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Rate-Distortion Optimized Tree-

Structures for Image Compression 

In this report, we will discuss, analyze and compare methods for image compression. 
Our project is based on the paper by Shukla et al. [1]. 
Shukla et al. [1] proposed an approach addressing a fundamental problem in the structure of 
trees (binary/quad trees), and utilized it for compression of one-dimensional signals and 
(two-dimensional) images. 
 
This algorithm is called "Join-Prune" and it manages to exploit the similarities between 
neighboring blocks by merging them, even if they are represented in the tree by leaves being 
children of different parent nodes. 
 
The problem with standard trees, is that they limit the possibilities to merge similar 
neighboring blocks, since they induce a very strict form of squared blocks in a signal. 
For example, in a standard quad-tree it is impossible to merge three similar dyadic blocks. 
Therefore, we must use their split form (as can be seen in Fig. 1), which costs more bits. 

 
Figure 1: An example in which a quadtree will have to split this block into four blocks. 

This exemplifies the motivation for the algorithm suggested in [1]. 
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1D Signals - Binary Trees 

A common way of representing 1D signals is by binary trees. 

The structure of the binary tree is such that for each inner node (i.e. non-leaf) there are at 
most two children. 

The motivation for using such data structures to represent 1D signal is clear ς each level in 
the tree can be thought of dividing the signal into two halves, and we are doing it 
recursively, up to some depth. 

Obviously, the deeper the tree ς the more accurate the signal will be represented, and the 
more bits it will cost. 

To store a signal in an efficient manner while maintaining them as close as possible to the 
original signal, compression algorithms are introduced. 

A popular way of storing a 1D signal is by a Pruned-Binary tree. 

Let us discuss this algorithm: 

Before introducing the algorithm, we shall define the Lagrangian cost of a node ὒ: 

ὒ Ὀ ‗Ὑ ȟ 

Where Ὀ and Ὑ are the distortion and bit-rate of the node, respectively. 

Many compression techniques optimize the rate-distortion tradeoff by minimizing the 
Lagrangian cost defined above. 
 

Notice that the Lagrangian optimization provides a solution depending on the value of ‗ȡ 

 For a higher value of ‗ the bit-rate Ὑ is lower, and for a lower ‗ a larger Ὑ will be 
introduced. 

Binary-Tree Pruning 
1. Segment the image using the binary-tree decomposition up to a tree depth J. 
2. Approximate each node by the mean value of the pixels reside in it. 
3.  Generate an rate-distortion curve for each node in the tree. 

4. Lagrangian cost-based pruning: For the given operating slope  ‗   prune the children if 
the sum of their Lagrangian costs is greater or equal to the Lagrangian cost of the parent 
node. That means: 
Prune the children nodes if: 

Ὀ Ὀ ‗Ὑ Ὑ Ὀ ‗Ὑ  

The pruning steps is done recursively until no more prunes can be done. 
Notice, that this is one iteration of the algorithm, for an operating slope ɀ‗. 
For compressing an image for a given bit-rate Ὑ ȟ we need to search for the operating slope 
‗ᶻ which corresponds to the desired bit-rate Ὑ. 

The search algorithm is as follows: 
1. Select two starting extreme values for ‗  and ‗  Ȣ(Usually , min will be close 

or equal to zero, and max will be ͯ ρπ 
The condition that should hold when choosing lambdas is: 

Ὑ Ὑ Ὑ  

Upon equality for either one of the lambdas, stop. 
2. Run the QT pruning algorithm for ‗  and ‗  Ȣ 
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Denote the results from the algorithm as follows: 
Ὀ ȟὙ ȟὈ ȟὙ  

3. Like in step 1, if one of the sides hold equality: 
Ὑ Ὑ Ὑ  

 Stop, we found an exact solution. 
4. Otherwise, compute : 

‗
Ὀ Ὀ

Ὑ Ὑ
 

 
5. Run the  pruning algorithm for ‗ Ȣ Denote the distortion and rate by 
Ὀ  ὥὲὨ Ὑ Ȣ 

6. If Ὑ Ὑ   then the optimum is found - stop. 

If Ὑ Ὑ  then set ‗ ‗   and go to line 5. 

