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Abstract 

Developing effective unsupervised learning techniques is an essential stepping stone towards next generation 
machine learning models. Such models would no longer be bottlenecked by their dependence on massive labeled 
datasets which are often difficult or impossible to obtain. We propose a novel architecture for deep feature extraction 
from unlabeled data and intelligent labeling of data using an implicitly defined and learned symbolic language. The 
model can then be used in a semi-supervised context to reduce the amount of labeled data necessary for training. 

1 INTRODUCTION	AND	BACKGROUND	
Given some distribution 𝒟 over vectors 𝑥~𝒟, the task of 
an unsupervised model is to implicitly or explicitly find 
some approximation 𝑝%&'() to the density function 𝑝𝒟 
given some subset 𝑆 ⊂ 𝒟 . Such a model can arguably 
be said to understand the intrinsic structure of the data 
domain 𝒟.  

1.1 UNSUPERVISED	VERSUS	SUPERVISED	MODELS	
In supervised learning, labels 𝑦~ℒ are imposed on the 
vectors 𝑥~𝒟. These labels come from some artificial 
distribution ℒ with density function 𝑞 𝑥 = 𝑞 𝑦 𝑥 ,  
and ideally carry some human learned information about 
the deep structure of the vectors 𝑥. More formally, we 
hope the cross entropy between 𝑝 and 𝑞 is low, where 
we define this value as:1 

𝐻(𝑝, 𝑞) = − 𝑝(𝑥)log	 𝑞(𝑥)
9∈𝒟

 

Low values of 𝐻 means the structure of density function 
𝑞 of labels is similar to the structure of density function 
𝑝 of data points. The supervised model 𝑀 is given tuples 
𝑥, 𝑦  from the joint distribution (𝒟, ℒ) and is now 

tasked with arriving at some density function 𝑝%&'() 
which minimizes 𝐻(𝑝%&'(), 𝑞).  

The problem of minimizing 𝐻(𝑝%&'(), 𝑞) is usually 
easier than the unsupervised task of minimizing 
𝐻(𝑝%&'(), 𝑝), as ℒ is a more abstracted domain than 𝒟, 
however sampling (𝑥, 𝑦) is usually restrictively 
expensive and thus supervised learning tasks are often 
limited or impossible. It is also possible that the density 
𝑞 is not a good proxy for 𝑝, and therefore unsupervised 

																																																													
1	For	continuous	distributions,	𝐻 𝑝, 𝑞 = −E9~=( log 𝑞) =
𝐻 𝑝 + 𝐷@A 𝑝 ∥ 𝑞 ,	where	𝐷CD	is	the	Kullback–Leibler	

models which are unshackled to preconceived human 
notions embedded in 𝑞 can gain a better understanding 
of 𝒟 then their supervised counterparts.  

1.2 OVERVIEW	OF	COMMON	UNSUPERVISED	

MODELS	
Generally unsupervised models come in one of two 
forms: explicit and implicit models.  

Explicit models attempt to directly compute 𝑝%&'(). For 
example, PixelRNN or PixelCNN attempt to directly 
compute 𝑝%&'() using the formula 𝑝%&'() 𝑥 =
ΠFGH
I 𝑝(𝑥F|𝑥H, … , 𝑥FLH) for 𝑥F being pixel 𝑖 in an image, 

explicitly interpreting an image as a statement over a 
language of length 256 (by first quantizing pixel values) 
and then training an RNN (recurrent neural network) to 
learn this language. Note that no labels are required for 
training: the model objective is simply predicting the 
next pixel given all previous pixels.  

Implicit models, on the other hand, attempt to implicitly 
encode 𝑝%&'() in the model weights without defining 
any tractable way of directly computing 𝑝%&'() for any 
given sample. This is done by training a generator 
function which learns to sample 𝑥~𝑝%&'(). Examples of 
such models include autoencoders, variational 
autoencoders (VAEs) and generative adversarial 
networks (GANs) among others.  

 

 

 

 

divergence	𝐷@A(𝑝 ∥ 𝑞) = 𝑝(𝑥)log	 =(9)
N(9)

𝑑𝑥
P

LP
	and	𝐻(𝑝)	is	

the	entropy	of	𝑝,	𝐻 𝑝 = − 𝑝 𝑥 log 𝑝 𝑥 𝑑𝑥P
LP 	
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1.2.1 Naïve	Autoencoders	
Autoencoders work by trying to reconstruct images 
using a naïve 𝑙R loss between the input image and the 
generated image. However, they tend to be unable to 
learn deep features, instead blurring the input in inverse 
proportion to the feature vector size. The failure of naïve 
autoencoders can arguably be attributed to an ineffective 
metric, as a pixelwise comparison is clearly not optimal 
for learning deep features which are largely invariant to 
pixelwise changes.  

