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1 ABSTRACT

1 Abstract

Fast and robust three-dimensional reconstruction of facial geometric structure from
a single image is a challenging task with numerous applications. In this project, I
implemented and experimented with the iterative CNN models proposed in [3] and
[4] for extracting geometric structure from a single image.

The fist step was to train a deep neural network that extracts the reconstruction
from a single image using synthetic data of faces generated by the model proposed
in [1].

The next step in the project was to to take the models trained to perform the
reconstruction from a single image and apply them first to videos, and from there
to optimize the system for real-time 3D face reconstruction using a webcam.
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2 SYSTEM DESCRIPTION

2 System Description

In this section I will describe all the different software and hardware components of
the system I implemented.

2.1 Synthetic Data

It has been well established that usually you need a large amount of labeled data
in order to train deep neural networks from scratch. Unfortunately, there’s no large
dataset that contains examples of images and their 3D reconstruction, which makes
it difficult to approach this problem in a typical supervised learning manner.

To solve this problem we will use a model-based approach by modeling the face
using the the PCA model proposed in [1]. This model provides us with a method
to embed a mesh representation of a face (consisting of N ∼ 30K vertices and
M ∼ 50K triangles) into a 200-dimensional space.

Additionally, similar to [3] and [4] I will use another embedding space of 84 dimen-
sions in order represent the facial expressions.

Overall the model consists of three components. µS− The shape of the average face,
Aid− The identity embedding matrix (size 3N × 200) and Aexp− The expression
embedding matrix (size 3N × 84). In order to reconstruct the shape some identity
and expression coefficient vectors αid, αexp we perform the following operation:

S = µS + Aidαid + Aexpαexp

Once we have a model for the face, the problem becomes simpler. We can produce as
much data as we like by generating random coefficients αid, αexp and producing the
geometry (the labels) using the model, and images (the inputs) by rendering those
geometries. Now the task becomes to train the network to learn those coefficient
vectors.

Similar to [4] I also use 6 additional input channels to the network which are RGB
PNCC and normal renderings of the geometry with some random perturbation to
simulate iterative improvement of the network output (more on that later).
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2.2 Technology and Libraries 2 SYSTEM DESCRIPTION

2.2 Technology and Libraries

• python3 − I choose to write most of the components of my system in python
because it allowed for fast prototyping and had many robust libraries and
resources/implementations to use. most of the data and mathematical pro-
cessing was done using numpy.

• tensorflow − I chose this framework to implement the deep neural network part
of the system because it allowed easy cross-platform use of GPU resources for
the training, and large amount of resources and architecture implementations
available online.

• opencv2 − This framework was mainly used to perform some image processing
tasks and the video capturing/writing part of the system.

• dlib − This framework was used for the face detection. The implementation of
the face detection method in this library is much faster than the one in opencv2
and it was necessary to implement the real-time version of the system.

2.3 Hardware

• Nvidia GPU − A cuda-capable GPU was necessary in order to train the net-
work in a reasonable amount of time.

• Webcam − This is needed for the real-time version of the system, for the most
part I used the built-in cam in personal laptop throughout this project.

2.4 3D Reconstruction Network

2.4.1 Deep Neural Network

I used an architecture very close the one proposed for coarse reconstruction in [4],
the full architecture can be seen in Figure 1.

The inputs are three RBG 200×200 images, the first is a crop of the original image,
the second is a render of the geometry using some canonical coloring called PNCC
and the third is another render of the geometry using the normal to vertex as it’s
RGB color. An example input can be seen in Figure 3.

The output of the network is a vector of 290 numbers, the first 200 represent the
coefficients for the identity embedding, the next 86 are the coefficients for the expres-
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2.4 3D Reconstruction Network 2 SYSTEM DESCRIPTION
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Figure 1: The ResNet model used for the geometry reconstruction. The residual
blocks in the networks are the blocks defined in the ResNet architecture proposed
in [2].

sion embedding and the remaining 6 are transformation parameters, 3 parameters
for rotations 1 for scaling and 2 for translation.

2.4.2 The Iterative Model

In [3] they found out empirically that an iterative system works better for recon-
struction. Furthermore, the 6 extra input channels (the PNCC and normal render)
require that we actually know the geometry beforehand.