Else, set ‗ ‗  and go to line 5. 
As discussed before, this method fails to exploit the similarities among neighbors in the 
pruned-tree.  

The paper this project is based on, suggests the following algorithm for solving the 
disadvantage of the prune-algorithm: 

Leaf-Join Algorithm 
1. Scan all the leaves from left to right 
2.  For the current leaf denoted by ὲ and its neighbor (notice there could be more 

than one neighbor) check if the Lagrangian condition holds: 
If Ὀ ‗Ὑ Ὀ ‗Ὑ Ὀ ‗Ὑ  where Ὀ  ὥὲὨ Ὑ  denote the distortion 
and bit-cost of the joint-leaves, respectively, then perform a join between these 
leaves. 
If a join was performed ς an indicator bit will be set to 1 and we will treat the joint-
leaf a new leaf. 
Otherwise, the indicator bit will be set to 0 and nothing changes. 

3.  As long as there are unchecked leaves in the quadtree, go to step 2.  
 

Let us describe the algorithm for finding neighbors in the trees: 

Firstly, suppose that ὲ  represents the Ὥ   leaf in the Ὦ  level of the binary tree. 

Assume that the current leaf we are scanning is ὲ , then its neighbor indices Ὥ at level Ὦ 

are given by: 

ὒὩὪὸ ὲὩὭὫὬὦέὶȡ  Ὥ ς Ὥ ρ 

ὙὭὫὬὸ ὲὩὭὫὬὦέὶȡὭ ς Ὥ ρ 

 

When joining two leafs, we consider them as a new leaf in the tree. However, we don't 
change the topology of the tree. 

We indicate a joint of two leaves by an indicator function telling if two blocks are to be 
merged. 

The cost of representing each joint is 2 bits ς one bit for the merging indication, and one bit 
for describing to which neighbor (left/right) the current block was attached. 

 Notice that the joining procedure comes as an addition to the prune algorithm as a 
postprocessing stage. 
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Therefore, the full algorithm is as follows: 

1. Select  two extreme starting values for ‗  and ‗  Ȣ(Usually, min will be close 
or equal to zero, and max will be ͯ ρπ 
The condition that should hold when choosing lambdas is: 

Ὑ Ὑ Ὑ  

Upon equality for either one of the lambdas, stop. 
2. Run the pruning algorithm for ‗  and ‗  Ȣ 
3. Run the leaf-join algorithm for the pruned-trees corresponding to for ‗  and 
‗  Ȣ 
Denote the results from the algorithm as follows: 

Ὀ ȟὙ ȟὈ‗ ȟὙ  

4. Like in step 1, if one of the sides hold equality: 
Ὑ Ὑ Ὑ  

 Stop, we found an exact solution. 
5. Otherwise, compute: 

‗
Ὀ Ὀ

Ὑ Ὑ
 

6. Run the pruning followed by the leaf-join algorithm for ‗ Ȣ Denote the distortion 
and rate by Ὀ  ὥὲὨ Ὑ Ȣ 

7. If Ὑ Ὑ   then the optimum is found - stop. 

If Ὑ Ὑ  then set ‗ ‗   and go to line 5. 

Else, set ‗ ‗  and go to line 5. 
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Results 
In this section we will show the results we achieved in our implementation of this algorithm. 
Example 1: Chirp function:  

 
Figure 2: Original Signal 
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Figure 3: Rate Distortion Graph for Chirp 
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We can see, by the RD graph and the reconstruction graph that indeed the leaf-join is able to 
reduce the MSE for a given bit-cost. 
We can also see that the join procedure is done only when the Lagrangian can be minimized. 
For instance, we see that for extremely low/high bit-rates the no joins were done, since it 
ǿƻǳƭŘƴΩǘ ƘŀǾŜ ǊŜŘǳŎŜŘ ǘƘŜ [ŀƎǊŀƴƎƛŀƴΦ 
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Example 2: Sinus function: 

