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Abstract

I
mage inpainting is an extensively studied problem in image processing, and various tools have
been brought to serve it over the years. Recently, e�ective solutions to this problem based on

deep-learning have been added to this impressive list. This paper o�ers a novel and unconven-
tional solution to the image inpainting problem, still in the context of deep-learning. As opposed
to a direct solution of training a CNN to �ll-in missing parts in images, this work promotes a
solution based on pre-trained classi�cation-oriented CNN. The proposed algorithm is based on
the assumption that such CNN's have memorized the visual information they operate upon, and
this can be leveraged for our inpainting task. The main theme in the proposed solution is the
formulation of the problem as an energy-minimization task in which the missing pixels in the
input image are the unknowns. This minimization aims to reduce the distance between the true
image' label and the one resulting from the network operating on the completed image. A critical
observation in our work is the fact that for better inpainting performance, the pre-training of the
CNN should be applied on small portions of images (patches), rather than the complete images.
This ensures that the network assimilates small details in the data, which are crucial for the
inpainting needs. We demonstrate the success of this algorithm on two datasets: MNIST digits
and face images (Extended Yale B), showing in both the tendency of this method to operate very
well.

1 Introduction

I
npainting is the process of reconstructing
missing parts in images [8]. This problem

started in the �ne arts, occupying many artists
since the middle ages, working on restoring
painting in museums and elsewhere. More re-
cently, the problem and its applications were
presented in their digital form by Bertalmio-
Sapiro-Caselles-Ballester (SIGGRAPH 2000),
this led to a long series of publications (e.g.
[9, 10, 11, 13]), o�ering various novel ideas for
handling the inpainting task. This problem
remains prevalent today and the most recent
comers to this activity are neural networks.
A common approach for handling image in-
painting by deep learning tools is to train a net-
work to tackle directly the problem (e.g. [1, 3]).
In such a case one trains the network based on
relevant and direct information, being pairs of
images: images with missing parts of informa-
tion and their complete versions. The key idea
is to train the network to close the gap between
input and output, and then hopefully gener-

alize to other images and other hole shapes.

Figure 1: Example of the proposed inpainting.
The original image (left), the image with the
hole (middle), and the restored result (right).

The approach we present in this paper is also
based on deep learning, but it is di�erent from
the common path, because our solution leans
on a CNN that has been pre-trained to perform
classi�cation. When inpainting an image, the
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proposed algorithm uses this CNN to predict
the missing content in the image and obtain an
estimate that best suite the known classi�ca-
tion we aim for. For example, when inpainting
an image of the digit 5 (taken from the MNIST
database), the algorithm is initialized with zero
gray level values in the hole area, therefore the
network will either fail to identify its class, or
succeed with a weak con�dence. Then, the pro-
posed algorithm turns to minimize the energy
of the classi�cation error, changing the content
in the hole area to make the identi�cation more
certain.
In fact, there are two presumptions in this
work: (1) the CNN is assumed to have mem-
orized the objects it has been trained on, and
thus could serve the inpainting task; and (2)
the hole in the image must impair the original
classi�cation, as otherwise the network respon-
sible for �lling in the missing data will simply
"refuse" to inpaint. Throughout this paper we
come back to these assumptions showing that
training of the CNN properly is key in the suc-
cess of our scheme. Also, we show that the
size of the hole is critical for getting successful
inpainting images.
The proposed algorithm works by activating
two forces - a force that we have already in-
troduced, which pushes the missing content to
improve the identi�cation, and a second force
that strives to achieve an image that looks
natural. The proposed algorithm uses an en-
ergy function consisting of a linear combina-
tion of these two penalties. The minimizer of
this energy function is the inpainting result.
In order to �nd this minimum, we follow the

method of gradient descent and employ back-
prpopagation. As for forcing the naturalness
of the inpainted content, we suggest using the
Total-Variation to ensure that the result is
smooth and rimless at the edges of the hole.
During the development of the proposed solu-
tion we tried to avoid changing the CNN that
we use, because at the center of our work stands
the statement that there is no need to create a
special network in order to tackle the problem,
but rather using an existing one. However, we
noticed that training the network in a slightly
di�erent way could signi�cantly improve the
results. More speci�cally, we found that train-
ing on portions of images rather than the whole
images allows the network to classify while si-
multaneously better assimilate the local visual
characteristics of each object. Technically, this
was achieved by using the same training set,
feeding each example many times, masked (by
zeroing) at random so as to remove large por-
tions from it. Overall, this training improved
the performance of the inpainting results, while
keeping the overall recognition rates the same.
In the results section we present two sets of
experiments. We �rst inpaint images of digits
by a CNN that was trained to identify them
(trained on the MNIST database). The sec-
ond experiment focuses on inpainting of face
images by a CNN that was trained to identify
di�erent people (trained on the Extended Yale
B database). In both cases the proposed algo-
rithm is shown to be able to solve the problem
for various holes. We also present failure cases,
which allow us to re�ect on the weaknesses of
the proposed scheme.