The iterative process starts with the average face geometry to produce the initial
PNCC and normal images, then at each iteration we produce a new embedding
vector, which we use to produce another set of inputs for the next iteration.

The usually process takes about 3-5 iterations to converge. A diagram of how the
iterative process works can be found in Figure 2.

Clearly, the network had to be trained to do this specific task of improving the
reconstruction from previous iteration, more on that in later chapters.

2.4.3 The Rendering Unit

The rendering unit seen in Figure 2 is a made of a lightweight renderer provided
by Matan Sela written in C++. The renderer was then further modified, optimized
and imported to python to work with the rest of the components of the system.
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2.5 Video and Real-Time Reconstruction System 2 SYSTEM DESCRIPTION

Input
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Figure 2: The iterative reconstruction system.

2.5 Video and Real-Time Reconstruction System

The first and the most trivial step I took to to move from a single image to video is
to apply the single image system on each frame of the video, this is obviously very
wasteful and could never be fast enough to transition into real-time.

Under the assumption that the face doesn’t change dramatically from frame to
frame in a video, we can use the geometry from the previous frame to construct the
input channels instead of having to start with the average face and perform several
iterations to get to the desired reconstruction, which allows us to perform the input
construction and run the network only once per frame.

This optimization alongside several other optimization to how the rendering is han-
dled allowed the system work in real-time using my personal laptop at 13-14 fps.

There is definitely more room for improvement in the performance in order to achieve
higher frame rate, but this seemed reasonable enough for this point in time.
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3 EXECUTION

3 Execution

In this section I will explain in detail the steps taken in order to achieve the final
results, and some insight on a few failed attempts.

3.1 Training the Single Image Network

3.1.1 The Inputs

In order to train the network to correct itself from previous iterations, the data
needs to simulate the fact that the PNCC and normal renders are from geometries
that aren’t similar to the ground truth be close to it.

The way the synthetic examples for the network are generated:

• Randomly generate the ground truth coefficients αgt and transform parame-
ters, this is the output to the network.

• Randomly generate a texture and background image to render the first input
image using the geometry that corresponds to αgt.

• Randomly generate perturbation coefficients αq.

• Linearly interpolate the ground truth and the perturbation α = pαgt+(1−p)αq

where q is uniformly sampled from [0, 1].

• Render the PNCC and normal images using the geometry that corresponds to
α and crop the textured image accordingly.

Examples of those images can be seen in Figure 3.

3.1.2 The Architecture

Since this was the first time for me working with tensorflow, the first step was to
learn to setup an environment which allows me to experiment with different models
and hyper-parameters.

Once that was done, I ran many experiments with different models to test for ac-
curacy and performance, models such as: different inception models, ResNeXt, Mo-
bileNet, FaceNet and others.

I found that in terms of accuracy the model did not have as much of an effect as I
had expected, and since the evaluation was mostly visual, it was sometimes difficult

8



3.1 Training the Single Image Network 3 EXECUTION

to tell the difference between the different models, sometimes the more advanced
and complicated models performed even worse.

Speed wise however, there was a huge difference when it came to models like in-
ceptions and ResNeXt which reduce the number of parameters but there are many
more convolutions, and ultimately they were not worth it for the final system since
the final goal was to run the system in real-time and speed was paramount.

Ultimately, I went an architecture that is very close to the coarse net in [4], and
used the standard ResNet architecture defined in [2].

3.1.3 The Hyper-Parameters

All of the hyper-parameters of the system were tuned in a cross-validation process.

• Loss Function − As mentioned in [4], the loss function is a function between
geometries rather than the coefficient vectors, and that is due to the fact that
the identity and expression basis are not orthogonal. The loss function for the
geometry proposed in the paper was:∥∥∥[Aid|Aexp](x− x̂)

∥∥∥2

2

And and a simple MSE for the transformation parameters. Empirically I found
that `1 − norm works better than `2 − norm for the geometry.

• Regularization − I tried two types of regularization:

– Weight Decay: while it did make the training process slightly smoother
and allowed me to train for more epochs, there were no clearly noticeable
improvements.

