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In thisreport, we will discuss, analyze and compare methods for image compression.
Our project is based on the paper by Shukla et al. [1].

Shukla et al. [1] prapsed an approach addressiagundamental problem in the structe of
trees (binary/quad treesind utiized it for compression of ordimensional signals and
(two-dimensional) images.

This algorithm is called "JeRrune” and it manages to exploit the similarities between
neighboringblocksby merging them, even if they are represented in the tree by lsdaing
children of different parent nodes.

The problem with standard trees, is that they limit the possibilities to merge similar
neighboring blocks, since they induce a very strict form of squared blocks in a signal.
For example, in a standard qu#ige it is impossible to merge three similar dyadic blocks.
Therefore, wemustuse their split form (as can be seen in Fig. 1), which costs more bits.

Figurel: An example in which a quadtree will have to split this block into ftaoks.

Thisexemplifiesthe motivationfor the algorithm suggested in [1].



1D SiPBnalasy Trees

A common way of representing 1D signals is by binary trees.

The structure of théinarytree is such that for eacimner node (i.e. nonleaf)there areat
mosttwo children.

The motivation for using such data structures to represent 1D signal iscobeah level in
the tree can be thought of dividing the signal into two halves, and we are doing it
recursively, up to somdepth.

Obviously, the deeper thtree¢ the more accurate the signal will be represented, and the
more bits it will cost.

Tostore a signal in an efficient manner while maintaining them as close as possible to the
original signal, compression algorithms are introduced.
Apopular way ofktoring a 1D signal is by a Prurgthary tree.
Let us discuss this algorithm:
Before introducing the algorithm, we shall define thegrangian cost of a node
O O _™
Where'Oand'Y are the distortion and bitate of thenode,respectively.

Many compression techniques optimize the radéstortion tradeoff by minimizing the
Lagrangian cost defined above.

Notice that the Lagrangian optimization provides a solution depending on the valug of

For a higher value of the bit-rate 'Y is lower, andor a lower_ a largerY will be
introduced

BinaryTree Pruning
1. Segment the image using the bindirge decomposition up to a tree depth J.
2. Approximate each node by the mean value of the pixels reside in it.
3. Generate anate-distortion curvefor each node in the tree.
4. Lagrangian cosbased pruningFor the given operating slope_ prune the children if
the sum of their Lagrangianostsis greater or equal to the Lagrangian cost of the parent
node. That means:
Prune the children nodes: if
o O _Y Y o _Y
The pruning steps is done recursively until no more prunes eaiobe.
Notice, that this is one iteration of the algorithm, for an operating slppe
For compressing an image for a givenrate 'Y hwe need to search for the operating slope
_" which corresponds to the desired ite Y .
The search algorithm is as follows:
1. Selecttwo startingextremevalues for_ and_ 8Usually , min will be close
or equal tozero, and max will be p
The condition that should hold when choosing lambdas is:
Y Y Y
Upon equality for either one of the lambdas, stop.
2. Run the QT pruning algorithm for and_ 8




Denote the esults from the algorithm as follows:
O hAY O RY
3. Like in step 1, if one of the sides hold equality:
Y Y oY
Stop, we found an exact solution.
4. Otherwise, compute :
O 0
= Y Y

5. Runthe pruning algorithm for  8Denote the distortion and rate by
0O wewW 38
6. If'Y Y then the optimum is found stop.
IfY Y  thenset_ _ and go to line 5.
Else, set. _ andgotolineb5.
As discussed beforthis method fails to exploit the similarities amongighbors in the
prunedtree.

The paper thiproject is based on, suggests the following algorithm for solving the
disadvantage of the prunalgorithm:

LeatJoin Algorithm

1. Scan all the leaves from left to right

2. For the current leaf denoted b and its neighbor (notice there could be more
thanone neighbor) check if the Lagrangian condition holds:
foO _Y O _Y O _Y whereO ®¢ ® denote the distortion
and bitcost of the jointleaves, respectively, then perform a join between these
leaves.
If a pin was performed; an indicator bit will be set to 1 and we will treat the joint
leaf a new leaf.
Otherwise, the indicator bit will be set to 0 and nothing changes.

3. Aslong as there are unchecked leaves in the quadtree, go to step 2.

Let us describe #algorithm for finding neighbors in the trees:
Firstly, suppose that represents théQ leafin the’Q level of the binary tree.
Assume that the current leaf we are scanning isthen its neighbor indiceQat level’Q
are given by:

D QVRBRIQ ¢ TQp

YOBE Q@RGQ ¢ Qp

Whenjoiningtwo leafs we consider them as a neeaf in the tree However,we don't
change the topology of the tree.