 
Figure 4: Original Signal

 

Figure 5: Rate Distortion Graph 
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As expected, we can see that in this example the leaf-join reduced the MSE for a given bit-
rate from the RD graph. 
However, we can also see that in this case, since the signal a simple signal and improvement 
over the prune algorithm is marginal since there aren't many "details" in the signal, as 
opposed to the chirp signal. 
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Extension to 2D: Quad-Tree Algorithm 

All the algorithms discussed for 1D signals also have extensions for 2D signals. 
We will show and discuss them in this section. 
First, the signal will be represented using a Quad-tree instead of a Binary-tree. 
The structure of the tree consists of 4 children for each internal node. 
Each block in the Quad-tree based segmentation has four neighboring blocks, in contrast to 
two neighbors in the 1D case. 

Quad-Tree pruning algorithm: 
1. Segment the image using the Quad-tree decomposition up to a tree depth J. 
2. Approximate each node by the mean value of the pixels reside in it. 
3.  Generate an RD curve for each node in the Quad-tree. 
4. Lagrangian cost-based pruning: For the given operating slope  ‗   prune the children if 
the sum of their Lagrangians cost is greater or equal to the Lagrangian cost of the parent 
node. That means: 
Prune the children nodes if: 

Ὀ Ὀ Ὀ Ὀ ‗Ὑ Ὑ Ὑ Ὑ Ὀ ‗Ὑ  

The pruning steps is done recursively until no more prunes can be done. 
 
Notice, that this is one iteration of the algorithm, for an operating slope ɀ‗. 
For compressing an image for a given bit-rate Ὑ ȟ we need to search for the operating slope 
‗ᶻ which corresponds to the desired bit-rate Ὑ. 

The search algorithm is as follows: 
7. Select values for ‗  and ‗  Ȣ(Usually , min will be close or equal to zero, and 

max will be ͯ  ρπ 
The condition that should hold when choosing lambdas is: 

Ὑ Ὑ Ὑ  

Upon equality for either one of the lambdas, stop. 
8. Run the QT pruning algorithm for ‗  and ‗  Ȣ 

Denote the results from the algorithm as follows: 
Ὀ ȟὙ ȟὈ ȟὙ  

9. Like in step 1, if one of the sides hold equality: 
Ὑ Ὑ Ὑ  

 Stop, we found an exact solution. 
10. Otherwise, compute : 

‗
Ὀ Ὀ

Ὑ Ὑ
 

 
11. Run the QT pruning algorithm for ‗ Ȣ Denote the distortion and rate by 
Ὀ  ὥὲὨ Ὑ Ȣ 

12. If Ὑ Ὑ   then the optimum is found - stop. 

If Ὑ Ὑ  then set ‗ ‗   and go to line 5. 

Else, set ‗ ‗  and go to line 5. 
Like in the 1D case, this method fails to exploit the similarities among neighbors in the 
pruned-tree.  
In the next section, we discuss the suggestion for solving this sub-optimality problem. 

 
 
 



13 
 

 

Leaf-Join Algorithm: 
As discussed before, the novelty of this scheme is in its ability to exploit dependencies 
between neighbors in the pruned tree. 
Clearly, just like in the 1D case, this scheme allows to join similar neighboring blocks (leaves) 
even if they have different parents in the pruned-tree. 
Furthermore, in the 2D case it allows joining two or three blocks.  
This scheme allows for many possibilities regarding blocks shape, which in many cases yield 
far better results than the restricting square blocks. 
Therefore, it leads to much better results in terms of compression.  
The algorithm is like the 1D algorithm. However, it is a bit more complicated in the sense of 
finding the neighbors since now there are 4 possible neighbors for each leaf, as can be seen 
in the following figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: 4-connected neighbors in the image 
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The algorithm for finding the neighbors of a leaf is as follows: 
Denote the current leaf ὲ , and the leaf we want to check if it is a neighbor of ὲ will be 

denoted as ὲ  and suppose their origin (bottom-left points) in the original signal are 
located at: 
ὼȟώ  ȟὼȟώ Ȣ  

