
Reinforcement learning (RL) is usually about sequential decision making, solv-
ing problems in a wide range of fields in science, engineering and arts (Sutton
and Barto, 2017).

7

The Reinforcement Learning Setup Problems solved using RL usually
follow a simple setup and include the following components [7]:

1. An environment Env- the problem we’re trying to solve, it is capable of
receiving actions from an action-space A and for each action it returns
an observation (or state) st and a reward rt, which indicates whether
the action was “good” if the score was high.

2. An agent - Capable of looking at the environment’s observations and
decide on actions to perform according to a policy π(at|st). The agent’s
purpose is to maximize the environment’s reward function.

Figure 4: The typical RL setup

Several methods have been proposed in order to solve this problem.
Q-learning proposes learning an action-value function Q(s, a) which predicts
the expected accumulative future reward if an action a is applies in state s. In
contrast, policy-based methods learn π(at|st; θ) directly, and update θ in order
to maximize the reward.
In the last few years, we have been witnessing the renaissance of reinforcement
learning, especially, the combination of reinforcement learning and deep neural
networks, i.e., deep reinforcement learning (deep RL) has proved to be very
powerful.
Deep RL algorithms have been successfully used to solve a large set of problems,
such as ATARI games (from raw pixels), beating world champions at Go, guiding
drones in a virtual world, and more.
Deep RL proposed to use deep neural networks in order to learn the value
function Q(s, a) or policy π(at|st).
Deep NN have been used in many tasks that offer observations in the form of
pixel data, such as PONG or Mario.
These tasks used CNNs, discussed earlier, as the core of their NN model for
understanding the image, as we will do in this project.

8

Figure 5: Deep RL with a policy-based method

9

4 CutOut Game Implementation & Experiments
In the previous section, we’ve presented some motivations for using deep RL, in
this section we will present our implementation for the CutOut game, and go
through the experiments and realization we made when training the model.

4.1 Looking for a basic RL implementation
Our first step was to find a working implementation for an RL tasks that learns
from pixels, such as PONG or Breakout.
We looked at the top performing models on OpenAI’s gym 1 on PONG, tried
training a few and they did not work. Afterwards, we moved to models for
Breakout and finally found a working model, we also trained it on PONG and
it worked as well.

Figure 6: Training graphs for PONG and Breakout
x axis - the number of epochs
y axis - the accumulated score, returned by the environment

4.2 CutOut Game Definition & Implementation
As discussed earlier, in order to train a RL model on the task of segmenting an
image with CutOut scribbles, we need to define the environment EnvCutOut,
it’s reward function rCutOut, action space ACutOut and observations st.
Each game start with 2 points, a point on the object pinside, and a point outside
the object poutside.
At the start of the game the environment randomly selects a facial photo from
the artificial faces dataset [2], which is then used in the course of the game.

1OpenAI Gym - https://gym.openai.com/

10

Figure 7: Atificial faces dataset [2]

In each state, the action space At is defined to be the 8 direction each point
{pinside,poutside} can move in the image, this is illustrated in Figure 8. Choosing
a direction causes the “head” of the line to move a predefined number of pixels
steplen.

Figure 8: The action space A - each point can move 8 direction

The observation st for a particular step t is defined to be the original face image
together with the current scribbles on it.

Figure 9: CutOut environment observation example

11

The reward function is defined to be intersection-over-union of the ground truth
segmentation segGT against the proposed segmentation received by running
CutOut on the current lines segproposed, IoU =

segGT∩segproposed
segGT∪segproposed

.

Figure 10: CutOut reward function rt - Intersection-over-union

The game continues until a predefined number of steps stepcount (defaulted to
16) is passed, create a scribble from all the steps made in the course of the game.
After defining the game mechanics and formulas, we implemented the environ-
ment in Python, using Elad’s CutOut C++ and Python’s PIL environment. For
compatibility with other RL algorithms we implemented the abstract methods
of OpenAI’s Gym Env class.

4.2.1 Tensorflow - An open-source software library for Machine In-
telligence

Tensorflow [1] is an open source software library for machine learning across a
range of tasks, and developed by Google to meet their needs for systems capable
of building and training neural networks to detect and decipher patterns and
correlations, analogous to the learning and reasoning which humans use.
Tensorflow has a great support for GPUs which are used to accelerate scientific
computations , and is very important when training neural nets.
Tensorflow have become very popular since its recent release at the end of 2015,
and a strong community have gathered around it, one reason for it is the plat-
form’s support for python in contrast to Torch’s Lua.
We chose Tensorflow as it currently has a very active community and because
the implementation we found for Breakout uses it for the definition and training
of it’s neural net.

12

4.3 Experiments
After finding a solid basic code and implementing the CutOut game environ-
ment, we were ready for training.

4.3.1 First Results - Off-the-shelf Model

We started by running the off-the-shelf implementation we had (switching the
Breakout environment with CutOut) for about 24 hours.

Figure 11: Results using off-the-shelf implementation

The results we found were disappointing, no real progress was made in the scores
received by the model.

4.3.2 Improvment Iterations

After thinking over the results of the off-the-shelf model, we decided to change
the environment’s observations from an image with scribbles, to the original
image plus 2 layers one for the scribble on the object and the scribble outside
the object. We hoped separating these elements to different layers will help the
network to better recognize the lines and their locations.

Figure 12: Observation change for the CutOut environment

Increasing stepcount We visualized the model’s lines for a few times we have
seen that the number of steps stepcount is too small, and significant lines didn’t

13

form. We’ve tried other values for stepcount, 16, 40, 60 and 100, and only 60,
100 steps were enough for 2 significant lines to form during the game.
However, training with a larger step count did not result in better scores.