We indicatea joint of two leaves by an indicator functidelling if two blods are to be
merged.

The cost ofepresentingeach joint is 2 bitg one bit for themerging indicationand one bit
for describingo which neighbo(left/right) the current block wasattached

Notice that the joining procedurecomes as an addition to éhprune algorithmas a
postprocessing stage



Therefore, the full algorithm is as follows:

1. Selecttwo extreme startingvalues for_ and_ BUsually, min will be close
or equal to zero, and max will bep Tt
The condition that should hold when choosing lambdas is:

Y Y oY
Upon equality for either one of the lambdas, stop.
2. Run thepruning algorithm for_ and_ 8
3. Run the leajoin algorithm for the prunedrees corresponding to far and

8
Denote the results from the algorithm as follows:
(0] RY  RO_ 1%
4. Like in step 1, if one of the sides hold equality:
Y Y oY
Stop, we found an exact solution.
5. Otherwise, compute:
(0] (@]
= Y Y
6. Run the prunindollowed by the leajoin algorithm for_  8Denote the distortion
andratebyO ®&¢® 8
7. If'Y Y then the optimum is found stop.
IfY Y  thenset_ _ andgo to line 5.
Else, set. _ andgotolineb5.




Results
In this section we will show the results we achieved in our implementation of this algorithm.
Example 1Chirp function:

Chirp Signal

BRI

Figure2: Orighal Signal
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We can see, by the RD graph and the reconstruction graph that indeed tHeilea able to
reduce the MSE for a given kipst.

We can also see that the joprocedure is done only when the Lagrangian camii@mized.
For instance, we see that for extremely low/highttgites the no joins were done, since it
g2dzf RyQld KI @S NBRdzOSR (GKS [FANFYyIAlLYy D
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Example 2Sinus function:
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Figure5: Rate DistortiorGraph
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Reconstructed signal. Red:Prune-Join , Rate=1.9873 Distortion=0.84012
. Blue: Prune , Rate=2.0615 Distortion-0.83318
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As expected, we can see that in this example thej@afreduced the MSE for a given-bit

rate from the RD graph.

However, we can also see that in this casecesithe signal a simple signal and improvement
over the prune algorithm is marginal since there aren't many "details" in the signal, as

opposed to the chirp signal.
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Ext ens2DQuafdoee Al gor i

Allthe algorithms discussed for Idignalsalso hae extensiongor 2Dsignals

We will show and discuss them in this section.

First the signal will be represented usin@Quadtree instead of a Binarree.

The structure of the tree consists othildrenfor each internal node.

Each block in the Quadee based segmentatiohas four neighboring blocks, in contrast to
two neighbors in the 1D case.

QuadTree pruning algorithm:
1. Segment the image using the Qttaele decomposition up to a tree depth J.
2. Approximate each node by the mean value of thee[sixeside in it.
3. Generate an RD curve for each node in the Qresd
4. Lagrangian cosbased pruningFor the given operating slope_ prune the children if
the sum of thé Lagrangians cost is greater or equal to the Lagrangian cost of thatpare
node. That means:
Prune the children nodes if:
O O O O _Y Y Y Y o _Y
The pruning steps is done recursively until no more prunes can be done.

Notice, that this i®ne iteration of he algorithm for an operating slope_.
For compressing an image for a givenrhie'Y hwe need to search for the operating slope
_" which corresponds to the desired bite'Y .
The search algorithm is as follows:
7. Select values faor and_ BUsually , min will be close or equal to zero, and
max will be& p 1t
The condition that should hold when choosing lambdas is:

Y Y oY
Upon equality for either one of the lambdas, stop.
8. Run the QPpruning algorithm for_ and_ 8

Denote the results from the algorithm as follows:
o AY 1O Ry
9. Like in step 1, if one of the sides helquality:
Y Y oY
Stop, we found an exact solution.
10. Otherwise, compute :
(0] (@]
= Y Y

11. Run the QT pruning algorithm for  8enote the distortion and rate by
O wewW 38
12.1f'Y Y then the optimum ifound - stop.
IfY Y  thenset_ _ and go to line 5.
Elseset_ _ andgotolineb5.
Like in the 1zase this method fails to exploit thsimilaritiesamong neighbors in the
prunediree.
In the nextsection,we discuss the suggestion for solving this-sepkimality problem.

t
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LeatJoin Algorithm:

As discussebefore,the novelty of this scheme is in its ability to exploit dependencies
between neighbors in the pruned tree.