Also, denote their sizes by ίȟί , respectively. 
The position of the neighbor is coded by the tuple (i,j) as follows: 
Down Neighbor : (0,0) , Right Neighbor : (0,1) , Up Neighbor : (1,0) , Left Neighbor : (1,1).  
ὭὪ ώ ί ώ  
 ὭὪ ὼ ὼ  
  ὭὪ ὼ ί ὼ  ȟὸὬὩὲ ὲ Ὥί ὸὬὩ Ὠέύὲ ὲὩὭὫὬὦέὶȢὩὰίὩ
                           ὲ Ὥί ὲέὸ ὸὬὩ ὲὩὭὫὬὦέὶȢ 
 ὩὰίὩȟὭὪ ὼ ὼ ίȟὸὬὩὲ ὲ Ὥί ὸὬὩ Ὠέύὲ ὲὩὭὫὬὦέὶȢὩὰίὩ
             ὲ Ὥί ὲέὸ ὸὬὩ ὲὩὭὫὬὦέὶ 
ὩὰίὩὭὪ ώ ώ ί  
 ὭὪὼ ὼ  
  ὭὪὼ ί ὼ ȟὸὬὩὲ ὲ Ὥί ὸὬὩ όὴ ὲὩὭὫὬὦέὶȢὩὰίὩ
                          ὲ Ὥί ὲέὸ ὸὬὩ ὲὩὭὫὬὦέὶȢ 
 ὩὰίὩȟὭὪ ὼ ὼ ίȟὸὬὩὲ ὲὭί ὸὬὩ όὴ ὲὩὭὫὬὦέὶȢὩὰίὩ
             ὲ Ὥί ὲέὸ ὸὬὩ ὲὩὭὫὬὦέὶȢ 
ὩὰίὩὭὪ ὼ ί ί  
 ὭὪώ ώ  
  ὭὪώ ί ώ ȟὸὬὩὲ ὲ Ὥί ὸὬὩ ὰὩὪὸ ὲὩὭὫὬὦέὶȢὩὰίὩ
                          ὲ Ὥί ὲέὸ ὸὬὩ ὲὩὭὫὬὦέὶȢ 
 ὩὰίὩȟὭὪ ώ ώ ί ȟὸὬὩὲ ὲ Ὥί ὸὬὩ ὰὩὪὸ ὲὩὭὫὬὦέὶȢὩὰίὩ
             ὲ Ὥί ὲέὸ ὸὬὩ ὲὩὭὫὬὦέὶȢ 
ὩὰίὩὭὪ ὼ ὼ ί  
 ὭὪώ ώ  
  ὭὪώ ί ώ ȟὸὬὩὲ ὲ Ὥί ὸὬὩ ὶὭὫὬὸ ὲὩὭὫὬὦέὶȢὩὰίὩ
                          ὲ Ὥί ὲέὸ ὸὬὩ ὲὩὭὫὬὦέὶȢ 
 ὩὰίὩȟὭὪ ώ ώ ί ȟὸὬὩὲ ὲ Ὥί ὸὬὩ ὶὭὫὬὸ ὲὩὭὫὬὦέὶȢὩὰίὩ
             ὲ Ὥί ὲέὸ ὸὬὩ ὲὩὭὫὬὦέὶȢ 
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The join phase is defined as follows: 

1. Scan all the leaves from left to right 

2.  For the current leaf denoted by ὲ and its neighbor ὲ  ύὬὩὶὩ  ὭȟὮ πȟρ (notice 
there could be more than one neighbor) check if the Lagrangian condition holds: 
If Ὀ ‗Ὑ Ὀ ‗Ὑ Ὀ ‗Ὑ  where Ὀ  ὥὲὨ Ὑ  denote the distortion 
and bit-cost of the joint-leaves, respectively, then perform a join between these 
leaves. 
If a join was performed ς an indicator bit will be set to 1 and we will treat the joint-
leaf a new leaf.  Describing to which of the 4 neighbors the current leaf was attached 
to, we use 2 bits (i,j) and the their meaning can be found in the previous page. 
Otherwise, the indicator bit will be set to 0 and nothing changes. 

