

Faster and Lighter Online
Sparse Dictionary Learning

Project report

By: Shay Ben-Assayag, Omer Dahary

Supervisor: Jeremias Sulam

Table Of Contents

1. Abstract 1
2. Background 1

2.1. Sparse Coding 1
2.2. Dictionary Learning 2
2.3. OSDL 3

3. Implementation Changes 4
3.1. Alternative Sparse Coding Algorithm 5
3.2. Global Hard Thresholding 8
3.3. Re-implementation of cleardict 8
3.4. Bug Fixes 9

4. Experiments 10
4.1. The Dataset 10
4.2. Side Features 11
4.3. OMP vs. SP 15
4.4. Final Experiment 20

5. Summary and Future Work 23
6. References 24

1 Abstract
Sparse representation has shown to be a very powerful model for real world
signals, and has enabled the development of applications with notable perfor-
mance. Combined with the ability to learn a dictionary from signal examples,
sparsity-inspired algorithms are often achieving state-of-the-art results in a wide
variety of tasks. However, most existing methods are restricted to small dimen-
sions, mainly due to the computational constraints that the dictionary learning
problem entails. In the context of image processing, this implies handling small
image patches instead of the entire image. A novel work which has circumvented
this problem is the recently proposed Trainlets framework, where the authors
proposed the Online Sparse Dictionary Learning (OSDL) algorithm that is able
to efficiently handle bigger dimensions. This approach is based on a double
sparsity model which uses a new cropped Wavelet decomposition as the base
dictionary, and an adaptive dictionary learned from examples by employing
Stochastic Gradient Descent (SGD) ideas.

In continuation to this work, which has shown that dictionary learning can
be up-scaled to tackle a new level of signal dimensions, our project is focused on
studying and improving OSDL. In this report, we present several modifications
to the algorithm which are aimed at dealing with its limitations, results of
experiments conducted on high dimensional large datasets, our conclusions and
suggestions for future work.

2 Background

2.1 Sparse Coding
A central achievement of classical linear algebra was a thorough examination
of the problem of solving systems of linear equations. Surprisingly, within this
well-understood arena there is an elementary problem which only recently has
been explored in depth: obtaining the sparsest solution to redundant systems,
as a way of selecing only one of the possibly infinite solutions.

Consider a full-rank matrix D ∈ Rn×m with n < m, and define the un-
derdetermined linear system of equations Dx = y. This system has infinitely
many solutions, but the choice can be narrowed down to a well-defined solution
which contains the smallest number of nonzero entries. In other words, a new
optimization problem is introduced by:

(P0) : min
x
‖x‖0 s.t. Dx = y

where ‖x‖0 := # {i | xi 6= 0} is the `0 norm.
The reader may notice that a similiar problem, which revolves around min-

imizng the `2 norm, is known as the least squares problem and has a closed
solution given by x = D†y. This solution is based on the fact that the `2 norm
is a convex and differentiable function, a major difference from the discrete and

1

discontinuous nature of the `0 norm. Indeed, it has been proven that (P0) is, in
general, NP-hard.

Today many pure and applied mathematicians are pursuing results concern-
ing sparse solutions. In parallel with this development, another insight has been
developing in signal and image processing, where it has been found that many
media types (still imagery, video, acoustic) can be sparsely represented using
transform-domain methods. In fact many imporant tasks dealing with such
media can be fruitfully viewed as finding sparse solutions to underdetrmined
system of linear equations. These tasks include famous applications such as
noise removal, image deblurring, and signal compression.

The basic assumption of this model is that natural signals can be expressed as
a sparse linear combination of atoms, chosen from a collection called a dictionary.
Formally, for a signal y ∈ Rn, this can be described by y = Dx, where D ∈
Rn×m is a redundant dictionary that contains the atoms as its columns, and
x ∈ Rm is the represenation vector.

The introudction of computationally tractable algorithms for pursuing a
sparse solution, such as OMP and SP, suggests that sparsity-deriven signal pro-
cessing is a potentially useful parctical tool. These algorithms utilize a greedy
strategy where a solution is iteratively constructed by performing locally opti-
mal updates on x. We shall explain OMP in greater detail in the next sections.

