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Abstract

We establish linear convergence rates for a certain class of extrapolated fixed point algo-

rithms which are based on dynamic string-averaging methods in a real Hilbert space. This

applies, in particular, to the extrapolated simultaneous and cyclic cutter methods. Our anal-

ysis covers the cases of both metric and subgradient projections.

Keywords: Extrapolation, linear rate, string averaging.

Mathematics Subject Classification (2010): 46N10, 46N40, 47H09, 47J25, 65F10

1 Introduction

For a given family of nonempty, closed and convex subsets Ci of a real Hilbert space H, i ∈ I :=

{1, . . . ,M}, the convex feasibility problem is to find a point x ∈ C :=
⋂
i∈I Ci. In this paper we

assume that C 6= ∅ and that Ci = FixUi for a given cutter operator Ui : H → H, i ∈ I. We recall

that U : H → H is a cutter, for example, a metric or a subgradinet projection, if FixU 6= ∅ and

〈x − Ux, z − Ux〉 ≤ 0 for all x ∈ H and z ∈ FixU . We consider the extrapolated string averaging

(ESA) method, which is a particular fixed point algorithmic framework of the form

x0 ∈ H and xk+1 := xk + λkσk(xk)
(
Tkx

k − xk
)
, k = 0, 1, 2, . . . , (1.1)

where λk > 0 is a relaxation parameter, σk(·) : H → (0,∞) is an extrapolation functional and

Tk : H → H is a string averaging operator which depends on a chosen subset of U1, . . . , UM , that

is,

Tk :=

Nk∑
n=1

ωknQ
k
n, (1.2)

where ωkn ∈ (0, 1],
∑
n ω

k
n = 1 and Qkn :=

∏
j∈Jk

n
Uj is a product of the operators Uj along a

nonempty ordered subset Jkn ⊆ I to which we refer as a string.
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Figure 1 Graphic representation of the string averaging operator T = 1
3
(U3U2U1 +U6U5U4 +U8U7).

The extrapolation σk is intended to accelerate the convergence of method (1.1) in some instances

of the problem. It is usually assumed to have values greater than or equal to one, as is done in this

paper, although some authors allow smaller values of σk, which are then bounded away from zero.

Without any loss of generality, one can assume that σk(x) := 1 whenever Tkx = x. If σk(x) := 1

for every x ∈ H, then (1.1) becomes the basic, non-extrapolated string averaging method.

The operator Tk above is nothing but a convex combination of products of the operators Ui

along chosen strings Jkn . The algorithmic structure of such an operator is presented in Figure

1. In the extreme cases, the string averaging operator can be reduced either to a cyclic cutter

Tk := UM . . . U1 or to a simultaneous (parallel) cutter Tk :=
∑
i∈Ik ω

k
i Ui, where Ik ⊆ I. According

to (1.1), we allow the structure of Tk to change dynamically from iteration to iteration, which

we explain in more detail in Section 4. We mention here only that we allow the block iterative

framework, where each block Ik := Jk1 ∪ . . . ∪ JkNk
may differ from I. This, when combined with

the parallel structure of the operator Tk, provides a lot of flexibility in determining Tk and thus in

computing the next iteration.

The assumption that each Ui is a cutter provides an additional interpretation of the value Uix.

Indeed, Uix is nothing but the projection of x onto the half-space Hi(x) := {z | 〈x−Uix, z−Uix〉 ≤
0} ⊇ Ci, which for x /∈ Ci satisfies x /∈ Hi(x). Some authors have exploited this idea by projecting

onto a certain closed and convex superset Ci(x
k) ⊇ Ci; see, for example, [31], [6], [28] and [49].

Although both approaches are theoretically different, the convergence analyses remain similar.

The operator based approach, which appeared, for example, in [10], [5] and [19], enables us to

extract abstract properties of the algorithmic operators. This is of independent interest and will

be emphasized in the present paper.

In this paper we focus on the convergence properties and, in particular, on the linear convergence

of the scheme (1.1)–(1.2). The convergence depends on the one hand on the definition of σk

and, on the other hand, follows from the regularity of the constraints Ci and the operators Ui,

i ∈ I; see Section 2.2 for the relevant definitions. We recall several known examples of σk(·) that

guarantee weak and, in some cases, norm and even linear convergence. A more detailed overview

of extrapolated simultaneous and cyclic cutter methods can be found, for example, in [15]; see also

[8].

We begin with the simultaneous cutter methods for which

σk(x) :=

∑
i∈Ik ω

k
i ‖Uix− x‖2

‖
∑
i∈Ik ω

k
i Uix− x‖2

≥ 1. (1.3)

Pierra considered (1.3) in [42] for the extrapolated parallel projection method, where he established

weak convergence of the sequence of iterates for Ui = PCi
, Ik = I and ωki = 1/M . Moreover, under

the bounded regularity of the family {Ci | i ∈ I} the convergence was shown to be in norm. The

extrapolated parallel subgradient projection method (Ui = Pfi) was introduced by Dos Santos in [30]
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in Rd. Since then one can find many extensions in the literature. For example, Combettes [27, 28]

proposed the extrapolated method of parallel approximate projections (EMPAP), where each Ui was

assumed to be the projection onto a closed and convex superset Ci(x
k) ⊇ Ci and λk ∈ [ε, 2 − ε]

for some ε ∈ (0, 1). The method was shown to converge weakly under additional regularity of the

approximate projections, that is, ‖Uixk−xk‖ ≥ δid(xk, Ci). Norm convergence, as in [42], required

bounded regularity of the family {Ci | i ∈ I}. Recently, Zhao et al. [49] have proved that EMPAP

converges linearly whenever the family of the sets is assumed to be boundedly linearly regular.

The extrapolated cyclic cutter (M ≥ 2) appeared for the first time in [17] by Cegielski and

Censor, where

σk(x) :=
1

2
+

∑M
i=1 ‖Ui . . . U1x− Ui−1 . . . U1x‖2

2 ‖UM . . . U1x− x‖2
≥ 1

2
+

1

2M
(1.4)

and λk ∈ [ε, 2−ε] for some ε ∈ (0, 1). The method was shown to converge weakly whenever each Ui

was weakly regular (Ui − Id is demi-closed at 0), i ∈ I. This result was later extended by Nikazad

and Mirzapour in [37] to relaxed weakly regular cutters with a slightly modified σk. Extensive

numerical tests for the extrapolated cyclic subgradient projection can be found in [18].

The extrapolation formula for the general string averaging operator defined by (1.2) can use

both (1.3) and (1.4). As far as we know, a natural extension based on (1.3) was for the first time

proposed by Crombez [29], where

σk(x) :=

∑Nk

n=1 ω
k
n‖Qknx− x‖2

‖
∑Nk

n=1 ω
k
nQ

k
nx− x‖2

≥ 1. (1.5)

Its convergence was investigated in the Euclidean space setting with continuous paracontractions

Ui. Weak convergence in the Hilbert space setting involving αi-averaged operators Ui, αi ∈ (0, 1),

was discussed in [1], where a sufficient condition for norm convergence was also presented (intC 6= ∅
which implies bounded linear regularity). In particular, in the case of (1/2)-averaged operators

(which are cutters), it was assumed that the relaxation parameter λk ∈ [ε, 1 + 1
m − ε], where m is

the length of the longest string.

An extrapolation formula combining (1.3) and (1.4) was proposed by Nikazad and Mirzapour

in [38]. We present it here for cutters only, although it should be mentioned that it was formulated

for αi-relaxed cutters, αi ∈ (0, 2):

σk(x) :=

Nk∑
n=1

ωkn

(∥∥Qknx− x∥∥2 +
mk

n∑
l=1

‖Qkn,lx−Qkn,l−1x‖2
)

2‖
∑Nk

n=1 ω
k
nQ

k
nx− x‖2

≥ 1

2
+

1

2m
, (1.6)

where mk
n is the length of the string Jkn and Qkn,l is the product of the first l operators along the

string Jkn with Qkn,0 := Id. Method (1.1)–(1.2), when combined with (1.6), was shown to converge

weakly while assuming that each Ui is a weakly regular cutter, λk ∈ [ε, 2− ε] and that there is no

other dependence on k within the iterations, that is, Tk = T , σk = σ and Ik = I.