– Dropout: I tried to apply dropout in many different ways to either dense
or convolution layer with different drop rates. However, I was disap-
pointed that even tough it prevented the network from over-fitting in
terms of the loss value, the visual results were significantly worse in most
cases.

Contrary to what usually happens, regularization didn’t help for this particular
problem and therefore the final model didn’t include either method.

• Optimizer − Initially I used ADAM optimizer with exponentially decaying
learning rate. I later found that this was affecting the learning process nega-
tively and started using a piece-wise constant learning rate, where I lower the
learning rate when the loss value plateaus.

9



3.2 Implementation of The Video/Real-Time System 3 EXECUTION

• Early Stopping − As previously mentioned before, regularization techniques
didn’t work out for me, therefore, I couldn’t train the network a large number
of epochs. I found that the network would start to severely over-fit after
roughly epoch 10, so I have to apply early stopping to achieve good results.

3.2 Implementation of The Video/Real-Time System

The transition from a single image to video is relatively easy, I simply took the single
image system and applied a single iteration on each frame, where the geometry for
the PNCC and normal is the one calculated in the previous frame (the first frame
starts with the average face).

The real-time setting however, is not as simple. Systematically it works similarly
to the video reconstruction, but now the production of the rendered images and
the forward pass of the network has to be fast enough to run for each frame in a
reasonable rate.

Apparently, the network can be applied with a very high frame rate, the main
bottleneck of this system is the rendering unit. I made several optimizations in
C++ side of the code to avoid unnecessary operations and make the renderer more
task specific. However, most of the time was being wasted in the transition from
python to C++, and for that problem I used a library called ctypes which allowed
me to run the C++ renderer from python, in addition to the face that numpy had
several mechanisms to pass numpy arrays to C++ through ctypes in a very efficient
manner.

For the face detection part, I initially used the detector in opencv2 to implement
the video system, but it turn out to be extremely slow when I wanted to transition
to real-time. Therefore, I instead used the detector from the dlib library which is
significantly faster and can be run in a real-time setting.

Since the face detection is independent in each frame the box that the detector
returns changes size, which causes an undesirable jitter effect. In order solve this
applied some smoothing to the frames by averaging between the box from the pre-
vious frame and the current one. I also applied this smoothing to the geometries.
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4 RESULTS

Cropped Image PNCC Render Normal Render Ground Truth Prediction

Figure 3: Examples of input/output of the reconstruction network, each row is a
different example. The first three columns are inputs to the network, the fourth
column is the expected geometry and the fifth one is what the network predicts

4 Results

In this section I will present the final results of the different parts of the project.
Most of the evaluation was done in a visual manner because there were no other
reliable evaluation metrics to rely upon.

4.1 Synthetic Evaluation

Clearly, the first step in the evaluation process would be to test the network on the
synthetic data similar (but not the same) to the one it was trained on.

A few examples of those results can be seen in Figure 3, as we can see the network
achieves a very close (but not exact) reconstruction on the synthetic data.
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4.2 Single Image Reconstruction 4 RESULTS

Cropped Image PNCC Render Normal Render Prediction

Figure 4: Example of the iterative model, the first row is the initial input with the
average geometry, and the last row shows the reconstruction after 3 iterations.

4.2 Single Image Reconstruction

In order to test the single image reconstruction I used images from various face
detection and recognition datasets in addition to various photos that I found online.

In Figure 4, you can see how the iterative process works.

Figure 5 shows the final reconstruction from single gray scale images.

Figure 6 shows the final reconstruction from single images of celebrities. Here I
show the reconstruction on top of the original image to show how the model fits the
shape of the face in the original image.

This evaluation alongside the synthetic one were the main criteria according to which
I judged the quality of the reconstruction model before t I moved on to implement
the video and real-time systems.
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4.2 Single Image Reconstruction 4 RESULTS

Figure 5: Reconstruction examples of single images. The images were taken from a
dataset of grayscale face images.

Figure 6: Reconstruction examples of single images. The images are random
celebrity photos.
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4.3 Video Reconstruction 4 RESULTS

4.3 Video Reconstruction

For the evaluation of the video reconstruction system I picked videos of celebrity
interviews from youtube and other sources online.