2 Related Work

While there are various methods for tack-
ling the inpainting problem, herein we focus
on the ones that rely on neural networks.
The work reported in [1] proposes a blind in-
painting method based on a fully convolutional
neural network, trained on a dataset of cor-
rupted/ground truth sub image pairs. Once
trained, this network was shown to both de-
tect the corrupted region in the image and in-
paint the missing content with high levels of
success. [2] follows a blind inpainting approach
based on a pre-trained denoising auto-encoder.
Both [1] [2] handle the inpainting problem by
directly training a neural network on example-
pairs of patches/sub-images of corrupted im-
ages and their ground truth. Interestingly, both
algorithms rely on the idea of training their net-
works by using sub-images rather than whole
images for the inpainting task. While our ap-

proach is very di�erent from the above meth-
ods, we found that this feature is critical to the
success of our method as well. We shall note
that one of the limitations of approach taken
in [1] is the need for a new training procedure
for every new type of corruption.
By analogy to auto-encoders o�ered in [2],
Deepak Pathak et al. [3] presented a novel ap-
proach with context encoders for the inpainting
task. The context encoder allows to add miss-
ing content to the corrupted regions based on
the surroundings of the missing parts and the
context of the image. The training procedure
of the context encoder aim to minimize a pixel-
wise reconstruction loss and an adversarial loss.
The reconstruction L2 loss is responsible for �ll-
ing the overall structure of the missing regions
with regards to its context. The adversarial
loss on the other hand, trying to make the out-
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put image look as realistic as possible. Both
works [3] [4] share in common the idea of us-
ing a function with two loss components - one
for reconstruction and the other for the natu-
ralness of the image (based on adversarial net-
works). A trace of this idea appears in our work

as well, but in an entirely di�erent way, the pro-
posed cost function consists of two penalties -
the �rst considering the reconstruction based
on the network's visual knowledge, and a sec-
ond, total-variation penalty responsible for the
naturalness of the result.

3 Proposed Method

Di�erently from the above-described pa-
pers, our solution is not based on a network
that has been trained to inpaint (either directly
as in [1, 2] or indirectly as in [3] [4]). Instead
we present the concept of using a classi�cation-
oriented network for solving a completely dif-
ferent problem based on the data it has been
trained to handle. In common with several re-
cent papers (e.g. [5]), our algorithm is founded
on methods of optimization relying on the
CNN's knowledge. Indeed, other inpainting al-
gorithms (e.g. [1, 2, 3, 4]) could use the penal-
ties we present as an additional force to improve
their results.

3.1 The Energy Function

The algorithm we present inpaints a given im-
age using an energy function, which is to be
minimized with respect to the unknown pixels
in the hole. This cost function is formulated as
a linear combination of two penalties. The �rst
relies on the pre-trained classi�cation network,
computing the distance between the given (and
desired) label, and the one computed on the in-
put image:

Pcontent(X) =‖ CNN(X)− ` ‖22 .

In this expression, X ∈ R(N ×M) is the image
we inapint, CNN(·) is a given classi�er, and `
is the desired classi�cation for completion. As
such, the purpose of this expression is to pro-
mote the image X (or more accurately, change
the missing pixels in this image) to be classi-
�ed as an image that belongs to the class `, as
determined by the CNN. The second penalty
in the overall energy function aims to re�ne
the estimated content in order to make the
reasulting image more natural. This penalty is
formulated as the Total-Variation:

PTV =‖MTVDhX ‖1 + ‖MTVDvX ‖1 ·

where Dh and Dv are matrices of size NM ×
NM , denoting the horizontal and vertical �rst
derivativs, and MTV ∈ RNM×NM is a mask
that allows us to determine which parts of the
image we want to e�ect. In our algorithmMTV

is detemined either as the whole image (works
best for digit inpainting), or a region surround-
ing the hole (works best for face inpainting).