As far we know, the linear rate of convergence in the framework of the extrapolated string

averaging cutter, including the extrapolated cyclic cutter, has not been investigated so far. The

exception is the extrapolated simultaneous cutter [49], as we have already mentioned above. Nev-

ertheless, there are a few known results which deal with the linear rate of the non-extrapolated

version of method (1.1)–(1.2). For example, Bargetz et al. [5] have shown that the dynamic string

averaging projection method converges linearly whenever the family of sets is boundedly linearly
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regular. A linear rate of convergence for boundedly linearly regular cutters has recently been

established in [19], although the result required the additional assumption that each subfamily

of {Ci | i ∈ I} is boundedly linearly regular; see [19, Example 5.7, Theorem 6.2 ]. The above-

mentioned assumption guarantees that each one of the operators Qkn that appears in (1.2) and, in

consequence Tk, is boundedly linearly regular; see Remark 3.6. As was shown in [45], this may not

be the case for some families of sets.

There are many other works which deal with the non-extrapolated string averaging method

(1.1)–(1.2) although linear convergence was not discussed therein. In particular, a static version

of the string averaging method (1.1)–(1.2) was introduced in [22] for the metric and Bregman

projections in Euclidean space. A dynamic variant appeared, for example, in [26] and in [44].

Other works related to string averaging methods are, for example, [25], [9], [24], [13], [14], [47],

[23], [48] and [36].

We emphasize here that a linear rate of convergence is known in the framework of the non-

extrapolated simultaneous and cyclic methods with boundedly linearly regular operators and fam-

ilies of sets; see, for example, [10] or [11] with averaged operators, or [6] and [34] with cutters. Here

also no additional linear regularity of subfamilies is required.

Contribution and organization of the paper

The main contribution of this paper is the formulation of sufficient conditions for linear convergence

of the extrapolated string averaging method (1.1)–(1.2) in terms of bounded linear regularity of

the algorithmic operators Ui and the family of sets {Ci | i ∈ I}. Following [5, Theorem 9],

which is formulated for projections only, we show that the linear rate of convergence holds without

any additional regularities of the subfamilies of {Ci | i ∈ I}, which is required in [19]; see the

explanation above. Our slightly modified extrapolation functional σk : H → [1,∞), which is based

on (1.6), when combined with the relaxation parameters λk ∈ [λ, λ] ⊆ (0, 1 + 1/m) allows us to

unify the examples of σk presented in (1.3)–(1.6); see Remark 4.4. Our estimate for the linear

convergence rate improves the one presented in [5, 19] and, when reduced to projections only,

coincides with known results for cyclic and simultaneous projections. For completeness, we also

discuss weak and norm convergence. We emphasize here that in all the three types of convergence

we allow a dynamically changing sequence of operators {Tk} which is not the case in [17, 38, 37].

In addition to the linear rate of convergence, we also establish new results related to the linear

regularity of operators, which we believe are of independent interest.

Finally, we present results of simple numerical simulations, which show that extrapolation may

indeed be considered an acceleration technique for some instances of the string averaging method.

Our paper is organized as follows. In Section 2 we introduce our notations, definitions and

useful facts. In Section 3 we discuss basic properties of extrapolated operators (Theorem 3.1),

whereas in Section 4 we use these properties to derive the main result of this paper (Theorem 4.1).

In the last section we present the results of our numerical simulations.

2 Preliminaries

In this paper H always denotes a real Hilbert space. For a sequence {xk}∞k=0 in H and a point

x∞ ∈ H, we use the notations xk ⇀ x∞ and xk → x∞ to indicate that {xk}∞k=0 converges to x∞
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weakly and in norm, respectively.

Given a nonempty, closed and convex set C ⊆ H, we denote by PC : H → H the metric

projection onto C, that is, the operator which maps x ∈ H to the unique point in C closest to x.

The operator PC is well defined for such sets C and it is not difficult to see that it is nonexpansive;

see, for example, [7, Proposition 4.8], [15, Theorem 2.2.21] or [32, Theorem 3.6]. We denote by

d(x,C) := inf{‖x− z‖ | z ∈ C} the distance of x to C.

For a given operator U : H → H, we denote by FixU the set of fixed points of U . We denote

by Uα the (α-)relaxation of U defined by Uαx := x + α(Ux − x) for each x ∈ H, where α > 0.

We use the same symbol Uα for the generalized relaxation, where α : H → (0,∞). In this case

Uαx := x + α(x)(Ux− x) for each x ∈ H. If α(x) ≥ 1 for each x ∈ H, then we say that Uα is an

(α-)extrapolation of U .

2.1 Quasi-nonexpansive operators

Definition 2.1. Let U : H → H be an operator with FixU 6= ∅. We say that U is

(i) quasi-nonexpansive (QNE) if for all x ∈ H and all z ∈ FixU ,

‖Ux− z‖ ≤ ‖x− z‖; (2.1)

(ii) ρ-strongly quasi-nonexpansive (ρ-SQNE), where ρ ≥ 0, if for all x ∈ H and all z ∈ FixU ,

‖Ux− z‖2 ≤ ‖x− z‖2 − ρ‖Ux− x‖2; (2.2)

(iii) a cutter if for all x ∈ H and all z ∈ FixU ,

〈z − Ux, x− Ux〉 ≤ 0. (2.3)

Below we recall some properties of quasi-nonexpansive operators that will be used in the sequel.

A more comprehensive overview can be found in [15, Chapter 2].

Theorem 2.2. Let U : H → H be such that FixU 6= ∅ and let ρ ≥ 0. The following conditions are

equivalent:

(i) U is ρ-SQNE.

(ii) Id + 1+ρ
2 (U − Id) is a cutter.

(iii) for each x ∈ H and z ∈ FixU , we have

〈z − x, Ux− x〉 ≥ 1 + ρ

2
‖Ux− x‖2. (2.4)

Proof. See [15, Corollary 2.1.43 and Section 2.1.30]. �

Corollary 2.3. Let U : H → H be ρ-SQNE, where ρ > 0, and let α : H → (0,∞). Then, for each

x ∈ H and z ∈ FixU , the generalized relaxation Uα satisfies

‖Uαx− z‖2 ≤ ‖x− z‖2 −
(

ρ

α(x)
+

1− α(x)

α(x)

)
‖Uαx− x‖2. (2.5)
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Proof. Since U is ρ-SQNE, by Theorem 2.2 (iii), we have

〈x− z, Ux− x〉 ≤ −ρ+ 1

2
‖Ux− x‖2. (2.6)

Moreover,

Uαx− x = α(x)(Ux− x). (2.7)

Consequently,

‖Uαx− z‖2 = ‖x− z + α(x)(Ux− x)‖2

= ‖x− z‖2 + 2α(x)〈x− z, Ux− x〉+ α2(x)‖Ux− x‖2

≤ ‖x− z‖2 − 2α(x)
ρ+ 1

2
‖Ux− x‖2 + α2(x)‖Ux− x‖2

= ‖x− z‖2 − α2(x)

(
ρ

α(x)
+

1− α(x)

α(x)

)
‖Ux− x‖2, (2.8)

which completes the proof. �

Remark 2.4. Observe that inequality (2.5) becomes significant when

ρ

α(x)
+

1− α(x)

α(x)
> 0 (2.9)

which holds for any α(x) ∈ (0, 1 + ρ). We will apply (2.5) in this form in the sequel; see, for

example, Theorems 3.1 or 4.1.

Theorem 2.5. Let Ui : H → H be ρi-SQNE, i = 1, 2, ...,M , where M ≥ 1, ρi > 0 and assume

that C =
⋂M
i=1 FixUi 6= ∅.

(i) Let U :=
∑M
i=1 ωiUi, where ωi > 0 and

∑M
i=1 ωi = 1. Then U is ρ-SQNE, ρ = mini ρi and

FixU = C. Moreover, if each Ui is a cutter (≡ 1-SQNE), then for any x ∈ H and z ∈ C, we

have

〈Ux− x, z − x〉 ≥
M∑
i=1

ωi‖Uix− x‖2. (2.10)

(ii) Let U := UM . . . U1. Then U is ρ-SQNE, ρ = mini ρi/M and FixU = C. Moreover, if each

Ui is a cutter (≡ 1-SQNE), then for any x ∈ H and z ∈ C, we have

〈Ux− x, z − x〉 ≥ 1

2
‖Ux− x‖2 +

1

2

M∑
i=1

‖Ui . . . U1x− Ui−1 . . . U1x‖2, (2.11)

where we set Ui−1 . . . U1x := x for i = 1.