2.2 Dictionary Learning
A fundamental element in sparse coding, is the choice of the dictionary D. It
has been shown that a better representation technique - one that leads to more
sparsity - can be the basis for a practically better solution to signal processing
problems. Therefore, in order to gain better results, one would like to wisely
choose D to perform well on the signals. While some analytically-defined dic-
tionaries were used originally, learning the dictionary from signal examples for
a specific task has shown to perform significantly better.

Assuming a training database {yi}Mi=1 is given, one would like to solve the
following optimization problem:

min
D,{xi}Mi=1

M∑
i=1

‖yi −Dxi‖22 s.t. ‖xi‖0 ≤ k0, 1 ≤ i ≤ m

Clearly, there is no general practical algorithm for solving this problem, for
the same reasons that there is no general practical algorithm for solving (P0).
However, algorithms such as MOD and K-SVD have been able to work around
this issue by utilizing a strategy of alternating minimization, switching between
the optimization over D and the optimization over {xi}Mi=1 in each iteraion.
Unfortunately, these iterative methods have been restricted to relatively small
signals, due to the computational complexity of this problem.

2

2.3 OSDL
Our project revolves around researching a newly proposed algorithm aimed at
tackling the previously menotined issues, called Online Sparse Dictionary Learn-
ing (OSDL). Its purpose is training a sparse matrix A, such that the desired
dictionary is given by D = ΦA, where Φ is a 2-D separable Wavelet transform.
This double sparsity model cancels the need to store the entire dictionary in
memory, and the separability of the transform enables an efficient computation
of Dx by Φ1AxΦT

1 , where Φ1 contains the basis elements of the 1-D DWT
arranged column-wise. Every atom in the effective dictionary D is therefore
a linear combination of few and arbitrary atoms from the base dictionary Φ.
Formally, this means that the training procedure requires solving the following
problem:

min
A,X

1

2
‖Y −ΦAX‖2F s.t.

{
‖xi‖0 ≤ p ∀i
‖aj‖0 = k ∀j

While tradional dictionary learning algorithms require many sweeps of the
whole training corpus, an infeasible method when learning from a large number
of examples, OSDL adopts online learning ideas taken from Stochastic Gradient
Decent (SGD). This approach allows to handle very large training sets while
using high dimensional singals, achieving faster convergence than the batch al-
ternative and providing a better treatment of local minima, which are abundant
in non-convex dictionary learning problems.

In accordance with MOD and K-SVD, OSDL alternates between a sparse
coding stage, thorughout which the dictionary is held constant, and a dictionary
update stage, in which the sparse coefficients are kept fixed. We shall focus on
the second stage, as the first remains unchanged, essentially applying sparse
coding to a group of examples by using OMP. The problem to consider in the
dictionary update stage is the following:

min
A

1

2

∥∥Ej −Φajx
T
j

∥∥2
F︸ ︷︷ ︸

f(aj)

s.t. ‖aj‖0 = k ∀j

where Φ is the base dictionary of size n×L, A is a matrix of size L×m with k
non-zeros per column, Ej is the error given by Y−

∑
i 6=j Φaix

T
i , aj is the j-th

column in A, and xT
i denotes the i-th row of X. Note that we could rewrite

the cost function as f (aj) =
1
2 ‖Ej −Hjaj‖2F for an approriate operator Hj . In

this way, we can perform gradient descent by iterating:

at+1
j = Pk

[
at
j − ηtjH∗j

(
Ej −Hja

t
j

)]
where H∗j is the adjoint of Hj , Pk is a hard-thresholding operator that keeps
the k largest non-zeros (in absolute value), and ηtj is an appropriate step-size.

It is not compulsory to accumulate all the examples to perform an update
in the gradient direction. Instead, OSDL uses a SGD approach by globally

3

updating the atoms of the dictionary based on an estimation of the gradient
over a random mini-batch of examples Yt:

At+1 = Pk

[
At
S − ηt∇f

(
At
S
)]

where the thresholding operator now operates in each column of its argument,
and:

ηt =
‖∇f (At

S)‖F
‖Φ∇f (AS)X‖F

Using the mini-batch approach enables us to keep an up-to-date instance of the
Gram matrix of the dicionary Gt = DT

t Dt in order to reduce the computational
cost of OMP. In a regular online learning scheme, this would be infeasible due
to the need to recompute this matrix for each example. In OSDL, however, the
matrix needs to be updated only once per mini-batch, and only a few atoms get
updated each time. Moreover, this update can be done efficiently due to the
sparsity of A.