1.2.2 Variational	autoencoders	
Instead of comparing image pixels directly, VAEs 
compare them through a mask provided by several 
moments of some chosen distribution. In other words, 
they attempt to directly learn the parameters of some 
distribution (artificially chosen, for example the two 
moments of the normal distribution), over the image 
pixels as they relate to a similarly learned distribution 
over the feature vector. Although an improvement, they 
still tend to produce blurred images with few sharp 
features, again due to the limitations of the chosen 
distribution which contains far less moments than 
necessary to sufficiently represent the image domain, 
and therefore an ineffective pixelwise comparison is that 
which ultimately drives training. See fig 1. 

1.2.3 Generative	adversarial	networks	
GANs [1] currently represent the cutting edge in the field 
of unsupervised learning. GAN training is in fact a 
minimax game between two players called the 
discriminator (𝐷: 𝕀 → {0,1}) and generator (𝐺:ℝI → 𝕀), 
each usually implemented as several convolutional or 
deconvolutional layers respectively [2]. The generator 
produces images from some randomly sampled vector 𝑧, 
and the discriminator must learn to discriminate between 
the fake images produced by 𝐺 and real images. The 
generator then learns to produce increasingly realistic 
images in an attempt to fool the discriminator, and thus 
both networks are driven to learn deeper features of the 
domain by this governing adversarial objective.  

GAN networks, unlike autoencoders and VAEs, can 
produce remarkably sharp images approaching 
photorealism on some domains (see fig. 3), however 
these models exhibit significant problems including 
unstable training with no convergence measure, mode 
collapse problems (inability to deal with multiple modes 
in the data), and uninvertibility: in other words, GAN’s 
define a method to train a decoder but not its matching 
encoder, arguably the more useful side of the 
transformation. As a result, GANs are essentially able to 

produce impressive artwork, however, without the 
inverse transform they lack clear practical application. 

2 RELATED	WORK	
Hundreds if not thousands of papers have been published 
attempting to tackle these issues. PPGN [3] (plug-n-
play) models introduce “conditioning networks” and use 
activity maximization techniques to get a handle on 
generator outputs. WGAN [4] attempts to improve 
stability and reduce GAN dependence on batch 
normalization by modifying the loss to effectively 
minimize the more continuous “earth mover” distance 
instead of 𝐷CD divergence. AEGAN [5] and BiGAN [6] 

Figure	3	State	of	the	art	results	from	BEGAN 

Figure	3	Blurry	results	from	VAE	

Figure	1	Basic	autoencoder	

Figure	2	Blurry	results	from	VAE 
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and many others attempt to learn the inverse mapping in 
diverse and often complicated ways. InfoGAN [7] 
attempts to impose some interpretability on the latent 
space mapping by forcing the generator to express 
certain elements of its latent input. BEGAN [8], the most 
similar model to the currently proposed model, defines 
the discriminator as an autoencoder and by adding 
regulating constraints to the loss successfully offers a 
convergence measure and stabilizes training.  

3 PROPOSED	METHOD	
We propose a relatively simple solution which resolves 
some of these issues.  

The proposed model develops an internal and implicitly 
defined language which converges to represent the given 
data domain. The language consists of symbols 
represented as vectors on the 𝑛 −sphere, where we 
interpret this mapping onto the sphere as a language due 
to its gradually being learned by two disjoint systems 
tasked with communicating between them – in other 
words with inventing a language that best represents 
encountered stimuli.2  

An objective function is defined which encourages the 
two systems to agree on similar stimuli (images) while 
disagreeing on dissimilar stimuli. For each data sample, 
each system produces a symbol 𝑠H,R ∈ 𝑆I, and in essence 
they attempt to minimize ⟨𝑠H, 𝑠R⟩. We call this the 
syncretic objective between the two units of the 
bicameral network or bi-net, 

𝐵 = 𝐷bH: 𝕀 → ℝI, 𝐷bc: 𝕀 → ℝI  

where 𝜃F denotes trainable parameters. 