Proof. For (i), see [15, Theorem 2.1.50]. Inequality (2.10) follows directly from Theorem 2.2 (iii)

and definition of U . For (ii), see [15, Theorem 2.1.48]. Inequality (2.11) follows from [15, Lemma

4.10.1] and the last equality in its proof. �

2.2 Regular sets and regular operators

Definition 2.6. Given a set S ⊆ H, a family {C1, . . . , CM} of convex and closed sets Ci ⊆ H with

a nonempty intersection C :=
⋂M
i=1 Ci is called
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(i) regular over S if for every sequence {xk} ⊆ S, we have

max
i=1,...,M

d(xk, Ci)→k 0 =⇒ d(xk, C)→k 0; (2.12)

(ii) κS-linearly regular over S if the inequality

d(x,C) ≤ κS max
i=1,...,M

d(x,Ci) (2.13)

holds for all x ∈ S and some constant κS > 0.

We say that the family {C1, . . . , CM} is boundedly (linearly) regular if it is (κS-linearly) regular over

every bounded subset S ⊆ H. We say that {C1, . . . , CM} is (linearly) regular if it is (κS-linearly)

regular over S = H.

Example 2.7. Let Ci ⊆ H be as in Definition 2.6 and let C := {C1, . . . , CM}. Following [10, Fact

5.8], we recall some examples of regular families of sets:

(i) If dimH <∞, then C is boundedly regular.

(ii) If CM ∩ int
⋂M−1
i=1 Ci 6= ∅, then C is boundedly linearly regular.

(iii) If each Ci is a half-space, then C is linearly regular.

(iv) If dimH < ∞, Ci is a half-space for i = 1, . . . , L, and
⋂L
i=1 Ci ∩

⋂M
i=L+1 riCi 6= ∅, then C is

boundedly linearly regular.

(v) If each Ci is a closed subspace, then C is linearly regular if and only if
∑M
i=1 C

⊥
i is closed.

For more information regarding regular families of sets see [46].

Definition 2.8. Let U : H → H be an operator with a fixed point, that is, FixU 6= ∅, and let

S ⊆ H be nonempty. We say that the operator U is

(i) weakly regular over S if for any sequence {xk}∞k=0 ⊆ S and x∞ ∈ H,

xk ⇀ x∞

Uxk − xk → 0

}
=⇒ x∞ ∈ FixU ; (2.14)

(ii) regular over S if for any sequence {xk}∞k=0 ⊆ S,

lim
k→∞

‖Uxk − xk‖ = 0 =⇒ lim
k→∞

d(xk,FixU) = 0; (2.15)

(iii) linearly regular over S if there is δS > 0 such that for every x ∈ S,

δSd(x,FixU) ≤ ‖Ux− x‖. (2.16)

If any of the above regularity conditions holds for every subset S ⊆ H, then we simply omit the

phrase “over S”. If the same condition holds when restricted to bounded subsets S ⊆ H, then

we precede the term with the adverb boundedly. Since there is no need to distinguish between

boundedly weakly and weakly regular operators, we call both weakly regular.
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Clearly, weakly regular operators are those for which U − Id is demi-closed at zero and they go

back to [12] and [39]. Regular operators appeared already in [41, Theorem 1.2] whereas linearly

regular operators can be found in [40, Theorem 2]. For a detailed historical overview of regular

operators, we refer the reader to [34] and [19]. We mention here only a few works where these

operators appeared implicitly or explicitly; see, for example, [6], [33], [2], [20], [21], [10], [16], [44],

[11] and [43].

Regular families of sets and regular operators are related in the sense that U := PCi(x)
x, where

i(x) := argmaxi=1,...,M d(x,Ci), is (linearly) regular over S if and only if the family {C1, . . . , CM}
is (linearly) regular over S. This was observed, for example, in [34, Remark 2.13].

It is not difficult to see that (bounded) linear regularity implies (bounded) regularity. One can

also show that (bounded) regularity implies weak regularity. On the other hand, it turns out that

weak regularity implies bounded regularity in H = Rn; see, for example [21, Proposition 4.1] or

[19, Theorem 4.3]. This leads to the following two examples:

Example 2.9 (Nonexpansive mapping). Let U : H → H be nonexpansive with FixU 6= ∅. Then U

is weakly regular due to the demi-closednes principle [39]. If H = Rn, then U is boundedly regular

[21, Proposition 4.1, Corollary 4.2]. Moreover, in this case there is a more explicit connection

between d(x,FixU) and ‖Tx − x‖. To be specific, by [35, Theorem 3], for every bounded subset

S ⊆ Rn which intersects FixU , there is a bounded, increasing function fS : R+ → R+, right-

continuous at t = 0 with f(0) = 0, which for all x ∈ S satisfies

d(x,FixU) ≤ fS(‖Tx− x‖). (2.17)

Example 2.10 (Subgradient projection). Following [34, Example 2.15] or [19, Example 3.5], let

f : H → R be a convex continuous function. Let ∂f(x) := {g ∈ H | ∀y ∈ H 〈g, y−x〉 ≤ f(y)−f(x)}
be the subdifferential of f at x which, by the assumptions on f , is nonempty. Suppose that

S(f, 0) := {x | f(x) ≤ 0} 6= ∅. For each x, we fix a subgradient g(x) ∈ ∂f(x) and define the

subgradient projection by

Pfx :=

x−
f(x)
‖g(x)‖2 g(x) if f(x) > 0

x, otherwise.
(2.18)

If f is Lipschitz continuous on bounded sets, then Pf is weakly regular. In particular, if H = Rd,
then Pf is boundedly regular. In addition, if f(x) < 0 for some x, then Pf is boundedly linearly

regular. It may also happen that the subgradient projection is not boundely regular; see [19,

Example 3.6].

Remark 2.11 (Relation between ρ and δS). Observe that if U is ρ-SQNE and δS-linearly regular

over some nonempty subset S ⊆ H, then ρδ2S ≤ 1. In particular, if U is a cutter, then δS ≤ 1.

Indeed, it suffices to substitute z = PFixUx in the inequality below, which holds true for each x ∈ S
and z ∈ FixU :

ρδ2Sd
2(x,FixU) ≤ ρ‖Ux− x‖2 ≤ ‖x− z‖2. (2.19)

On the other hand, the first inequality holds true with any δS > 0 whenever x ∈ FixU . Without

any loss of generality, we can assume in this case that again ρδ2S ≤ 1.
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2.3 Fejér monotone sequences

Definition 2.12. Let C ⊆ H be a nonempty, closed and convex set, and let {xk}∞k=0 be a sequence

in H. We say that {xk}∞k=0 is Fejér monotone with respect to C if

‖xk+1 − z‖ ≤ ‖xk − z‖ (2.20)

for all z ∈ C and every integer k = 0, 1, 2, . . ..

Theorem 2.13. Let the sequence {xk}∞k=0 be Fejér monotone with respect to C. Then

(i) {xk}∞k=0 converges weakly to some point x∞ ∈ C if and only if all its weak cluster points lie

in C;

(ii) {xk}∞k=0 converges strongly to some point x∞ ∈ C if and only if

lim
k→∞

d(xk, C) = 0; (2.21)

(iii) if there is some constant q ∈ (0, 1) such that d(xk+1, C) ≤ qd(xk, C) holds for every k =

0, 1, 2, . . ., then {xk}∞k=0 converges linearly to some point x∞ ∈ C and

‖xk − x∞‖ ≤ 2d(x0, C)qk; (2.22)

(iv) if {xks}∞k=0 converges linearly to some point x∞ ∈ C, that is, ‖xks − x∞‖ ≤ cqk for some

constants c > 0, q ∈ (0, 1) and integer s, then the entire sequence {xk}∞k=0 converges linearly

and moreover,

‖xk − x∞‖ ≤ c

( s
√
q)s−1

( s
√
q)
k

; (2.23)

(v) if {xk}∞k=0 converges strongly to some point x∞ ∈ C, then ‖xk − x∞‖ ≤ 2d(xk, C) for every

k = 0, 1, 2, . . ..