Stochastic algorithms often introduce different strategies to regularize the
learning process and try to avoid local minimum traps. To do so, OSDL incor-
porate a momentum term Ut controlled by a parameter γ ∈ [0, 1], which helps
to attenuate oscillations and can speed up the convergence by using information
from the previous gradients. In addition, many dictionary learning algorithms
include the replacement of (almost) unused atoms and the pruning of similar
atoms. These strategies are incorporated as well by checking for such cases once
every few iterations.

Figure 1: OSDL

3 Implementation Changes
We concentrated our work upon expanding and improving the implementation
of OSDL provided in Matlab. The main features we dealt with include:

4

• Providing an alternative pursuit algorithm for the sparse cod-
ing stage: OSDL uses OMP for its sparse coding stage. This algorithm
requires as many iterations as the number of non-zeros and has high mem-
ory constraints, properties which become prohibitive when managing very
large dimensions. In order to cope with these issues, we chose to integrate
the implementation with an alternative pursuit algorithm, called SP.

• Providing a global alternative to the hard-thresholding opera-
tor: In order to make A sparse, OSDL multiplies each atom by a hard-
thresholding operator, resulting in each atom being as sparse as the others.
We chose to experiment with another approach, in which the global con-
straint on the number of non-zero entries in A is kept, but each atom is
free to have a different `0 norm.

• Reimplemting the dictionary clearing stage: OSDL replaces atoms
that are used by a low number of training examples, as well as prunes
similiar atoms. These cases are checked and dealt with by calling the
cleardict function every few iterations. We noticed a few problems with
the provided implementation of the function and chose to reimplement it.

• Fixing bugs: We noticed a few minor bugs in the provided implementa-
tion. Those were, of course, fixed.

The above implemented modifications were eventually added as optional fea-
tures in the OSDL implementaion, easily configurable by the respective param-
eters, which are documented in the code. These main changes will be explained
in detail in the next sections.

3.1 Alternative Sparse Coding Algorithm
As mentioned before, OSDL utilizes Orthogonal Matching Pursuit (OMP) for its
sparse coding stage. This algorithm is based on a greedy strategy of performing a
series of locally optimal single-term updates. Starting from x0 = 0 it iteratively
constructs a k-term approximation xk by maintaining a set of active columns
- initially empty - and, at each stage, expanding that set by one additional
column. The column chosen at each stage maximally reduces the residual `2
error in approximating y from the currently active columns. After constructing
an approximant including the new column, the residual `2 error is evaluated;
if it now falls below a specified threshold, or if a target cardinality has been
reached, the algorithm terminates.

The computational complexity of OMP depends on the number of iterations
needed for exact reconstruction - standard OMP always runs through k itera-
tions, where k = ‖x‖0 is the signal sparsity. Moreover, this algorithm does not
have provable reconstruction quality at level of other methods, such as of Linear
Programming (LP), where the problem of `0 optimization is relaxed into a `1 op-
timization. However, the complexity of LP techniques is still highly impractical
for many applications. Another drawback of using OMP is the requirement for

5

storing the Gram matrix in memory, in order to reduce the computational cost.
Doing so is infeasible when operating on high dimensions, as both the dimen-
sion of each atom and their total amount increase. Therefore, it is reasonable
to consider other sparse coding algorithms.

Figure 2: OMP

In our work we chose to incorporate the Subspace Pursuit (SP) algorithm,
which has provable reconstruction capability comparable to that of LP methods,
and exhibits the low reconstruction complexity of matching pursuit techniques
for very sparse signals (specifically with k ≤ const·

√
m). This algorithm employs

a search strategy in which a constant number of vectors is pruned from the can-
didate list, in contrast to OMP who generates a list of candidates sequentially,
without backtracing. We will now cover this algorithm with detail.