3.2 Algorithm

This challenging minimization is done using the
Gradient Descent algorithm. Observe that the
derivative of Pcontent calls for the computation
of the derivative of the CNN with respect to
the input image, implying that in each itera-
tion we use a back-propagation process, so as
to propagate the label error to the input image
domain. Algorithm 1 describes the proposed al-
gorithm. The observant reader will �nd this to
be somewhat related to the work in [7] and oth-
ers, where a similar optimization was used for
stylizing images. Our approach is also reminis-
cent of Vedaldi's work [5] in which he analyzed
the behavior of given networks by optimizing
with respect to their inputs.

Algorithm 1: Gradient Descent

Data: Y (the input image), ` (the
desired lable), M (the mask),
CNN (a classi�er)

Result: Inpainted X
1 Initialize X in the missing parts;
2 while ‖ ∇E(X) ‖> ε do
3 calculate: ∇E(X) = ∇XPcontent(X)

4 +λ(DT
hM

T
TV sign(MTVDhx)

5 +DT
v M

T
TV sign(MTVDvx))

6 update X: X = X − µ∇E(X)

7 end

3.3 Initialization

Since we are aiming to minimize a non-convex
function, we face an uncertainty in the mini-
mum we reach. This optimum depends on the
initialization. In order to improve our chances
of converging to a meaningful minimum that
serves well the inpainting task, we should ini-
tialize the missing parts wisely, as we describe
below. This provides some control over the re-
sulting estimate. Here is an illustration of the
uncertainty in the minimum we reach, obtained
for di�erent initializations:
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Figure 2: An illustration of the uncertainty in
the minimum we reach. Each initialization
leads to a di�erent inpainting result.

The initialization methods we have explored
include:

(i) Fill-in the missing parts using linear inter-
polation. In this way we create a di�usion
of the hole's boundaries into the missing
parts (this initialization worked best for
digit inpaintings).

(ii) Fill-in the missing parts with the average-
image of the desired class/label. This
serves as a successful initial guess for the
classi�er (this initialization worked best
for face inpaintings). It is important to
note that for all the results, the inpainted
image does not match the average at parts
that were missing. This means that the
algorithm uses the average-image only for
an initial guess.

Figure 3 : Initialization strategies for the algo-
rithm. The right-most is the corrupted image
to inpaint. The left-most is initialized with
the average image referring to all the examples

sharing this label. The middle image presents
a di�used initializetion.

3.4 Improvement Techniques

In this section we discuss several techniques
that signi�cantly improved our results. The
�rst of these consists of randomly shifting the
temporary image before updating it. More
speci�cally, before line 3 in Alorithm 1 we shift
randomly X in each axis and after line 5 we
shift X back to its previous location. This fea-
ture helps the network identify objects in an
image without depending on their location. In
our context, this allows the network to add new
content to the corrupted regions. This method
was inspired by [5].

A second idea that was found highly in�u-
encial is patch-based training. We found out
that pre-training the CNN on portions of im-
ages, rather than the complete ones leads to
sunstantial improvement in the overall inpaint-
ing performance. The patches we refer to are
obtained by multiplying the original images by
a random mask that nulls all content except a
small rectangular region. This approach drives
the classi�er to be sensitive and memorize small
pieces of the image content. In our experi-
ments, we found that by doing so, the network
is able to assimilate better the visual character-
istics of each label.

On top of the above two ideas, another ben-
e�cial force that we have found as usefull in
the context of MNIST is to push the destina-
tion image into binary values. We formulated
an additional penalty loss function to achieve
this goal. This loss function was set as high for
intermediate shades (i.e. away from black or
white), while being low for the 0 and 255 gray
values.
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4 Results

In this part we demonstrate the proposed inpainting algorithm and examine the importance of
its inner details. Our experiments are divided into two parts, the �rst testing the inpainting on
digit images (taken from the MNIST database), and the second focuses on face images (using
the Extended Yale B database). In each of these parts, all the inpainting results shown use
the same energy function, the same optimizaiton technique, the same pre-trained CNN, and the
same parameters. This testi�es to the strength and the robustness of the proposed scheme to
the type and the amount of the missing data in the images needed to inpaint.

Alongside the display of successful inpainting results, we also show failure cases, and discuss
their implication on the proposed algorithm. Also, we provide experiments in which we vary key
parameters or decisions in our scheme, in order to assess their in�uence on the results obtained.

4.1 Inpainting Handwritten-Digit Images (MNIST)

The images shown in Figure 4 are successful inpainting results for images of digits,
taken from the MNIST database. The CNN used in these experiments was trained
to classify digits, and based on the LeNet architecture [14]. However, as opposed to
the usual training of such networks, which uses the full 28 × 28 pixels images, we
trained the network on masked versions of the original images. More speci�cally,
each training image was used 5 times, each time masked di�erently while exposing
a portion of size 7 × 7 to 20 × 20 pixels (at random location) and zeroing the rest.
This way we encourage the classi�er to be sensitive to all the local details, a fact that
proved bene�cial for the inpainting. As shown in Figure 4 the inpainting results are
nearly perfect, even if they may di�er from the original content in the hole.