Proof. See, for example, [6, Theorem 2.16 and Proposition 1.6]. �

3 Extrapolated Operators

Theorem 3.1 (Extrapolated String Averaging). Let Ui : H → H be a cutter, i ∈ I := {1, . . . ,M},
such that C :=

⋂
i∈I FixUi 6= ∅. Let {J1, . . . , JN} be a family of strings satisfying I = J1∪ . . .∪JN .

Let T be the string averaging cutter operator defined by

T :=

N∑
n=1

ωnQn, (3.1)

where ωn ∈ (0, 1] with
∑N
n=1 ωn = 1 and Qn :=

∏
j∈Jn Uj. Moreover, let Tλσ : H → H be defined

by

Tλσx := x+ λσ(x)(Tx− x), (3.2)

where the relaxation parameter λ ∈ (0, 1 + 1
m ), the extrapolation functional σ : H → [1,∞) satisfies

1 ≤ σ(x) ≤ τ(x) for all x ∈ H and

τ(x) :=


m
m+1

N∑
n=1

ωn

(
‖Qnx− x‖2 +

mn∑
l=1

‖Qn,lx−Qn,l−1x‖2
)

‖Tx− x‖2
if x /∈ C

1 otherwise,

(3.3)
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where mn := |Jn|, m := max1≤n≤N mn and for each string Jn := (i1, . . . , imn
), we use the notations

Qn,l :=
∏l
j=1 Uij and Qn,0 := Id. Then the following statements hold:

(i) Tλσ is ρ-SQNE, where FixTλσ = C and

ρ :=
1

λm
+

1− λ
λ

> 0. (3.4)

Moreover, for all x ∈ H and z ∈ C, we have

Θ(x)

N∑
n=1

ωn

mn∑
l=1

∥∥Qn,lx−Qn,l−1x∥∥2 ≤ ‖x− z‖2 − ‖Tλσx− z‖2, (3.5)

where

Θ(x) := λσ(x)
1 +m−mλσ(x)τ(x)

1 +m− m
τ(x)

≥ λ
(

1− λ m

1 +m

)
> 0. (3.6)

(ii) If for every i ∈ I, the operator Ui is δi-linearly regular, δi ∈ (0, 1], on the ball B(z, r) for

some z ∈ C and some r > 0, then for all x ∈ B(z, r), we have

δ2 max
i∈I

d2(x,FixUi) ≤
N∑
n=1

mn∑
l=1

mn

∥∥Qn,lx−Qn,l−1x∥∥2, (3.7)

where δ := mini∈I δi.

(iii) If, in addition, the family {FixUi | i ∈ I} is κ-linearly regular over B(z, r), then Tλσ also

satisfies

Θ(x)
ωδ2

2mκ2
d
(
x,C

)
≤ ‖Tλσx− x‖ (3.8)

for all x ∈ B(z, r), where ω := minn=1,...,N ωn. Moreover, in this case

Θ(x) ≤ mκ2

ωδ2
. (3.9)

Remark 3.2. Observe that we can always choose σ(x) such that 1 ≤ σ(x) ≤ τ(x) since τ(x) ≥ 1.

Indeed, by the convexity of ‖ · ‖2, we have

‖Tx− x‖2 ≤
N∑
n=1

ωn‖Qnx− x‖2. (3.10)

Moreover, if mn ≥ 2, then

‖Qnx− x‖2 ≤

(
1 ·

mn∑
l=1

‖Qn,lx−Qn,l−1x‖

)2

≤ mn

mn∑
l=1

‖Qn,lx−Qn,l−1x‖2, (3.11)

which follows from the Cauchy-Schwarz inequality in Rmn . On the other hand, (3.11) becomes an

equality if mn = 1 and then it is equal to ‖Uix− x‖2 for some i ∈ I. Consequently, τ(x) has to be

greater than or equal to one.

Proof of Theorem 3.1. It is not difficult to see that, by Theorem 2.5, C = FixT = FixTλσ.

From now on we assume that x ∈ H \ C and z ∈ C. Define α(x) := λσ(x)/τ(x), and observe that

0 < α(x) ≤ 1 + 1
m and

Tλσx = x+ λ
σ(x)

τ(x)
(Tτx− x) = (Tτ )αx. (3.12)
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Part (i). In order to show that Tλσ is ρ-SQNE, it suffices in view of the above lines and

Corollary 2.3, to show that Tτ is 1/m-SQNE. By Theorem 2.5, we have

〈z − x,Qnx− x〉 ≥
1

2
‖Qnx− x‖2 +

1

2

mn∑
l=1

‖Qn,lx−Qn,l−1x‖2. (3.13)

Note that (3.13) also holds true for the case mn = 1; compare with Theorem 2.2(iii). Consequently,

we have

〈z − x, Tτx− x〉 = τ(x)〈z − x, Tx− x〉 = τ(x)

N∑
n=1

ωn〈z − x,Qnx− x〉

≥ τ(x)

2

N∑
n=1

ωn

(
‖Qnx− x‖2 +

mn∑
l=1

‖Qn,lx−Qn,l−1x‖2
)

=
m+ 1

2m
τ2(x)‖Tx− x‖2 =

1 + 1
m

2
‖Tτx− x‖2, (3.14)

which, again by Theorem 2.2 (iii), shows that Tτ is (1/m)-SQNE.

Now we show that inequality (3.5) holds true. By Corollary 2.3 applied to Tλσ = (Tτ )α, we

obtain

‖Tλσx− z‖2 ≤ ‖x− z‖2 −
(

1

mα(x)
+

1− α(x)

α(x)

)
‖Tλσx− x‖2

= ‖x− z‖2 − λσ(x)
1 +m−mα(x)

m
τ(x)‖Tx− x‖2

= ‖x− z‖2 − λσ(x)
1 +m−mα(x)

m+ 1

(
N∑
n=1

ωn ‖Qnx− x‖2

+

N∑
n=1

ωn

mn∑
l=1

‖Qn,lx−Qn,l−1x‖2
)
, (3.15)

which also holds true if mn = 1 for some n. On the other hand, by the convexity of ‖ · ‖2 and the

definition of α and τ , we have

N∑
n=1

ωn‖Qnx− x‖2 ≥ ‖Tx− x‖2 =
α(x)

λσ(x)
τ(x)‖Tx− x‖2

=
mα(x)

(m+ 1)λσ(x)

(
N∑
n=1

ωn ‖Qnx− x‖2 +

N∑
n=1

ωn

mn∑
l=1

‖Qn,lx−Qn,l−1x‖2
)
, (3.16)

which, after rearranging terms, leads us to the following estimate:

N∑
n=1

ωn‖Qnx− x‖2 ≥
mα(x)

(m+ 1)λσ(x)−mα(x)

N∑
n=1

ωn

mn∑
l=1

‖Qn,lx−Qn,l−1x‖2. (3.17)

Using (3.15), (3.17) and noticing that

1 +m−mα(x)

m+ 1

(
1 +

mα(x)

(m+ 1)λσ(x)−mα(x)

)
=

Θ(x)

λσ(x)
, (3.18)

we arrive at (3.5).

Part (ii). In order to show (3.7), assume, in addition, that x ∈ B(z, r). Given i ∈ I, choose

n ∈ {1, . . . , N} and 1 ≤ p ≤ mn, so that i ∈ Jn and Qn,p = UiQn,p−1. Note that the operators Ui

map B(z, r) into B(z, r) since

‖Uix− z‖ ≤ ‖x− z‖ ≤ r (3.19)
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because each Ui is quasi-nonexpansive. The same applies to each Qn,l. Then, using the notation

Ci = FixUi, we get

d(x,Ci) ≤ ‖x− PCi
Qn,p−1x‖ ≤ ‖x−Qn,p−1x‖+ ‖Qn,p−1x− PCi

Qn,p−1‖

≤
p−1∑
l=1

‖Qn,lx−Qn,l−1x‖+
1

δi
‖UiQn,p−1x−Qn,p−1x‖ (3.20)

because Ui is δi-linearly regular over B(z, r) and ‖Qn,p−1x−PCi
Qn,p−1x‖ = d(Qn,p−1x,Ci). Since

δ ≤ δi ≤ 1 (compare with Remark 2.11) we obtain

d(x,Ci) ≤
1

δ

p∑
l=1

‖Qn,lx−Qn,l−1x‖ ≤

√√√√mn

δ2

mn∑
l=1

‖Qn,lx−Qn,l−1x‖2, (3.21)

where the last inequality follows from the Cauchy-Schwarz inequality in Rmn . This shows that

(3.7) holds true, which completes the proof of part (ii), because i ∈ I was arbitrary.