The major challenge associated with sparse signal reconstruction is to iden-
tify in which subspace, generated by not more than k columns of the dictionary
D, the measured signal y lies. Once the correct subspace is determined, the
non-zero signal coefficients are calculated by applying the pseudoinversion pro-
cess. The defining character of the SP algorithm is the method used for finding
the k columns that span the correct subspace: SP tests subsets of k columns in
a group, for the purpose of refining at each stage an initially chosen estimate
for the subspace. More specifically, the algorithm maintains a list of k columns
of D, performs a simple test in the spanned space, and then refines the list.
If y does not lie in the current estimate for the correct spanning space, one
refines the estimate by retaining reliable candidates, discarding the unreliable
ones while adding the same number of new candidates. The “reliability prop-
erty” is captured in terms of the order statistics of the inner products of the
received signal with the columns of D, and the subspace projection coefficients.

6

Figure 3: SP

In our case, we incoroporated a parallelized version of SP into the current
implementation of OSDL. As a starting point, we downloaded an open source
implementation of SP in Matlab and adapted it into the OSDL implementation,
so as to employ the double sparsity model. As we ran and tested it, we chose
to design and implement modifications in order to deal with its bottelnecks and
reach improved results. Among these changes were:

• We downloaded an open source C implementation of the maxk Matlab
function for finding the k largest elements in a vector. This implementa-
tion was integrated into the SP implementation, as this subtask is vastly
used throughout the algorithm.

• We downloaded an open source implementation of the Conjugate Gradient
Least Squares (CGLS) algorithm, which iteratively solves the least squares
problem, and used it in order to prevent the direct computing of A†y
repeated throughout SP. This implementation also utilizes our efficient
method of computing Dy due to the separability of Φ. Moreover, the use
of an iterative method refines our control over the computational cost of
SP, as we can limit the number of iterations.

• Taking into account the fact that the number of non-zero entries in SP’s
output does not depend on the number of iterations, we limited its itera-
tions to a number we deemed empirically sufficient by conducting experi-
ments.

• Exploiting OSDL nature of working with mini-batches and the indepen-
dence of calculating xi for each column yi of Y, we chose to run the dif-
ferent calls to SP in parallel. In order to cope with the absence of shared
memory support in Matlab, the builtin parallel.pool.Constant function

7

was used to minimize memory redundancy caused by copying A and Φ
between workers.

• Because SP does not require the computation of the Gram matrix, sig-
nificant memory and computations can be saved by avoiding the frequent
updates of this matrix. Therefore, all these calculations are avoided in the
case of employing SP as the pursuit method.

3.2 Global Hard-Thresholding
While reviewing OSDL, we mentioned that the hard-thresholding operator Pk

keeps the k largest non-zeros (in absolute value) in a vector, while clearing the
other entries. This step keeps A sparse, a property that have both time and
memory complexity benefits. However, forcing each atom to have a strict `0
norm appears to be an unnecessary limiting constraint, giving motivation to
consider less restrictive strategies that might reveal themselves as more fruitful.
In order for A to be sparse, the global constraint on the number of non-zeros
in the entire matrix must be kept. Therefore, we chose to violate the local
constraint on each atom’s norm, replacing Pk with a step that keeps the mk
largest entries in the matrix. Formally, we rewrite the training problem with
the following one:

min
A,X

1

2
‖Y −ΦAX‖2F s.t.

{
‖xi‖0 ≤ p ∀i
‖A‖0 = mk ∀j

Experimenting with this naive approach resulted with a great deal of degen-
erated atoms, indicating that a local invariant must be maintained. With this
insight in mind, we forced each atom to have a minimum norm of k′, where
k′ ≤ k, giving the algorithm the freedom to choose the rest m (k − k′) non-zeros
in the matrix.

3.3 Reimplementation of cleardict

The cleardict function, which is called every few iterations, is responsible for
clearing the dictionary from atoms that are used by a low number of training
examples, as well as pairs of highly similar atoms, a property quantified by their
normalized inner product. The discarded atoms are replaced by a sparse vector
x, where Φx = y and y is a training example. This is reasoned by the fact that
our purpose, in some manner, is to eventually have y ∈ Im (D) for every image
y.