In tandem a single generator function 𝐺be: ℝ
I → 𝕀 

produces fake stimuli, and an adversarial objective 
drives deep feature extraction using a mechanism similar 
to the GAN. The generator produces two symbols 𝑠H,R ∈
𝑆I by producing two fake images and running them 
through each unit independently, with the objective of 
minimizing 𝑠H, 𝑠R  and ⟨𝑠R, 𝑠H⟩ respectively, while the 
bi-net has the opposite objective. The input to the 
generator is the symbolic output of the bi-net 𝑠H,R from 
which it produces 𝑠R,H. This marks a significant shift 
from GANs in that no noise is required for training. The 

																																																													
2	We	allow	that	“language”	is	simply	a	set	of	abstract	objects	
(symbols)	which	are	used	both	as	proxies	for	stimuli	and	as	
conventions	facilitating	communication.	

cyclic input ensures that the input language and output 
language become identical, in other words at 
convergence we expect: 

𝐷F = 𝐺LH 

In figure 4 (next page) a high level schematic is shown 
of the model computation, including syncretic and 
adversarial forces. 

The combination of adversarial and syncretic training 
constitutes a new paradigm which we call the symbolic 
autoencoder (SAE). A possible interpretation is as 
follows: In order to produce a label for a given image, 
each unit simply assumes the other unit knows the label, 
and adversarial training proceeds under this assumption. 
These complementary assumptions are expressed in the 
figure by the “crossed” pathways of the symbols (note 
that 𝐷H, 𝐷R exchange places between the first and second 
half of the figure). We find that this arrangement is 
necessary for stable convergence and best results. 

3.1 COMPARISON	WITH	GAN	
SAE relies on principles of GAN to drive generalized 
and deep feature extraction, however while the GAN 
model is defined such that the encoder (discriminator) 
network is degenerate – meaning it outputs only a single 
number and therefore lacks utility outside of training – 
the SAE allows simultaneous training of both the 
decoder and encoder. Ideally SAE should be able to 
extract most if not all deep features from the data during 
unsupervised training, and then be composed with a thin 
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network which would learn from a drastically reduced 
set of labeled data how to translate the internal language 
to human readable form. 

SAE also presents an effective and elegant solution to 
the “mode collapse” problem plaguing GAN networks, 
which makes it difficult or impossible for GANs to 
converge on multimode datasets.3 The dimensionality 
expansion of the SAE discriminator unit allows diverse 
loci of adversarial training to stabilize on the 𝑛 −sphere, 
enabling network nonlinearities to more effectively mask 
and disentangle gradient flow from different modes of 
the input (explained more in the section 
“disentanglement of modes” below).  

3.2 COMPARISON	WITH	VAE	
Unlike other autoencoders such as the variational 
autoencoder (VAE), at no point in the SAE loss are 
image pixels compared. This is significant in that while 
other autoencoders tend to blur stimulus in proportion to 
the size of their information bottleneck (the encoded 
feature vector), SAE tends to generalize stimulus. This is 
because the Euclidean loss between image pixels causes 
VAE to prefer shallow features (precise positioning of 
pixels) over deep features (the object being 
reconstructed. 

																																																													
3	For	example	a	dataset	of	faces	is	relatively	unimodal	in	
contrast	to	a	dataset	of	handwritten	digits,	as	changes	

3.3 BICAMERAL	ASYMMETRY:	“LEFT	AND	RIGHT	
BRAIN”	

One of the basic ideas behind SAE is that the “optimal” 
language, meaning a language with symbolic structure 
and interrelationships that most accurately reflect a 
particular domain, might be defined by an equilibrium 
between two opposing intellectual forces: that of 
generalization and that of diversification. If the symbols 
produced are either too diverse or too general, 
corresponding to the identity or zero transform 
respectively, it could be argued that no deep feature 
extraction took place. Therefore, the two systems 
mentioned above divide the work between them: one is 
responsible for learning general features and one for 
learning specific features of the data, and in attempting 
to communicate with the other each serves as a 
stabilizing and moderating force, preventing the system 
as a whole from degeneration.  

This idea is similar to that used by the Boundary 
Equilibrium GAN (BEGAN) [8] mentioned above, 
which uses proportional control theory to balance these 
two forces and stabilize convergence. Our system does 
not require the additional “adaptive term” used in 
BEGAN, as instead the generator can strike this balance 

between	faces	are	relatively	continuous	compared	to	
changes	between	different	digits.		