I did the reconstruction on samples of the videos that I found because using the
video as is proved to be difficult because of all the jump-cuts and changing angles
that are usually in these videos.

Figure 7 shows examples of a couple of frames from those videos.

4.4 Real-Time Reconstruction

There are several modes that I can run the real-time system in, which mainly affect
the frame rate and how fast the capture is. I found that faster frame rate doesn’t
necessarily look better because the face detector is rather noisy.

Figure 8 shows some screen shots from the real-time reconstruction.
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4.4 Real-Time Reconstruction 4 RESULTS

Figure 7: Reconstruction examples of video. The videos were taken from a celebrity
interviews on youtube.
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4.4 Real-Time Reconstruction 4 RESULTS

Figure 8: Reconstruction examples of real-time video capture.
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5 CONCLUSIONS

5 Conclusions

In summary, the scope of this project included implementing the face reconstruction
system from single image first using a deep learning approach, and then try to take
the single image results and build a video/real-time system.

I showed that the methods for reconstruction a single image from the literature can
work in real time, and it can capture the general structure of the face well.

There’s much more work that could be done such as extracting fine details, improving
the model or even trying to experiment with a non-model based approach (more
information in the next section).

similar to the case of the single image this technology has many potential interesting
uses such as motion capture, video processing and other computer vision tasks.
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6 FURTHER WORK AND SUGGESTIONS

6 Further Work and Suggestions

In this section I will go over potential improvement and expansion ideas to the work
I have done in the project.

6.1 Detail Extraction

Currently the system only extracts a coarse structure of the face and the reconstruc-
tion still doesn’t bare much resemblance to the actual face.

One way to overcome this shortcoming, is to implement a network similar to the
fine network defined in [4], however, this approach might be to costly in terms of
speed and could impede the real-time version.

Another approach that is most performance friendly is to use a more classical ap-
proach to the shape from shading problem in order to extract the fine details.

6.2 Modifying The Model

One of the most significant bottlenecks in the quality of the reconstruction is the
strength of the model. The current model simply takes PCA [1] a set of faces.

One way to build a more expressive model, is to build an auto-encoder, which
consists of a fully connect neural network with a single hidden layer. In other
words, it contains two matrices W

(1)
N×h, W

(2)
h×N which transform the geometry into

the representation space and vice versa, which N is the size of the geometry and h
is the dimension of the representation space.

Such auto-encoder is trained using standard gradient-based procedures such as
NoiseContrastiveEstimation. and the goal of the auto-encoder is to reproduce
the geometry that was given as an input, therefore, we can use a loss similar to the
one used for the reconstruction network.

The assumption here is that this model can learning stronger representations because
it’s not constrained by linearity like PCA.

Another advantage of such approach is that now we can update the embedding
matrices during the training of the reconstruction network, which might yield much
more impressive task specific results. This approach is usually practiced in fields
like NLP but it is rarely used in computer vision.
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6.3 Modifying the Data 6 FURTHER WORK AND SUGGESTIONS

6.3 Modifying the Data

As we can see from the second example in Figure 3, the produced PNCC and normal
render that simulate the iterative process are quite harsh, and do not resemble the
original geometry at all.

This is mainly a result of the fact the linear interpolation factor p is sampled uni-
formly from [0, 1], which means there are instances where the result is almost entirely
the perturbation.

I did not produce the data myself for this project but it might be interesting to test
the affect of sampling p differently (uniformly from [0.5,1] for example).

I could also be interesting to experiment with different losses that in-cooperate that
perturbation, like the triplet loss used in face detection for example, such that in
our task we try to get as close as possible to the ground truth geometry while
simultaneously trying to get further from the random perturbation.

6.4 Mobile

Another interesting direction to take this project to is mobile. technically it should
be hard to take what I have already done and simply use in a mobile application,
but obviously some works need to be done on the speed and memory requirements
of the system.

I found that smaller and faster architectures such as MobileNet can achieve decent
results. Additionally, other techniques like quantization can be used to reduce the
size of the network in memory.
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