We dedicated a great deal of our work to reimplementing cleardict, with
some changes stemming directly from our previous work, and some being fixes
to what was grasped by us as unwanted behaviour. These include:

• In order to compute the similarity between atoms, cleardict uses the Gram
matrix of A. This matrix is maintained in order to accelerate the com-
putation time of OMP, an unnecessary step when using SP at the sparse

8

coding stage. Moreover, keeping the Gram matrix is infeasible when op-
erating on high dimensions, motivating us to enable the choice of OMP as
the pursuit algorithm, even when computing this matrix is not an option.
Therefore, we implemented a direct calculation of the similarity when the
Gram is not available in memory.

• While working on the previous feature, we have noticed that cleardict
directly computes the normalized Gram matrix with regard to outdated
atoms. We fixed this issue by passing the most recent normalized Gram
to cleardict. Moreover, we canceled the redundant updating of the Gram
outside of cleardict, in the case it was already updated by it.

• Relying on the Gram matrix for estimating similarity causes unwanted
behaviour in the case a highly used atom resembles a rarely used one:
the first will be pruned because of the similarity, and the second will be
replaced because of its unusefulness. Furthermore, the previous implemen-
tation replaced all similar atoms, instead of keeping a single representative
for each pair. To cope with this issue, we separated the pruning process
into two sequential parts, where the first searches and replaces rarely used
atoms, and the second does the same for similar ones. Additionally, atoms
that are replaced are not taken into account when checking for similarity,
and a representative is kept for each pair.

• Each atom is replaced by x where Φx = y, and y is chosen from the cur-
rent mini-batch Yt such that the representation error when sparse coding
DXt = Yt with a small number of non-zeros will be minimized. Therefore,
when cleardict replaces a great deal of atoms, it will eventually become
indifferent to the choice of y. This causes the previous implementation to
keep selecting the same y, flooding A with the same atom. We changed
the implementation to react to this case by selecting y randomly.

• Lastly, in order to keep cleardict ’s running time as short as possible, the
pruning process was changed to perform only on a randomly chosen subset
of the atoms.

3.4 Bug Fixes
Going through the implementation of OSDL, we have noticed and fixed the
following bugs:

• The code provides two options for passing the training set, either by a ma-
trix variable, or as external data obtained through a mat file, as the latter
avoids storing all images in memory. When the first option is selected,
the mean of each example is subtracted from its original entries. With the
purpose of establishing unifrom behaviour, the code was changed so this
will be performed on externally provided examples as well.

9

• In order to identify which atoms are used when representing a mini-batch,
the sum of each coordinate over all representations is calculated and com-
pared to zero. This approach will give wrong results in case the calculation
is composed of positive and negative numbers whose sum is zero. There-
fore, the calculation was changed to consider the absolute values of each
coordinate.

• The time of each iteration is saved in order to analyze the algorithm
performance. We refined this data by excluding the time of saving the
dictionary, and fixing a bug that caused a portion of the time dedicated
for calculating the test error to be taken into account.

• When keeping track of the train error, the algorithm would override pre-
vious error values, in case the error was ordered to be sampled more than
once per iteration. This was fixed by changing the size of the array the
train error was kept in, and updating the correspondig index when writing
to it.

• The number of times each atom is used when representing a training ex-
ample is kept for each iteration. This information is used by cleardict
in order to identify rarely used atoms. A faulty arrangement of the code
caused cleardict to receive an out-of-date version of this information. This
was fixed by rearranging the code.

• Similarly, the arrangement of the code caused the training error and
elapsed time data for each iteration to be saved only at the next itera-
tion. This was changed by updating the data before saving it.

4 Experiments
In this section we present a number of experiments to illustrate the effect of
our work on the behaviour of OSDL. All the experiments were run on a 64-bit
operating system with an Intel Core i7 microprocessor, with 16 GB of RAM.

4.1 The Dataset
Our experiments were conducted on a collection of roughly a million face images.
It was assembled from the following publicly available datasets:

• MegaFace, a face recognition dataset with 4.7M faces and 672K identities
obtained from Flickr.

• WIKI-crop and IMDB-crop, datasets which are composed of celebrity im-
ages taken from the corresponding websites. Together they contain about
500K images.