                                     

Figure 4 Bicameral 
network computation: A 
true image is run through 
the two discriminators 
which produce 
normalized vector outputs 
𝑠F ∈ 𝑆I. These are then 
used as seeds for two fake 
images produced by the 
generator, which are then 
further passed into the 
two units (in a crossed 
fashion – necessary for 
stabilization) in order to 
produce two further 
symbols �̃�H,R. Syncretic 
and adversarial forces 
than act on the produced 
symbols to drive training.  

	



	 5	

naturally: if it fails on one unit more than the other, the 
gradients coming from that unit will be greater causing 
𝐺 to prefer to correct itself in the quality it lacks. 

3.4 SEMANTIC	BLURRING	
To support the generalization process, we add white 
noise to the symbol seeding the generalizing unit’s fake 
image. This causes an effect we call semantic blurring: 
the generator learns to associate lower frequencies in 
symbol space with more general features in image space. 
With faces, for example, blurring the symbol causes the 
face produced to lose shallower features, such as 
hairstyle, but retain deeper features, such as gender. This 
noise is also helpful to stabilize training. This feature is 
still in infancy – there is much here that needs to be 
developed.  

																																																													
4	cosR b

R
= Hijklb

R
	

3.5 LOSS	FUNCTION		
The base function for our loss is the sigmoid cross 
entropy on the square half angle formula, identical to the 
GAN loss though instead of sigmoid arguments we use a 
scaled inner product on 𝑆I: 

ℎ 𝑥, 𝑝 = −𝑝 ⋅ log
1 + 𝑥
2

− 1 − 𝑝 ⋅ log
1 − 𝑥
2

	 

The argument Hi9
R

 is the square of the half angle formula 
given 𝑥 = cos 𝜃,4 which takes values in [0,1]. 

The formula is illustrated in fig. 5.  

3.5.1 The	Syncretic	Objective	
In figure 6 can be seen a map of the symbolic sphere (the 
mapping 𝐷H, 𝐷R onto 𝑆r) as it trains on 3 modes of mnist, 
color coded according to digit type. The inner and outer 
rings are samplings from 𝐷H and 𝐷R respectively. The 
figure illustrates how different modes naturally 
disentangle during training.  

The syncretic objective is made of three components: the 
shell loss, the kernel loss, and the self loss. The latter 
two losses are necessary for maintaining the concentric 
ring structure, which we found to be essential to stabilize 
and regularize training, and for the need to find an 
equilibrium between generalizing and diversifying forces 
explained above. The self loss ensures that one unit 
constricts its output and the other extends it output, 
while the kernel loss ensures that the units are 

	

Figure	5 
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concentric. The shell loss then causes 𝐷F to try and agree 
on identical images. This causes each meridian on the 
sphere, or radii on the plot, to be a site of adversarial 
training on a particular image.  

3.5.2 The	Adversarial	Objective	
The objective of 𝐺 is to cause 𝐷H 𝐺 𝑠R = 𝑠H → 𝑠R, 
and 𝐷R 𝐺 𝑠H = 𝑠R → 𝑠H, in other words to produce 
images which cause each unit to produce symbols 
approaching the symbol the real image would cause each 
to approach. Note that the generator is restricted to the 
mapped domain of each unit respectively, so it cannot 
force the discriminator to produce a symbol it hasn’t 
mapped (this is a consequence of the continuity of 
gradient descent optimization). So the objective of 𝐺 is 
to produce the closest symbol in 𝐷H’s range to 𝑠R (and 
vice versa). This symbol is naturally 𝑠H, as this is the 
symbol 𝐷H tries to bring closer to 𝑠R (and 𝑠R in the other 
unit’s case).5 𝐷H’s adversarial loss component then 
causes it to try and disentangle 𝑠H from 𝑠H (as their 
gradients point in opposite directions – one towards 𝑠R 
and the other away). To do this it needs to learn features 
which differentiate between the real and fake image. As 
the fake image becomes increasingly realistic, it will 
need to extract increasingly deeper features to 
successfully differentiate.6 Note that the importance of 
the shell loss is in providing a stable direction for these 
opposing gradients, the direction being dependent on the 
mode of the data (discussed below), and we don’t expect 
the shell loss to necessarily decrease over time as the 
symbols are constantly pulled back and forth as the 
generator and discriminator in turn learn deeper features.  