Part (iii). Using (3.5)–(3.7), we conclude that

Θ(x)
ωδ2

m
max
i∈I

d(x,Ci)
2 ≤ ‖x− z‖2 − ‖Tλσx− z‖2. (3.22)

Next, using the Cauchy-Schwarz inequality, we obtain

‖Tλσx− z‖2 = ‖Tλσx− x+ x− z‖2 = ‖Tλσx− x‖2 − 2〈Tλσx− x, x− z〉+ ‖x− z‖2

≥ ‖Tλσx− x‖2 − 2‖Tλσx− x‖‖x− z‖+ ‖x− z‖2

≥ −2‖Tλσx− x‖‖x− z‖+ ‖x− z‖2, (3.23)

which, when combined with (3.22), and by setting z = PCx, leads to

Θ(x)
ωδ2

2m
max
i∈I

d(x,Ci)
2 ≤ ‖Tλσx− x‖d(x,C). (3.24)

On the other hand, since the family {Ci | i ∈ I} is κ-linearly regular over B(z, r), we obtain

1

κ2
d2(x,C) ≤ max

i∈I
d2(x,Ci), (3.25)

which, by (3.24), proves (3.8).

In order to show (3.9), it suffices to use (3.22) with z = PCx and (3.25), which leads to

Θ(x)
ωδ2

mκ2
d2(x,C) ≤ d2(x,C). (3.26)

This completes the proof. �

Remark 3.3. Observe that σ : H → (0,∞), defined by

σ(x) :=


∑N
n=1 ωn ‖Qnx− x‖

2

‖Tx− x‖2
if x /∈ C

1 if x ∈ C,
(3.27)

satisfies the inequalities 1 ≤ σ(x) ≤ τ(x).
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A direct application of Theorem 3.1 to the extrapolated simultaneous cutter with m = 1 leads

to inequalities involving

Θ(x) = λσ(x)
2− λσ(x)τ(x)

2− 1
τ(x)

≥ 1

2
λ(2− λ). (3.28)

Nevertheless, by slightly adjusting the proof of Theorem 3.1, we can replace the above Θ(x) by

only λ(2− λ)σ(x).

Corollary 3.4 (Extrapolated Simultaneous Cutter). Let Ui : H → H be a cutter, i ∈ I :=

{1, . . . ,M}, such that C :=
⋂
i∈I FixUi 6= ∅. Let T be the simultaneous cutter operator defined by

T :=

M∑
i=1

ωiUi, (3.29)

where ωi ∈ (0, 1) with
∑M
i=1 ωi = 1. Moreover, let Tλσ : H → H be defined by

Tλσx := x+ λσ(x)(Tx− x), (3.30)

where the relaxation parameter λ ∈ (0, 2), the extrapolation functional σ : H → [1,∞) satisfies

1 ≤ σ(x) ≤ τ(x) for all x ∈ H and

τ(x) :=


∑M
i=1 ωi ‖Uix− x‖

2

‖Tx− x‖2
if x /∈ C

1 otherwise.

(3.31)

Then the following statements hold:

(i) Tλσ is λ(2− λ)-SQNE, where FixTλσ = C. Moreover, for all x ∈ H and z ∈ C, we have

λ(2− λ)σ(x)

M∑
i=1

ωi‖Uix− x‖2 ≤ ‖x− z‖2 − ‖Tλσx− z‖2. (3.32)

(ii) If for every i ∈ I, the operator Ui is δi-linearly regular, δi ∈ (0, 1], on the ball B(z, r) for

some z ∈ C and some r > 0, then for all x ∈ B(z, r), we have

δ2 max
i∈I

d2(x,FixUi) ≤
M∑
i=1

‖Uix− x‖2, (3.33)

where δ := mini∈I δi.

(iii) If, in addition, the family {FixUi | i ∈ I} is κ-linearly regular over B(z, r), then Tλσ also

satisfies

λ(2− λ)σ(x)
ωδ2

2κ2
d
(
x,C

)
≤ ‖Tλσx− x‖ (3.34)

for all x ∈ B(z, r), where ω := mini∈I ωi. Moreover, in this case

σ(x) ≤ κ2

λ(2− λ)ωδ2
. (3.35)

Proof. Following the proof of Theorem 3.1, one can observe that the most significant change

corresponds to (3.15), which takes the following form:

‖Tλσx− z‖2 ≤ ‖x− z‖2 − λσ(x)
(
2− α(x)

)
τ(x)‖Tx− x‖2

≤ ‖x− z‖2 − λ(2− λ)σ(x)

M∑
i=1

ωi‖Uix− x‖2. (3.36)
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Thus we have shown (3.32). Inequality (3.33) follows trivially from the linear regularity of each

Ui. By combining (3.32) and (3.33), we arrive at

λ(2− λ)σ(x)ωδ2 max
i∈I

d(x,Ci)
2 ≤ ‖x− z‖2 − ‖Tλσx− z‖2. (3.37)

The rest of the proof remains the same as in the proof of Theorem 3.1 with (3.22) replaced by

(3.37). �

Corollary 3.5 (Extrapolated Cyclic Cutter). Let Ui : H → H be a cutter, i ∈ I := {1, . . . ,M},
such that C :=

⋂
i∈I FixUi 6= ∅. Let T be the cyclic cutter operator defined by

T := UM . . . U1. (3.38)

Moreover, let Tλσ : H → H be defined by

Tλσx := x+ λσ(x)(Tx− x), (3.39)

where the relaxation parameter λ ∈ (0, 1+ 1
M ), the extrapolation functional σ : H → [1,∞) satisfies

1 ≤ σ(x) ≤ τ(x) for all x ∈ H and

τ(x) :=


M

M + 1

(
1 +

∑M
i=1 ‖Ui . . . U1x− Ui−1 . . . U1x‖2

‖Tx− x‖2

)
if x /∈ C

1 otherwise,

(3.40)

where Ui−1 . . . U1x := x for i = 1. Then the following statements hold:

(i) Tλσ is ρ-SQNE, where FixTλσ = C and

ρ :=
1

λM
+

1− λ
λ

> 0. (3.41)

Moreover, for all x ∈ H and z ∈ C, we have

Θ(x)

M∑
i=1

‖Ui . . . U1x− Ui−1 . . . U1x‖2 ≤ ‖x− z‖2 − ‖Tλσx− z‖2, (3.42)

where

Θ(x) := λσ(x)
1 +M −Mλσ(x)τ(x)

1 +M − M
τ(x)

≥ λ
(

1− λ M

1 +M

)
> 0. (3.43)

(ii) If for every i ∈ I, the operator Ui is δi-linearly regular, δi ∈ (0, 1], on the ball B(z, r) for

some z ∈ C and some r > 0, then for all x ∈ B(z, r), we have

δ2

M
max
i∈I

d2(x,FixUi) ≤
M∑
i=1

‖Ui . . . U1x− Ui−1 . . . U1x‖2 , (3.44)

where δ := mini∈I δi.

(iii) If, in addition, the family {FixUi | i ∈ I} is κ-linearly regular over B(z, r), then Tλσ also

satisfies

Θ(x)
δ2

2Mκ2
d
(
x,C

)
≤ ‖Tλσx− x‖ (3.45)

for all x ∈ B(z,R). Moreover, in this case,

Θ(x) ≤ Mκ2

δ2
. (3.46)
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Proof. Apply Theorem 3.1 with one string J = (1, . . . ,M) and m = M . �

Remark 3.6 (Non-extrapolated operators). In the case of the non-extrapolated operator, where

σ(x) = 1 for all x ∈ H, we can simplify the lower bound for Θ(x) while assuming that λ ≤ 1.

Indeed, we have Θ(x) ≥ λ, which coincides with the additional estimate made for the simultaneous

cutter presented in Corollary 3.4. Moreover, by substituting λ = 1, we see that Θ(x) = 1 for all

x ∈ H. This may simplify some of the estimates related to the linear regularity (LR) of operators

and thus influence the linear rate of convergence of some iterative methods.

In particular, by Theorem 3.1 (iii), the string averaging cutter T defined in (3.1) is linearly

regular (LR) over the ball B(z, r) and satisfies

ωδ2

2mκ2
d
(
x,C

)
≤ ‖Tx− x‖ (3.47)

for all x ∈ B(z, r). The above inequality coincides with [5, Lemma 8]. We recall that [5, Lemma

8] was established for metric projections only (Ui = PCi) which are 1-LR and therefore δ = 1 in

(3.47).