3.  As long as there are unchecked leaves in the quadtree, go to step 2.  
The join-phase is done after the prune-phase in the full algorithm. 
Therefore, we Prune-Join algorithm can be described as follows: 
Given a desired bit-rate Ὑ ὥὲὨ ὭὲὭὸὭὥὰ ὺὥὰόὩί Ὢέὶ ‗  ὥὲὨ ‗  we perform the 
search algorithm described above for the prune algorithm, but this time we also add the join 
phase right after pruning the quadtree. 
Thus, the full Prune-Join algorithm is as follows: 

1. Select values for ‗  and ‗  Ȣ(Usually, min will be close or equal to zero, and 
max will be ͯ  ρπ 
The condition that should hold when choosing lambdas is: 

Ὑ Ὑ Ὑ  

Upon equality for either one of the lambdas, stop. 
2. Run the QT pruning algorithm for ‗  and ‗  Ȣ 
3. Run the QT leaf-join algorithm for the pruned-trees corresponding to for ‗  and 
‗  Ȣ 
Denote the results from the algorithm as follows: 

Ὀ ȟὙ ȟὈ ȟὙ  

4. Like in step 1, if one of the sides hold equality: 
Ὑ Ὑ Ὑ  

 Stop, we found an exact solution. 
5. Otherwise, compute: 

‗
Ὀ Ὀ

Ὑ Ὑ
 

6. Run the QT pruning algorithm followed by the leaf-join algorithm for ‗ Ȣ Denote 
the distortion and rate by Ὀ  ὥὲὨ Ὑ Ȣ 

7. If Ὑ Ὑ   then the optimum is found - stop. 

If Ὑ Ὑ  then set ‗ ‗   and go to line 5. 

Else, set ‗ ‗  and go to line 5.  



16 
 

Let us show an example for the outcome of this algorithm: 

 
Figure 7:Standard Quad Tree . 

 
Figure 8: Pruned Quad Tree . Notice that some of the leaves were pruned. 
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Figure 9: Prune-Join Quadtree . Leafs to be joint are surronded by red circles. 

Mathematical Justification 
To get a more comprehensive understanding of the algorithms and why they work we would 
like to mathematically analyze and justify this method. 
First, we would like to show that as stated ς this method provides an oracle R-D 
performance. (for polygonal model) 
Consider the following polygon model: a white polygon shape with V vertices is placed on a 
uniform black background. 
! ǇƻǎǎƛōƭŜ ƻǊŀŎƭŜ ƳŜǘƘƻŘ ǿƻǳƭŘ ŎƻŘŜ ǘƘŜ ǇƻƭȅƎƻƴΩǎ ǾŜǊǘƛŎŜǎ ǇƻǎƛǘƛƻƴΦ !ǎǎǳƳƛƴƎ Ὑ total bits 

given to the oracle, it means   for each vertex on a regular grid on the unit square will 

provide us with quantized vertices positions with a distance of:                  Ў 
Ѝ
ς  

Notice that since we are working on the unit square, each side length of the polygon is 

bounded by Ѝς and therefore the total length of the boundary is bounded by ЍςὠȢ 
Therefore, we conclude that the distortion created by this oracle method is bounded 

by ὈὙ  ЍςὠЎ  Ѝςὠ
Ѝ
ς ὠς . 

Notice that for the polygon model, it is an exponentially decaying R-D function. 
Now we will focus on showing that the suggested Prune-Join scheme also yields an 
exponentially decaying R-D function. 
 
 In the following paragraph we will show why the suggested algorithm in [1] holds the claims 
in the previous paragraph. 
 Note that the derivation and proof of the claims can be found in [1]. 
 