Clealy, just like in the 1@ase this scheme allows to join similar neighboring blocks (leaves)
even if they have different parents in the prunaee.

Furthermore, in the 2D case it allows joining two or three blocks

This scheme allows for many possibilities regarding blocks shape, which in many cases yield
far better results than the restricting square blocks.

Therefore, it leads to much better results in terms of compression.

The algorithm idike the 1D algoritim. However, it is a bit more complicated in the sense of
finding the neighbors since now there are 4 possitgghbors for each leaf, as can be seen
in the following figure.

Right
Left Up Neighbor

Neighbor Neighbor 01
11 10

Current
Block

Down

Neighbor
00

Figure6: 4-connected neighboria the image
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The algorithm for finding the neighbors of a leaf is as follows:
Denote the current leag , and the leaf we want to check if it is a neighbot ofvill be

denoted ag  and suppose their origin (bottodeft points) in the original signal are
located at:
whd hoho 8
Also, denote their sizes thyfi , respectively.
The position of the neighbor is coded by the tuple (i,j) as follows:
Down Neighbor : (0,0) , Right Neighbad®,1f , Up Neighbor : (1,0) , Left Neighbor : (1,1).
@ i ()
Th
Q@D i o MmE QBmMQe & Q@WRN G i Q
¢ QF £dME QMR
Qaicm o | & QImQé tEQ@edN ai Q
Qai Q@ i
e o
e i o AR & "QBMO f Q@D Q
¢ "QF £dME Q@Rd
QRO o | ME QMo i Q@i Q
£ QF £ AMEQ S
Qai Q@ i
N
Qe i o ME QmMa QAN i Q
¢ QF £ @ME QAR
QaROm@m w | PME Qe Qe ai Q
£ QF £dME Q@R
Qai Q@ i
Y o
QY i o ME Qom MmMRQ adidai Q
¢ "QF £dME Q@Rd
Qaio® o | ME QFm MR Q@GN Q
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The join phase is defined as follows:

1.
2.

3.

Scan all the leaves from left to right

For the current leaf denoted by and its neighboe 01 @Q T (notice
there could be more than one neighbor) check if the Lagrangianitiomdholds:

foO _Y O _Y ©O _Y whereO ®¢&¢™® denote the distortion

and bitcost of the jointleaves, respectively, then perform a join between these
leaves.

If a join was performed an indicator bit will ke set to 1 and we witreat the joint
leaf a new leaf. Describing to whichthe 4neighbosthe current leaf was attached
to, we use 2 bits (i,j) and the their meaning can be found in the previous page.
COtherwise, the indicator bit will be set to 0 amething changes.

As long as there are unchecked leaves in the quadtree, go to step 2.

The joinphase is done after the prufghase in thedull algorithm.
Therefore, we Prundoin algorithm can be describedfatiows:
Given a desired bitate'Y & Q¢ Q0 Qo a8 it weEQ we perform the

search algorithndescribed above for the prune algorithm, but this time we also add the join
phase right after pruning the quadtree.
Thus, the full Prundoin algrithm is as follows:

1.

n

Select values far and_ BUsually min will be close or equal to zero, and
max will b& p 1T
The condition that should hold when choosing lambdas is:
Y Y oY
Upon equality foreither one of the lambdas, stop.
Run the QT pruning algorithm for and_ 8
Run the QT legbin algorithm for the prunedrees corresponding to faor and
8

Denote the results from the algorithm as follows:

(@) Ry RO Ry
Like in step 1, if one of the sides hold equality:

Y Y Y
Stop, we found an exact solution.
Otherwise,compute:
O 0
= Y Y
Run the QT pruning algorithfollowed by the leajoin algorithmfor _  &enote

the distortionandrate b0 ©weé @ 8

fy Y then the optimum is found stop.

IfY Y  thenset_ _ and go to line 5.
Elseset_ _ andgo tdine 5.
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Letusshowan exampldor the outcome of this algorithm

Figure7:Standard Quad Tree

Figure8: Pruned Quad Tree . Notice that some of the leaves were pruned.
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o

Figure9: PruneJoin Quadtree . Leafs to be joint are surrondeckbyircles.

MathematicalJustification

To get a more comprehensive und&@anding of the algorithms and why they wawle would

like to mathematically analyze and justify this method.