On the other hand, the LR of the operator T based on general Ui’s can be found in [19,

Example 5.7]. This result follows from [19, Corollaries 5.3 and 5.6], where the authors present

LR estimates for the non-extrapolated convex combination and product of operators that coincide

with (3.34) and (3.45), respectively. However, this result requires the additional assumption that

each subfamily {FixUj | j ∈ Jn} is LR over B(z, r), n = 1, . . . , N . Indeed, by [19, Corollary 5.6],

the product Qn is δ2/(2mnκ
2
n)-LR over B(z, r) due to the κn-LR of the family {FixUj | j ∈ Jn}

over B(z, r). This, by [19, Corollary 5.3] and the assumption that the family {FixUi | i ∈ I}
is κ-LR over B(z, r), implies that the operator T defined as a convex combination is δT -LR over

B(z, r), where

δT =
ω
(

δ2

2mmaxκ2
n

)2
(2κ2)

>
ωδ2

2mκ2
. (3.48)

This reasoning cannot be applied in every case in view of the counterexample provided in [45]

according to which it may happen that no subfamily of an LR family of sets is LR. We emphasize

at this point that the argument we presented in the proof of Theorem 3.1 does not require any

additional regularity of subfamilies.

4 Extrapolated Iterative Methods

Theorem 4.1 (Extrapolated Dynamic String Averaging Method). Let Ui : H → H be a cutter,

i ∈ I := {1, . . . ,M}, such that C :=
⋂
i∈I FixUi 6= ∅. Let the sequence {xk}∞k=0 be defined by the

following method:

x0 ∈ H and xk+1 := xk + λkσk(xk)
(
Tkx

k − xk
)
, k = 0, 1, 2, . . . , (4.1)

where Tk :=
∑Nk

n=1 ω
k
nQ

k
n is the string averaging cutter operator, Qkn :=

∏
j∈Jk

n
Uj is a product of

operators along the string Jkn ⊆ I, ωkn > 0 satisfy
∑Nk

n=1 ω
k
n = 1, λk > 0 and σk : H → [1,∞).

Assume that ωkn ∈ [ω, 1] for some ω ∈ (0, 1], λk ∈ [λ, λ] for some λ ∈ (0, 1] and λ ∈ [1, 1 + 1
m ),
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σk(x) ∈ [1, τk(x)] for each x ∈ H, where

τk(x) :=


mk

mk+1

N∑
n=1

ωkn

(∥∥Qknx− x∥∥2 +
mk

n∑
l=1

‖Qkn,lx−Qkn,l−1x‖2
)

‖Tkx− x‖2
if x /∈

⋂
i∈Ik

FixUi

1 otherwise,

(4.2)

mk
n := |Jkn |, mk := max1≤n≤Nk

mk
n, m := supkmk <∞ and Qkn,l is a product of the first l operators

along the string Jkn , Qkn,0 := Id. Moreover, assume that the control {Ik}∞k=0 is s-intermittent, that

is, there is an integer s ≥ 1 such that I = Ik ∪ . . . ∪ Ik+s−1 for each k = 0, 1, 2, . . ., where

Ik :=
⋃Nk

n=1 J
k
n . We set r := d(x0, C) and B := B(PCx

0, r). Then the following statements are

true:

(i) If each Ui is weakly regular over B, then {xk}∞k=0 converges weakly to some point x∞ ∈ C∩B.

(ii) If each Ui is regular over B and the family {FixUi | i ∈ I} is regular over B, then the

convergence to x∞ is in norm.

(iii) If each Ui is δi-linearly regular over B and the family {FixUi | i ∈ I} is κ-linearly regular

over B, then, for all k = 0, 1, 2, . . ., we have

δ

2κ
‖xk − x∞‖ ≤ max

i∈I
‖Uixk − xk‖ ≤ ‖xk − x∞‖, (4.3)

and

‖xk − x∞‖ ≤ 2d(x0, C)

(
2s

√
1− ωρδ2

sκ2
min

{
1

ωδ2
, inf

k
Θk

})k−s+1

, (4.4)

where δ := mini∈I δi, ρ := 1
mλ

+ 1−λ
λ

and

Θk := λkσk(xk)
1 +mk −mkλk

σk(x
k)

τk(xk)

1 +mk − mk

τk(xk)

; (4.5)

compare with (3.6). In particular, the convergence to x∞ is R-linear.

Proof. We show that {xk}∞k=0 is Fejér monotone with respect to the set C. We use the notation

T kλkσk
:= Id +λkσk(·) (Tk − Id) ; (4.6)

compare with (3.2). The iterative step of (4.1) can be rewritten as xk+1 := T kλkσk
xk. By Theorem

3.1, each T kλkσk
is ρk-SQNE and FixT kλkσk

= FixTk =
⋂
i∈Ik Ci, where we set Ci := FixUi and

ρk :=
1

λkmk
+

1− λk
λk

≥ ρ > 0. (4.7)

Hence, for each k = 0, 1, 2, . . . , and z ∈ C, we have

‖xk+1 − z‖2 = ‖T kλkσk
xk − z‖2 ≤ ‖xk − z‖2 − ρ‖T kλkσk

xk − xk‖2 ≤ ‖xk − z‖2. (4.8)

Due to the above inequality, we see that the sequence {xk}∞k=0 ⊆ B is Fejér monotone. In particular,

since the sequence {‖xk − z‖}∞k=0 is bounded and decreasing, it is convergent and

‖Tkxk − xk‖ =
1

λkσk(xk)
‖T kλkσk

xk − xk‖ ≤ 1

λ
‖T kλkσk

xk − xk‖ =
1

λ
‖xk+1 − xk‖ → 0, (4.9)
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where the inequality holds because λkσk(xk) ≥ λ.

Part (i). Assume that for each i ∈ I, the operator Ui is weakly regular over B. Let i ∈ I

and let x be an arbitrary cluster point of {xk}∞k=0. By Theorem 2.13 (i), it suffices to show that

x ∈ FixUi, which by the arbitrariness of i, will imply that x ∈ C. The key step in this part of the

proof is to apply a variant of [44, Lemma 3.4] to a certain subsequence of {Tk}∞k=0 and {xk}∞k=0.

We note here that [44, Lemma 3.4] was established under the assumption that each Ui is weakly

regular (see “Opial’s demi-closedness principle” in [44]). Nonetheless, the result itself holds when

restricted to the operators Ui which are weakly regular only over the ball B.

To see this, let xnk ⇀ x. By the assumption that the control Ik is s-intermittent, for each

k = 0, 1, 2, . . . , there is lk ⊆ {0, 1, . . . , s− 1} such that i ∈ Ink+lk . This implies that FixTnk+lk ⊆
FixUi. Using (4.9), we deduce that

xnk+lk ⇀ x and ‖Tnk+lkx
nk+lk − xnk+lk‖ → 0. (4.10)

By applying [44, Lemma 3.4] to {xnk+lk}∞k=0 and {Tnk+lk}∞k=0, we see that x ∈ FixUi which, as

explained above, completes this part of the proof.

Part (ii). Assume that the family {Ci | i ∈ I} and each operator Ui, i ∈ I, are regular over

B. Let i ∈ I. By Theorem 2.13 (ii), it is enough to show that limk→∞ d(xk, Ci) = 0, which

by the regularity of the family of sets will lead to limk→∞ d(xk, C) = 0. Similarly as in (i), we

apply a variant of [44, Lemma 3.5] which was established for boundedly regular operators (called

there “approximately shrinking”). We emphasize that this result holds too, when restricted to the

operators Ui which are regular only over the ball B.

As in the previous part, we deduce that there is a sequence lk ⊆ {0, 1, . . . , s − 1} such that

i ∈ Ik+lk . Again, by using (4.9), we have

xk+lk − xk → 0 and ‖Tk+lkxk+lk − xk+lk‖ → 0. (4.11)

Applying [44, Lemma 3.5] to {xk+lk}∞k=0 and {Tk+lk}∞k=0, we see that

lim
k→∞

d(xk+lk , Ci) = 0. (4.12)

Using the properties of projections and the triangle inequality, we obtain

d(xk, Ci) = ‖xk − PCi
xk‖ ≤ ‖xk − PCi

xk+lk‖ ≤ ‖xk − xk+lk‖+ ‖xk+lk − PCi
xk+lk‖, (4.13)

which, by (4.9), implies that limk→∞ d(xk, Ci) = 0. So this part of the proof is complete.