Using the lemmas from [1], an upper bound for the bit-cost of the prune-join quadtree 
algorithm is formed as: 

Ὑ Ὑ Ὑ Ὑ ρχὐ
ρ

ς
ὠ ȟὪέὶ ὠ π 

The net distortion is simply the sum of the distortion of all the leaves. 
This leads to the following: 

Ὀ ὠς ὠ
ρ

τ
ς  
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Combining the last two equations gives: 

Ὀ Ὑ ςȢυὠ ςz   

Therefore, the prune-join algorithm achieves an oracle-like exponentially decaying R-D 
function. 
 
So far we have seen the R-D performance analysis assuming the polygonal model. 
Notice that ŦƻǊ ǊŜŀƭ ƛƳŀƎŜǎ ǘƘƛǎ ƛǎƴΩǘ ǘƘŜ ŎŀǎŜΦ However, it can be easily modified to fit 
natural images. For example ς instead of allocating ὶ bits for representing the vertices for a 
polygon, we could also use these bits to quantize a constant value for a block, or polynom 
(by quantizing its coefficients using these bits). Hence, the proof is also valid for other 
models, and it is discussed for polygonal model for the sake of simplicity. 
 
Another aspect we would like to stress in this report is the fact that the optimization 
problem we wish to minimize in the pruning algorithm is separable. 
Using separability of the problem ς for an operating slope ɀ‗ we can optimize each block 
independently.  
Notice, that at each stage we perform the following: 

- Given two neighboring leaves ὲȟὲ  - check: 
If Ὀ ‗Ὑ Ὀ ‗Ὑ Ὀ ‗Ὑ  where Ὀ  ὥὲὨ Ὑ  denote the distortion 
and bit-cost of the joint-leaves, respectively, then perform a join between these 
leaves. 
If a join was performed ς an indicator bit will be set to 1 and we will treat the joint-
leaf a new leaf. 
Otherwise, the indicator bit will be set to 0 and nothing changes. 

That means, every time we perform a join, we reduce the Lagrangian block/leaf wise, but all 
together this reduction achieves a minimization of the Lagrangian for the whole signal. 
Let us look at the problem: 
Our initial wish is to get to solve the following problem: 

ÁÒÇÍÉÎὒ ÁÒÇÍÉÎ Ὀ ‗Ὑ    

Where ὔ the number of is leaves in the quadtree, Ὀ ὥὲὨ Ὑ are the distortion and bit-cost 

of the Ὥ  leaf, respectively and ὒ  is the Lagrangian of the whole image. 

 
This problem is separable ς if we minimize it for each block Ὥ then we minimize the total 
cost. 
This shows that although at each step we are solving to find the local minimum considering 
two dyadic leaves, we end up finding the global minimum. 
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Results 
In this section we will show the results we achieved in our implementation of this algorithm. 
 
First, we would like to give an of the joint-trees in order to illustrate how the leaf-join 
algorithm exploits similarities between neighboring leafs (blocks) in the image: 
 
Lena: 

 
 
 
Figure 10: Prune-Join Quadtree representation of Lena 

 
 
Joint-leaves are colored the same. 
Notice how the structure of the image is preserved in the Quadtree representation, and the 
join of similar blocks. 
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Example 1: Boat 

 
Figure 11: Original Image 

Let us take a look at a sequence of results from the Prune-Join algorithm, followed by a R-D 
graph comparing between the two algorithms. 
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Figure 12: Rate Distortion Graph 

 

We can see that the Prune-Join scheme improves the compression of the Prune algorithm. 
We can also see, that for points in which bit-rate is high, the prune-join algorithm yields 
similar or same results as the prune algorithm. This is due to the target of the algorithm ς it 
is designed to minimize the Lagrangian for a given ‗. 
Thus, if it finds that the overhead for the join-phase in the algorithm increasing the 
Lagrangian to be greater than the prune-only Lagrangian, no joins are being done. 
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Example 2: 

 
Figure 13: Original Image 

 

    
 
 
 
 

 
 

 