Figure 4: Each column represents a di�erent result. The ones in the �rst row are the
original images. The images in the second row are the corrupted versions of the ones
in the �rst row, masked with di�erent types of holes. The images in the third row
are the results of our inpainting.
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4.2 Inpainting Face Images (Yale Extended B)

Figure 5 illustrates the results we obtain for facial images. Unlike the handwritten-digit case, we
use of the Jitter technique, as explained in Section 3.4. The CNN used in these experiments was
trained to classify people by portrait images, and based on the LeNet architecture [14]. Similarly
to the method used for digit inapinting, we trained the network on portions of the database im-
ages. We noticed that many images are relativly dark, therefore many portions of these images
are simply lacking of meaningful data. In order to solve this, areas that su�er from this problem
(mesured by the energy of the patch) were replaced by the whole original image.
Note that in some of the results, the estimated content does not match the one of the original
image. These are interesting results since we visualize what the network itself considers as an
image that belongs to a speci�c class.

Figure 5: Each column represents a di�erent experiment. The images in the second row are
instances of the original images of these persons. In the third row, the corrupted images
with missing data are presented, and the most bottom row displays the inpainting results.

Figure 6: The graph shown is the norm of the gradient of the energy function versus the itera-
tions of the gradient descent. Below this graph are the inpainting result for every 250 iterations.
As can be seen, the gradient norm converges to zero. Moreover, by zooming, it is possible to see
that the Jitter e�ect in each iteration produces a pick in the gradient caused by the motion of
the image.

4.3 Failure Cases

The algorithm we presented is repleted with various parameters and techniques that aim to
improve the way the missing parts are inpainted, both in terms of content and in terms of nat-
uralness of the result. This section presents the importance of some of these parameters and
techniques with results illustrating their e�ect.
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Figure 7: The left column displays the original
image, alongside is the corrupted image, and
on the right column is the inpainting result.
Every row demonstrates a di�erent change in
the ideal algorithm.
In the �rst row we show the inpainted image,
obtained by a classi�cation network trained on
the whole images rather than portions. As can
be seen the inpainting is not done properly be-
cause the network is not sensitive to the visual
details.
In the second row we present the inpainting
result for the parameter modi�cation respon-
sible for the image smoothness and natural-
ness. This parameter takes part in the energy
function and cosmetically a�ects the inpaint-
ing result.
The third row displays the result of the orig-
inal algorithm with a di�erent initial image.
Keep in mind that our algorithm uses the
method gradient descent, so its starting point
is critical. If we initialize di�erently an im-
age, we may converge to a di�erent minimum
point, leading to a di�erent inpainting. In the
last two lines we present the case where the holes in the images are too small for the network
to notice missing data representing the class. In order to complete missing information in the
image, the network must �rst notice that there are missing parts and features that characterize
the classi�cation.

4.4 Special Cases

In this section we present and discuss some special and interesting experiments involving our
inpainting algorithm. These experiments do not involve changes in the network or the algorithm.

4.4.1 Inpainting full Images

A special case that we tackled is in which the whole picture is de�ned as missing and we want
to complete the lost information in relation to a certain label. The purpose of this experiment
is to present how the network envisions each label.

Figure 8: This �gure demonstrates the hallucinations of each of the 10 digits (0 to 9).
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4.4.2 Illuminating images

We noticed during the experiments with the Yale Extended B database that there are many
images taken in the dark, a question then arises: could these images be illuminated with the
assistant of our algorithm? We discovered that it is possible by de�ning the missing parts of the
image as all the pixels in the image that are below a speci�ed threshold.

Figure 9: Here we present some of the illuminations for face images.
It is possible to distinguish that all the details of the original image still
remains after the inpainting. Meaning, all we did is to add information
to the dark parts.

4.4.3 Inpainting by all labels

Another experiment we investigated was the case where we tried to inpaint a certain image as
all labels and at the end we de�ned the best inpainting result to be the one which led to the
lowest energy function. To our surprise, when we performed this experiment, we received the
best inpainting (according to the criterion we de�ned) for a di�rent label than the original one
(as shown in Figure 10).

Figure 10: The following �gure presents the following experiment. The most-right image is the
corrupted image. Notice that the inpainting by label three does seem convincing, so it is not
surprising that the best inpainting is for the class three rather than �ve.
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