First we would like to show that as statedhis method provides an oraclel®

performance. (for polygaa model)

Consider the following polygamodel: a white polygon shape with V vertices is placed on a

uniform black background

I LRaaArofsS 2NrOftS YSGK2R ¢g2dzZ R OZYRofalbisk S L2 f & 32
given to the oracle, it means for each vertex on a regular grid omet unit square will

provide us with quantized vertices positions with a distance of y =G o

Notice that since we are working on the unit square, each Isidgth of the polygon is

bounded byic and therefore the totalength of the boundary is bounded big w8
Therefore, we conclude that the distortion created by this oracle method is bounded
byO'Y VWY Ww = G o

Notice that for the polygon model, it is an exponentialcaying FD function.

Now we will focus on showing that the suggested Prlam scheme also yields an
exponentially decaying-R function.

In the following paragraph we will show why the suggested algorithfh]iholds the claims
in the previous paragph.
Note that thederivation and proobf the claims can be found in [1].

Using the lemmas from [1&n upper bound for the bitost of the prungoin quadtree
algorithmis formed as
Y Y Y Y P XU g WhQ¢ b
The net distortion is simply the sum of the distortion of all the leaves.
This leads to the following:

(0] W ¢ ()

il o)
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Combining the last twequationsgives

(0] Y  ®wzg
Therefore the prunejoin algorithm achieves an oraelike exponentiallydecayingR-D
function.

So far we have seen thelRperformance analysis assuming the polygonal model.

Notice thatF 2 NJ NB I f A Y I 3 SHoweves, ik Gan bk dagil@riodiied 5 fit O & S @
natural images. For examptgnstead of allocating bits for representing the vertices for a
polygon we could also use these bits to quantize a constant value for a block, or polynom
(by quantizing its coefficieés using these bits). Hence, the proof is also valid for other
models,and it isdiscussedor polygonal model for the sake of simplicity.

Another aspect we would like tstressin this report is the fact that the optimization
problem we wish to minimiza the pruning algorithnis separable.
Usingseparabilityof the problem¢ for an operating slope_ we canoptimizeeach block
independently.
Notice, that at each stage we perform the following:
- Given two neighboringeavest & - check:
fO _Y O _Y ©O _Y whereO ®&¢™®@ denote the distortion
and bitcost of the jointleaves respectivelythen perform a join between these
leaves.
If a join was performed an indicator bit will be set to 1 and well treat the joint
leaf a new leaf.
Otherwise, the indicator bit will be set t®and nothing changes.
That means, every time we perform a join, we reduce the Lagrafpai/leaf wise but all
together this reduction achieves a minimization of theraagian for the whole signal.
Let us look at the problem:
Our initial wish is to get to solve the following problem:

AGICED AGCET O _v

Where0 the number of ideavesin the quadtree,O & ¥ are the distortion and bitost
of the"Q leaf,respectivelyand 0 is the Lagrangian of the whole image.

This problenis separable; if we minimizeit for each block®hen weminimize the total
cost.

This shows that altbugh at each step we are solving to find the local mininmamsidering
two dyadic leaves, we end up finding the global minimum.



19

Results
In this section we will show the results we achieved in our implementation of this algorithm.

First, we waild like to give an of the joirtees in order to illustrate how the legbin
algorithm exploits similarities between neighboring leafs (blocks) in the image:

Lena:

Figurel0: PruneJoin Quadtree representation of Lena

Jdnt-leaves are colored the same.
Notice how the structure of the image is preserved in the Quadtree representation, and the
join of similar blocks.



20

Example 1Boat

Figurell: Original Image

Let us take a look at a sequenderesults from the Prundoin algorithm, followed by a&B
graph comparing between the two algorithms.
Lambda:0.01 R:5.5052 D:29.3101 Lambda:0.29764 R:2.9847 D:66.828

Lambda:20.6914 R:1.6311 D:71.6202 Lambda:112.8838 R:1.1093 D:92.8255
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Lambda:615.8482 R:0.68916 D:171.9686 Lambda: 3359.8183 R:0.28935 D:478.2814
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Figurel2: Rate DistortiorGraph

We can see that the Pruniin scheme improves the compression of Erene algorithm.
We can also see, that for points in whigit-rate is high, the prungoin algorithm yields
similar or same results as the prune algorithm. This is due to the target of the algarithm
is designed to minimize the Lagrangian f@isen_.

Thus, if it finds that the overhead for the jgiinase in the algorithm increasing the
Lagrangian to be greater than the prupaly Lagrangian, no joins are being done.
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Example 2:

Figurel3: Original Image


