These datasets offer images shot from a wide variety of angles and positions, with
the corresponding faces belonging to a diversity of ages and ethnicities. This

10

stands in contrast to the closed dataset the algorithm was previously tested
with. Since most provided images contain a large background, and some even
more than a single face, we implemented a Python script to identify faces in
the images and crop them accordingly. The results were then gray-scaled and
resized to 128×128 pixels. This process eventually produced 960,728 images. 20
randomly sampled images from the dataset are presented below, in both their
original and cropped form.

Figure 4: Random Images from the Dataset and Their Corresponding Cropped
Versions

4.2 Side Features
To test the effect of the changes to the implementation, we have conducted
experiments using OMP as the chosen sparse coding algorithm. We ran the old
version of OSDL (indicated by the letter (A) in the graph), and compared it to
the new one with varying versions:

• (B) Using atom-wise hard-thresholding of k non-zeros with cleardict in-
specting all atoms.

• (C) Using atom-wise hard-thresholding of k non-zeros with cleardict in-
specting only a subset of randomly chosen atoms.

• (D) Using global hard-thresholding with a minimum constraint of 0.01k
non-zeros in each atom and with cleardict inspecting all atoms.

• (E) Using global hard-thresholding with a minimum constraint of 0.01k
non-zeros in each atom and with cleardict inspecting only a subset of
randomly chosen atoms.

• (F) Using global hard-thresholding with a minimum constraint of 0.08k
non-zeros in each atom and with cleardict inspecting all atoms.

• (G) Using global hard-thresholding with a minimum constraint of 0.08k
non-zeros in each atom and with cleardict inspecting only a subset of
randomly chosen atoms.

11

In this experiment, the training was performed using 5,150 examples randomly
picked from the dataset, and was tested using 270 other images randomly picked
from the same source. This was repeated twice: once for k = 98 and once for
k = 327. Other essential parameters are presented below:

Figure 5: Experiment #1 Parameters

The following graphs show the mean train and test errors as a function of
time, with each star in the curve marking a full iteration of OSDL. As we have
expected, the new implementation gains substantially better results than the
original one. However, quite surprisingly, the global hard-thersholding approach
falls behind the original one, albeit the freedom it provides to the algorithm in
picking the non-zeros. This is further affirmed by the better results obtained
when giving the global hard-thersholding a more restrictive constraint. A pos-
sible reason is the considerable amount of time it takes to choose the non-zeros
across the whole dictionary, which is a slower procedure then setting a unifrom
threshold for all atoms. Another, less surprising observation, is the fact that the
version of cleardict that inspects all of the atoms performs better than the one
that inspects only a subset of the atoms. This was expected, since OMP already
stores the Gram matrix in memory, canceling the need for directly calculating
the similarity between the atoms. Checking the entire set of atoms is much
more costly when using SP.

12

Figure 6: Experiment #1 Train/Test Error with k = 98

Figure 7: Experiment #1 Train/Test Error with k = 327

Next, in order to assess the atoms obtained through the global hard-thresholding
approach, we present the following histograms, demonstrating the distribution
of non-zeros across the atoms. As we can see, most atoms have the lowest pos-
sible amount of non-zero entries, with only a minor portion of them varying in
sparsity. This might explain the poor results of the global approach.

13

Figure 8: Experiment #1 NNZ Distribution Histograms with k = 98

Figure 9: Experiment #1 NNZ Distribution Histograms with k = 327

Finally, we would like to test our premissive approach of inspecting only a
random subset of the atoms in each call to cleardict. In the following tables,
we list some statistics about the similarity between atoms, represented by their
normalized inner products. We can see that the original implementation is
lacking in comparison to the new version. Unsurprisingly, the versions that
use randomization fall short behind the strict versions, although the difference
between the statistics is not significant.

14

Figure 10: Experiment #1 Inner Product Statistics

With the purpose of further investigating the differences between the hard-
thresholding methods when operating on a larger dataset, we ran the (C) and
(G) versions again on 20,556 examples. This process resulted with 4000 atoms
containing 327 non-zeros that were tested using 270 other images. The other
parameters of the algorithm were not changed. The following graphs present
the mean train and test errors as a function of time, and show similar behaviour
to the one observed during the previous experiment, where the atom-wise hard-
thresholding method outperformed the global one.