Part (iii). We divide the remaining part of the proof into three steps.

Step 1. We first show that (4.3) holds. Indeed, since xk → x∞, we can use Theorem 2.13 (v),

the facts that the family {Ci | i ∈ I} is κ-linearly regular and that each operator Ui, i ∈ I, is

δ-linearly regular to arrive at

‖xk − x∞‖ ≤ 2d(xk, C) ≤ 2κmax
i∈I

d(xk, Ci) ≤
2κ

δ
max
i∈I
‖Uixk − xk‖. (4.14)

On the other hand, using the facts that Ui is a cutter, C ⊆ Ci, x∞ ∈ C, we get

max
i∈I
‖Uixk − xk‖ ≤ max

i∈I
d(xk, Ci) ≤ d(xk, C) ≤ ‖xk − x∞‖, (4.15)

which yields (4.3).
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Step 2. We show that the inequality

max
i∈I

d(xks, Ci)
2 ≤ s

ωρδ2
· max
l=0,...,s−1

1

θks+l

(
‖xks − z‖2 − ‖x(k+1)s − z‖2

)
(4.16)

holds for every k = 0, 1, 2, . . . and every z ∈ C, where θk := min{ 1
ωδ2 , Θk}. To this end, fix i ∈ I

and z ∈ C. Given an integer k, we choose lk ∈ {0, . . . , s − 1} to be the smallest index so that

i ∈ Iks+lk . By the definition of the metric projection and by the triangle inequality, we have

d(xks, Ci) ≤ ‖xks − xks+lk‖+ d(xks+lk , Ci). (4.17)

Using Theorem 3.1 (i)-(ii) applied to Tks+lk and λks+lkσks+lk (see (3.22)), and the inequalities

Θk ≥ θk and 1
m ≥ ρ, we get

d(xks+lk , Ci)
2 ≤ 1

ωρδ2θks+lk

(
‖xks+lk − z‖2 − ‖xks+lk+1 − z‖2

)
. (4.18)

Consequently, using the Cauchy-Schwarz inequality in Rlk , we obtain

d(xks, Ci)
2 ≤

 ks+lk∑
p=ks+1

‖xp − xp−1‖+ d(xks+lk , Ci)

2

≤ (lk + 1)

 ks+lk∑
p=ks+1

‖xp − xp−1‖2 + d(xks+lk , Ci)
2


≤ s

 ks+lk∑
p=ks+1

‖xp − xp−1‖2 +
1

ωρδ2θks+lk

(
‖xks+lk − z‖2 − ‖xks+lk+1 − z‖2

) . (4.19)

Since T p−1λp−1σp−1
is ρ-SQNE, we get

‖xp − xp−1‖2 ≤ 1

ρ
(‖xp−1 − z‖2 − ‖xp − z‖2), (4.20)

and therefore, since δ2ωθks+lk ≤ 1,

d(xks, Ci)
2 ≤ s

ωρδ2θks+lk

(
‖xks − z‖2 − ‖xks+lk+1 − z‖2

)
≤ s

ωρδ2θks+lk

(
‖xks − z‖2 − ‖xk(s+1) − z‖2

)
, (4.21)

where the last inequality is a consequence of the Fejér monotonicity of {xk}∞k=0. The above

inequality yields (4.16).

Step 3. Setting z = PCx
ks in (4.16) and using the inequality

‖x(k+1)s − PCx(k+1)s‖ ≤ ‖x(k+1)s − PCxks‖, (4.22)

we deduce that

max
i∈I

d(xks, Ci)
2 ≤ s

ωρδ2 min
l=0,...,s−1

θks+l

(
d(xks, C)2 − d(x(k+1)s, C)2

)
. (4.23)

Using the linear regularity of {Ci | i ∈ I} on B(PCx
0, r), we get

d(xks, C) ≤ κmax
i∈I

d(xks, Ci) (4.24)
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which, when combined with (4.23), leads to

d(x(k+1)s, C)2 ≤
(

1− ωρδ2

sκ2
· min
l=0,...,s−1

θts+l

)
d(xks, C)2 (4.25)

for all k = 0, 1, 2, . . .. Using the Fejér monotonicity of {xk}∞k=0, Theorem 2.13 (v) and (4.25), we

arrive at

‖xk − x∞‖ ≤ ‖xbk/scs − x∞‖ ≤ 2d(xbk/scs, C)

≤ 2d(x0, C)

bk/sc−1∏
t=0

√
1− ωρδ2

sκ2
· min
l=0,...,s−1

θts+l

≤ 2d(x0, C)

(
2s

√
1− ωρδ2

sκ2
min

{
1

ωδ2
, inf

k
Θk

})bk/scs
(4.26)

which holds for all k = s − 1, s, s + 1, . . .. Observe that the above inequality holds true also for

k = 0, 1, 2, . . . , s. Since bk/scs ≥ k− s+ 1, we have established (4.4). This completes the proof. �

Corollary 4.2 (Extrapolated Simultaneous Cutter Method). Let Ui : H → H be a cutter, i ∈ I :=

{1, . . . ,M}, such that C :=
⋂
i∈I FixUi 6= ∅. Let the sequence {xk}∞k=0 be defined by the following

method:

x0 ∈ H and xk+1 := xk + λkσk(xk)

(∑
i∈Ik

ωiUix
k − xk

)
, k = 0, 1, 2, . . . , (4.27)

where the control set of indices Ik ⊆ I is nonempty, ωkn > 0 satisfy
∑Nk

n=1 ω
k
n = 1, λk > 0 and

σk : H → [1,∞).

Assume that ωkn ∈ [ω, 1] for some ω ∈ (0, 1], λk ∈ [λ, λ] for some λ ∈ (0, 1] and λ ∈ [1, 2),

σk(x) ∈ [1, τk(x)] for each x ∈ H, where

τ(x) :=


∑
i∈Ik ω

k
i ‖Uix− x‖

2∥∥∑
i∈Ik ω

k
i Uix− x

∥∥2 if x /∈
⋂
i∈Ik

FixUi

1 otherwise.

(4.28)

Moreover, assume that the control {Ik}∞k=0 is s-intermittent for some s ≥ 1. As in Theorem 4.1,

we set r := d(x0, C) and B := B(PCx
0, r). Then the following statements hold:

(i) If each Ui is weakly regular over B, then {xk}∞k=0 converges weakly to some point x∞ ∈ C∩B.

(ii) If each Ui is regular over B and the family {FixUi | i ∈ I} is regular over B, then the

convergence to x∞ is in norm.

(iii) If each Ui is δi-linearly regular over B and the family {FixUi | i ∈ I} is κ-linearly regular

over B, then, in addition to (4.3), we have

‖xk − x∞‖ ≤ 2d(x0, C)

(
2s

√
1− ωρδ2

sκ2
min

{
1

ωδ2
, inf

k
λk(2− λk)σk(xk)

})k−s+1

(4.29)

for all k = 0, 1, 2, . . ., where δ := mini δi and ρ := 2−λ
λ

.

Proof. The proof is the same as the proof of Theorem 4.1, where instead of Theorem 3.1 we use

Corollary 3.4 in order to define θk := min{ 1
ωδ2 , λk(2− λk)σk(xk)}. �
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Corollary 4.3 (Extrapolated Cyclic Cutter Method). Let Ui : H → H be a cutter, i ∈ I :=

{1, . . . ,M}, such that C :=
⋂
i∈I FixUi 6= ∅. Let the sequence {xk}∞k=0 be defined by the following

method:

x0 ∈ H and xk+1 := xk + λkσk(xk)
(
UM . . . U1x

k − xk
)
, k = 0, 1, 2, . . . , (4.30)

where λk > 0 and σk : H → [1,∞).

Assume that λk ∈ [λ, λ] for some λ ∈ (0, 1] and λ ∈ [1, 1 + 1
M ) and σk(x) ∈ [1, τk(x)] for each

x ∈ H, where

τ(x) :=


M

M + 1

(
1 +

∑M
i=1 ‖Ui . . . U1x− Ui−1 . . . U1x‖2

‖UM . . . U1x− x‖2

)
if x /∈ C

1 otherwise.