Changing Environment to Reward-at-end Hoping to see why the model
took so long to train, while doing a relatively few epochs, we measured how much
time the model spends on each part of the system. Our result was that 90% of
the time was spent calculating the reward function using CutOut, 7% in Ten-
sorflow and 3% in other calculations and GPU utilization was very low. This
result is abnormal, as typical RL algorithms spend most of their time calculating
the neural network and their next step. We knew CutOut was being calculated
stepcount times in each game, as it is called each time for the calculation of the
reward rt. We tried to solve this problem by changing our reward to a “reward-
at-end”, where the environment returns rt = 0 for all non-final steps, and return
the real reward only for the final step. This means we call CutOut only once, at
the end of our game. The model should be able to learn (similarly to learning
to play Chess) to deal with the change and learn to maximize it as well.
Unfortunately, Our high hopes did not match reality. Even tho GPU utilization
was very high, and our model made much more epochs, the resulting IoU was
very low at 0.6. Visualization also showed our model did not make meaning-
ful decisions when choosing steps. We returned to a normal reward function
afterwards.

Changing the Learning Rate It is common knowledge in NN community
that the learning-rate (LR) is the most important hyper-parameter. So we tried
to change it and see if it makes a difference in our training graphs. We tried
multiplying the LR by 2, and seeing if it converges faster. This time it did make
a difference, and the model achieved an IoU of 7.5 after only 18 hours, much
higher than before.
Our visualization were not as good as we hoped, still making unreasonable lines
as can be seen in the figure.

Enlarging the Epoch Size Another problem the model wasn’t performing
was that the epoch size was too small, the common intuition is that larger epoch
sizes means more stable training. We tried increasing the epoch’s size by the
multiple of 4, 8, 16 and even tho the training was much slower (as CutOut ran
in each step’s reward, and the epoch was larger) we did not see any change in
the training graph.

Enlarging the Step Length As discussed earlier, running CutOut in the
reward function takes most of the training process’s runtime. In another attempt
to reduce each game’s total runtime we tried to enlarge the step’s total length
in pixels steplen. This way the model can still make significant lines in much
less steps. We’ve set steplen to 18 pixels (from 8) and stepcount to 30 (from 60),
effectively cutting the runtime for a game in half.

14

Figure 13: Changing the LR - A visualization of the output line, and the training
graph

The ideas has indeed shorten our runtime, but even after running the model for
a whole week we didn’t go past the established 0.8 IoU score limit we received
earlier.

Figure 14: Enlarging steplen - IoU score over hours spent training

Enlarging the Input Image’s Size As a last attempt, we thought maybe
our input image lacked details when reduced to 128x128 pixels. We tried en-
larging the input image to 256x256 and train, the results were similar to earlier,
settling around 0.8.

Closing up After making all improvements and attempts presented above,
our model still wasn’t able to fully “solve” the CutOut game. Qualitative analysis

15

Figure 15: Enlarging the input image’s size - IoU score over hours spent training

of the lines generated exemplified that the lines generated by the model were
not very similar to lines a human would make. Also the IoU scores can be much
higher if the task is done correctly. We suspect that if further research is done
on this task, much better results can be accomplished.

16

5 Summary
Our project introduces a new task for NNs, making them work with humans
tools for image segmentation. We implemented this task and experimented with
a model training to excel at it, making improvements iterations along the way.

For us, this project was a realization of the skills we acquired after working on
our previous project DeepFlowers.
We approached a much more difficult problem and tackled it head-on, working
out issues as we go. This time our path was not as clear like in the previous
project and we had to try different approaches to make our model succeed better
or run faster. Even though our model did not fully solve the task at the end
of the project we enjoyed doing it and learned a lot along the way. These
experiences, we are sure, will help us in the future when tackling difficult tasks
in NNs or in other domains.

We would like to thank our supervisor Elad for the continuous support in this
project. You continued to give us support even as things didn’t exactly go the
way we hoped, and helped us figure things out for our own. We want to thank
you for the freedom you gave us during this project, letting us take our time
and make mistakes for ourselves, even tho it made the project stretch out a bit
:)
We would also like to thank all of GIP’s staff, for supporting us when Elad was
away and helping us get through technical issues.

17

6 Bibliography

[1] TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, et al.
http://tensorflow.org/

[2] 3D face reconstruction by learning from synthetic data
E Richardson, M Sela, R Kimmel
http://ieeexplore.ieee.org/abstract/document/7785121/

[3] Learning Representations by Back-propagating Errors:
David E. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams
https://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf

[4] DeepFace: Closing the Gap to Human-Level Performance in Face
Verification:
Yaniv Taigman Ming Yang Marc’Aurelio Ranzato, Lior Wolf
https://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf

[5] Deep Neural Networks for Acoustic Modeling in Speech Recogni-
tion:
Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara
Sainath, Brian Kingsbury
https://research.google.com/pubs/pub38131.html

[6] Recursive Deep Models for Semantic Compositionality Over a Sen-
timent Treebank:
Richard Socher, Alex Perelygin, Jean Y. Wu, Jason Chuang, Christopher D.
Manning, Andrew Y. Ng and Christopher Potts
nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf

[7] DEEP REINFORCEMENT LEARNING: AN OVERVIEW:
Yuxi Li
https://arxiv.org/pdf/1701.07274.pdf

18

	Abstract
	Introduction
	General Project Progress

	Technical Background
	NN & CNN Background
	Neural Networks
	Convolutional Neural Networks

	Reinforcement Learning Background

	CutOut Game Implementation & Experiments
	Looking for a basic RL implementation
	CutOut Game Definition & Implementation
	Tensorflow - An open-source software library for Machine Intelligence

	Experiments
	First Results - Off-the-shelf Model
	Improvment Iterations

	Summary
	Bibliography