Figure 11: Experiment #1 Train/Test Error with a Larger Train Set

4.3 OMP vs. SP
To test the effect of using SP instead of OMP at the sparse coding step, we ran
our new implementation of OSDL both with OMP and with our improved paral-
lel version of SP. Furthermore, in order to investigate the performance of OMP
under memory restrictions, we ran OSDL with a version of OMP that doesn’t
rely on keeping the Gram matrix in memory, thus making the comparison with
SP fair in terms of memory consumption. The training was performed using
35,000 examples randomly picked from the dataset, and was tested using 1930

15

other images randomly picked from the same source as well. The train error
was computed using the native sparse coding algorithm, while the test error was
computed unifromly using SP. Other essential parameters are presented below:

Figure 12: Experiment #2 Parameters

The following graphs indicate the mean train and test errors as a function of
time, with each star marking a full iteration of OSDL. As we can see, using SP
greatly reduces the computation time of each iteration of the algorithm: OSDL
completed 8 iterations in less than 20 hours using SP, and only 2 iterations in
more than 23 hours using OMP. Although the slope of the OMP curve is steeper
than the SP one, indicating that each iteration using OMP yields better atoms,
SP’s considerably faster pace gives it the upper hand, presenting better errors
in each point of time. Moreover, the fact that the version of OMP employed
here is the one using the Gram matrix, emphasizes SP’s superiority, as OMP
gets an advantage in some sense.

Figure 13: Experiment #2 Train/Test Errors

The results of using OSDL with the version of OMP that doesn’t utilize
the Gram matrix are not presented, since after 96 hours of run time, it
only managed to complete 25% of the first iteration. This illustrates
SP’s fundamental advantage of low memory consumption, making it extremely

16

practical when working in higher dimensions.
The following graph indicates the error of sparse coding using the final dic-

tionary with SP as a function of the ratio of the non-zero coefficients. As we
can see, when sparse coding for only 2-6% non-zeros, the dictionary obtained
through SP outperforms the one obtained through OMP, displaying SP’s ad-
vantage when aiming for high compression ratio. This tendency changes when
more non-zeros are allowed, where the dictionary obtained through OMP gives
better results.

Figure 14: Experiment #2 Compression Error Using SP

In order to have a fair comparison, we also display a similar graph using
OMP as the sparse coding algorithm. It is expected that a dictionary that was
trained with a certain method would perform better when used for sparse coding
with the same method. This seems to be confirmed by the graph, as the results
of OMP are better than the results of SP. However, the longer runtime of OSDL
with OMP should be taken into account when assessing the graph.

17

Figure 15: Experiment #2 Compression Error Using OMP

Next, we present the 225 atoms with the highest entropy in each dictionary.
It seems that the dictionary obtained through SP contains a great deal of sparse
representation of training examples, and therefore we hypothesize that cleardict
has replaced many of its atoms due to low usability.

Figure 16: Experiment #2 Atoms (OMP to the left and SP to the right)

This can be verified by looking at the following histograms, presenting the
number of times each atom is used when sparse coding the given test set. It
is immediately noticeable that the histogram in the SP case is generally more

18

spiky, showing that the dictionary contains a deal of unused atoms, as well as
highly useable ones. This stands in contrast to the even distribution of the
atoms in the OMP case, which has a well balanced histogram.

Figure 17: Experiment #2 Use of Atoms Histograms

In order to assess a larger set of atoms that might not be affected by cleardict,
we also present the next 225 atoms with next highest entropy in the dictionary
obained through SP.

Figure 18: Experiment #2 SP Next Atoms

19

4.4 Final Experiment
To conclude our work, we ran the new implementation of OSDL on the entire
dataset, which contains about million images, once with OMP as its sparse cod-
ing algorithm, and once with SP. The OMP version ran for 48 hours with only
completing 40% of its first iteration, while the SP one managed to complete two
iterations during 36 hours. Since all of the dataset was used during training,
we tested the dictionary using images taken from the Chicago Face Database
(CFD). The following graph indicates the error of sparse coding using the fi-
nal dictionary with SP as a function of the ratio of the non-zero coefficients.
Interestingly, the SP version provided superiour results across all ratios.