(4.31)

As in Theorem 4.1, we set r := d(x0, C) and B := B(PCx
0, r). Then the following statements

hold:

(i) If each Ui is weakly regular over B, then {xk}∞k=0 converges weakly to some point x∞ ∈ C∩B.

(ii) If each Ui is regular over B and the family {FixUi | i ∈ I} is regular over B, then the

convergence to x∞ is in norm.

(iii) If each Ui is δi-linearly regular over B and the family {FixUi | i ∈ I} is κ-linearly regular

over B, then, in addition to (4.3), we have

‖xk − x∞‖ ≤ 2d(x0, C)

(√
1− ρδ2

Mκ2
min

{
1

δ2
, inf

k
Θk

})k
(4.32)

for all k = 0, 1, 2, . . ., where δ := mini∈I δi, ρ := 1
Mλ

+ 1−λ
λ

and

Θk := λkσk(xk)
1 +M −Mλk

σk(x
k)

τ(xk)

1 +M − M
τ(xk)

. (4.33)

Remark 4.4. Allowing λ ∈ [1, 1+ 1
m ), enables us to capture examples presented in the introduction

within the framework of Theorem 4.1. Indeed, let us consider, for example, the iterative scheme

(4.1) with λk > 0 and σk(xk) > 0. Following [38], assume that σk is defined as in (1.6) and

λk ∈ [ε, 2− ε] for some ε ∈ (0, 1). Then we have

λkσk(xk) =
m+ 1

2m
λkτk(xk), (4.34)

where τk is defined in (4.2). It suffices to use λ′k := m+1
2m λk in Theorem 4.1 and observe that

λ′k ≤ 1 + 1
m −

ε
2 . Similar reasoning can be repeated for the extrapolated cyclic cutter with σk

defined in (1.4); see also Corollary 4.3 below. Thus we recover the framework presented in [17].

Remark 4.5. We now turn our attention to the results from [49] which correspond to Corollary

4.2. It should be mentioned here that the results from [49] are presented for a more general control,

which we reduce here to the s-intermittent one, as in the setting of this paper. Moreover, due to the

nature of the algorithmic operators in [49], which are projections onto certain closed and convex
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supersets Ci(x
k) ⊇ Ci whenever xk /∈ Ci, we identify these projections with cutters Ui; see the

introduction. Following [49], we consider (4.27) with the iterative step equivalently rewritten as

xk+1 := xk + αk

(∑
i∈Ik

ωiUix
k − xk

)
, k = 0, 1, 2, . . . , (4.35)

where αk ∈ [ε, (2 − ε)τk(xk)] for some ε ∈ (0, 1). In this case we have αk = λkτk, λ = ε and

λ = 2− ε. The following inequality plays an important role in the proof of [49, Theorem 4.1]:

ωknαk

(
2− αk

τk(xk)

)
= ωknλkτk(xk)(2− λk) ≥ ∆. (4.36)

It is assumed to hold for some ∆ > 0 and a subsequence {xmk} with mk+1 −mk ≤ 2s− 1. In our

case one can simply use ∆ = ωλ(2− λ) = ωε2. The estimate for the linear convergence rate that

follows from the proof of [49, Theorem 4.1] is

‖xk − x∞‖ ≤ 2d(x0, C)

(
2s

√
1− ∆δ2

2κ2(1 + s∆δ2 2−ε
ε )

)k−s+1

. (4.37)

Remark 4.6. Corollary 3.5 (i) recovers [17, Theorem 9] and partially recovers [37, Theorem 3.1],

which was established for αi-relaxed cutters, αi ∈ (0, 2). Theorem 4.1 (i) partially recovers [38,

Theorem 3.7], which was also established for relaxed cutters.

Remark 4.7 (Non-extrapolated projection methods). In the case of the non-extrapolated string

averaging projection method, with λk = 1, our estimate (4.4) for the linear rate of convergence

can be written as ‖xk − x∞‖ ≤ cqk, where q = 2s√1− ω
msκ2 . This improves [5, Theorem 9],

where q = 2s√1− ω
2msκ2 . Moreover, our estimate coincides with those formulated for the cyclic

and simultaneous projection methods presented in [5, Table 1].

5 Numerical Simulations

In this section we present results of numerical simulations performed on 20 systems of linear

equations Ax = b, which we obtain by applying the Radon transform to the images presented

in Figure 2. For the source of the test images we have used the TESTIMAGES repository1

recommended in [3, 4]. Every image was downgraded to a 32× 32 pixels size.

For every image X ∈ R32×32, we used the radon2 function from the MATLAB Image Processing

Toolbox. We chose 20 equally distributed angles starting from 0 to 180 degrees. This produces a

vector b ∈ R835. We recover the matrix A by applying the same radon function to standard basis

vectors (the matrices Eij in this case) in the space of images R32×32. The size of the matrix is

835 × 1024. The solution x ∈ R1024 of the linear system Ax = b, after a suitable rearrangement,

should reproduce the image X.

Since each of the constraints is a hyperplane defined by Ci := {x ∈ RM | 〈ai, x〉 = bi}, where

M = 835, we use metric projections Ui := PCi
. We recall that

PCix = x− 〈ai, x〉 − bi
‖ai‖2

ai. (5.1)

1See https://testimages.org for TESTIMAGES repository.
2See www.mathworks.com/help/images/ref/radon for detailed description of the MATLAB radon function.
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We consider three methods with iterative steps of the form xk+1 := Txk and their extrapolated

variants, where xk+1 := xk+σ(xk)(Txk−xk). The extrapolation formulae are based on (1.3)–(1.6).

The detailed description is as follows:

• Simultaneous Projection Method (PM), where ωi = 1/M ,

Tx :=
1

M

M∑
i=1

PCi
x and σ1(x) :=

1
M

∑M
i=1 ‖PCi

x− x‖2

‖Tx− x‖2
. (5.2)

• Cyclic PM, where

Tx := PCM
. . . PC1x and σ2(x) :=

1

2
+

∑M
i=1

∥∥PCi . . . PC1x− PCi−1 . . . PC1x
∥∥2

2 ‖Tx− x‖2
. (5.3)

• String Averaging PM, with ωn = 1/N ,

Tx :=
1

N

N∑
n=1

Qn, and Qnx =
∏
j∈Jn

PCjx, (5.4)

where we divide the set {1, 2, . . . ,M} into N = 84 consecutive strings Jn of length m = 10.

We visualize this process as follows:

(1, 2, . . . , 10)︸ ︷︷ ︸
J1

, (11, 12, . . . , 20)︸ ︷︷ ︸
J2

, . . . , (827, 828, . . . , 835)︸ ︷︷ ︸
J84

. (5.5)

The length of the last five strings J831, . . . , J835 is m − 1. Following (1.5) and (1.6), we

consider the extrapolation formulae

σ3(x) :=
1
N

∑N
n=1 ‖Qnx− x‖2

‖Tx− x‖2
(5.6)

and

σ4(x) :=

1
N

N∑
n=1

(
‖Qnx− x‖2 +

|Jn|∑
l=1

‖Qn,lx−Qn,l−1x‖2
)

2‖Tx− x‖2
. (5.7)

We apply each of the above methods to all of the 20 test problems. In each case we measure

the quantity

log10

(
maxi d(xk, Ci)

maxi d(x0, Ci)

)
(5.8)

which, after averaging, we show in Figure 3. In Figure 4 we present the quality of the reproduced

image for problem number 10 after 500 iterations.

Using Figures 3 and 4, we formulate a few observations related to all of the considered methods:

a) Among all the considered methods the simultaneous PM is the slowest one whereas the cyclic

PM is the fastest one. String averaging PMs lie somewhere in between.

b) The σ1-extrapolation applied to the simultaneous PM significantly improves the convergence

properties.

c) Both extrapolation techniques, σ3 and σ4, improve the convergence of the basic string averaging

PM. In the considered case σ4 has better convergence properties than σ3.
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d) The σ2-extrapolation does not lead to acceleration of the cyclic projection method. Nevertheless,

it keeps the convergence speed.

e) The solutions obtained for problem 10 (Figure 4) reproduce the original image after 500 itera-

tions although the quality for the simultaneous PM is much lower than for other methods.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

Figure 2 Images that were used for numerical simulations.
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