Figure 19: Experiment #3 Compression Error Tested with SP

These results are compared to the ones from the pevious experiments, with
the dictionaries obtained by learning from million examples performing better:

20

Figure 20: Overall Compression Error

As we did with the previous experiment, we present a similar graph tested
with OMP as the sparse coding algorithm. This time, however, the SP version
gives better results for some coefficient ratios, even though the test method gives
advantage to the OMP version, which was trained 12 hours longer.

Figure 21: Experiment #3 Compression Error Tested with OMP

We show the 225 atoms with the highest entropy in each dictionary. In
contrast to the previous experiment, the dictionary obtained using SP contains
less atoms that look like original training examples, making the impression that
fewer atoms were replaced by cleardict. Moreover, when comparing the atoms
between the two dictionaries, it is easy to see that almost each atom obtained
through SP emphasizes a different area of a face: with some clearly stressing

21

eyes, noses, chins and etc.

Figure 22: Experiment #3 Atoms (OMP to the left and SP to the right)

Lastly, we present 9 images reconstructed with different ratios of non-zeros
using the two dictionaries. As we can see, the SP dictionary constructed
smoother, more natural looking images, avoiding the often grainy appearance of
the ones constructed by the OMP one. The difference is even more perceptible
as the number of coefficients diminishes.

22

Figure 23: Constructed Images Using the SP and OMP Dictionaries

Figure 24: Constructed Images Using the SP and OMP Dictionaries

23

Figure 25: Constructed Images Using the SP and OMP Dictionaries

5 Summary and Future Work
This work concentrated on improving an existing dictionary learning algorithm
implementation for high dimensions, and testing it with a massive dataset. Deal-
ing with its high memory consumption constraints rooted at using OMP at its
sparse coding stage, we integrated it with SP, which proved itself to be an ef-
ficient alternative, acheiving similar results in much less time. Furthemore, by
reimplementing the atom clearing process and fixing code flaws, we have been
able to outperform the previous implementation cosiderably, even when using
OMP. Another attempt was aimed at improving the hard-theresholding step by
giving the algorithm more freedom at choosing non-zero entries. Unfortunately,
this approach was less successful as shown by our experiments.

While SP proved sufficient over OMP, a more fairfull comparison might
be conducted by trying a parallel version of the latter. In addition, it might
be beneficial to further experiment with the concept of global thersholding,
testing it with different scenarios and considering modifications such that more
meaningful atoms will be produced. Although the atom clearing process is an
essential part of the algorithm, a large amount of atoms are being replaced
by it, suggesting that less strict conditions for pruning should be considered.
Furthemore, understanding quantitatively how different parameters affect the
learned dictionaries will provide a better understanding of our model. These
questions, among others, are part of ongoing work.

24

References
[1] Alfred M Bruckstein, David L Donoho, and Michael Elad. From sparse

solutions of systems of equations to sparse modeling of signals and images.
SIAM review, 51(1):34–81, 2009.

[2] Wei Dai and Olgica Milenkovic. Subspace pursuit for compressive sens-
ing signal reconstruction. IEEE Transactions on Information Theory,
55(5):2230–2249, 2009.

[3] Ira Kemelmacher-Shlizerman, Steven M Seitz, Daniel Miller, and Evan
Brossard. The megaface benchmark: 1 million faces for recognition at scale.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4873–4882, 2016.

[4] Debbie S Ma, Joshua Correll, and Bernd Wittenbrink. The chicago face
database: A free stimulus set of faces and norming data. Behavior research
methods, 47(4):1122–1135, 2015.

[5] Stéphane Mallat and Gabriel Peyré. A review of bandlet methods for geo-
metrical image representation. Numerical Algorithms, 44(3):205–234, 2007.

[6] Rasmus Rothe, Radu Timofte, and Luc Van Gool. Dex: Deep expectation of
apparent age from a single image. In Proceedings of the IEEE International
Conference on Computer Vision Workshops, pages 10–15, 2015.

[7] Jeremias Sulam and Michael Elad. Large inpainting of face images with
trainlets. IEEE Signal Processing Letters, 23(12):1839–1843, 2016.

[8] Jeremias Sulam, Boaz Ophir, Michael Zibulevsky, and Michael Elad. Train-
lets: Dictionary learning in high dimensions. IEEE Transactions on Signal
Processing, 64(12):3180–3193, 2016.

25