 

																																																													
5	The reason we use this “crossed” objective and don’t simply 
set 𝐺′𝑠 objective to be 𝑠H (or 𝑠R for the second unit) is for 
stability reasons: such an objective would cause 𝑠H to be 
constantly “running away” from 𝑠H, which is undesirable.	
6	The limit of this process is in the size of the symbol, or in the 
degree of noise masking the generator input.	

 
Figure 6 Projection (lambert azimuthal aligned to the center of mass 
of the first unit)  of the symbolic sphere 𝑆r; the generalizing unit and 
diversifying unit are the inner and outer rings respectively. Attractive 
force between the rings combined with adversarial training drives 
feature extraction simultaneous with mode disentanglement. 

3.5.3 Disentanglement	of	Modes		
At first, the only modes the system need learn are “real” 
and “fake,” similar to the original GAN model: The 
discriminators can use simple features which do not 
differentiate between modes in the real distribution. 
However, as training progresses and the generator begins 
producing more realistic images spanning multiple 
modes,7 the discriminators are forced to begin 
discriminating not just between the real and fake 
domains but within the real domain itself: in other 
words, to begin labeling the different modes of the data. 
𝐷’s objective is to pull apart real and fake symbols, 
however if the fake symbols are close enough to real 
symbols than as a side effect it also learns to 
differentiate real from real. This leads to clustering of 
the data around the surfaces of two concentric spheres of 
dimension 𝑚 − 1 (𝑚 being the symbol dimension), 
which can be seen in figure 6 with 𝑚 = 3. The 
clustering is done using ever deepening features of the 
data, perhaps making it possible to refer to this process 
as “automatic labeling.”  

 

7	Note that 𝐺 has sufficient domain to span this range of 
modes even without noise input as 𝑠R (the seed of 𝑠H) is more 
spread out than 𝑠H by the diversification loss (second unit’s 
self loss).	
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3.6 ALGORITHM	
Let 𝐼~𝒟 be a batch of size 𝑛 of sampled images, and 
𝐷 𝐼 = 𝑠 ∈ ℝI×% where 𝑚 is the symbol dimension. 

Let 𝜃xy,z, 𝜃{  be trainable parameters of the differentiable 
functions 𝐷|,H, 𝐺 described above. 

Note also that 𝑠 ∈ 𝑆%, so 𝑠H, 𝑠R = cos 𝜃HR. 

 Step by step explanation of iteration: 

1. Sample true symbols 
2. Sample fake images 
3. Sample fake symbols. 
4. True intra-unit correlation – attractive & 

repulsive  
5. True inter-unit correlation – attractive only 
6. Fake inter-unit correlation – repulsive 
7. Fake inter-unit correlation – attractive 
8. Discriminator intra unit self loss for 

specialization of units 
9. Discriminator inter unit attractive kernel loss for 

centralization of units 
10. Discriminator inter unit repulsive kernel loss for 

adversarial training 
11. Discriminator elementwise inter unit loss for 

syncretic training 
12. Generator elementwise inter unit loss for 

adversarial training 
13. -16. Sum the losses and update weights. 

	 	

𝐹𝑜𝑟	𝑡 = 0…∞:	
𝑠|,H ← 𝐷|,H(𝐼) 
𝐼�|,H ← 𝐺�𝑠|,H� 
�̃�|,H ← 𝐷|,H(𝐼�H,|) 
𝐴F ← ℎ(𝑠F�𝑠F, 𝑖) 
𝐵 ← ℎ(𝑠H�𝑠R, 1) 
𝐶F ← ℎ(𝑠���̃�F , 0) 
𝐶�F ← ℎ(𝑠���̃�F , 1) 

𝑙�()�� ←
1
𝑛R
�𝐴F��
I

F�

 

𝑙�(�I() ←
1
𝑛R
�𝐵F�

I

F�

 

𝑙��(�I()� ←
1
𝑛R
�𝐶F��
I

F�

 

𝑙��()) ←
1
𝑛
tr(𝐵) 

𝑙���())� ←
1
𝑛
tr�𝐶��� 

𝑙� ← 𝑙��()) + 𝑙�(�I()
+ � 𝑙�()�� + 𝑙��(�I()�

�∈{|,H}

 

𝑙{ ← � 𝑙���())�

�∈{|,H}

 

𝜃x� ← 𝜃x� − 𝜇
𝜕𝑙�
𝜕𝜃x�

 

𝜃{ ← 𝜃{ − 𝜇
𝜕𝑙{
𝜕𝜃{

 

	

1	
2	
3	
4	
5	
6	
7	
	
8	
	
9	
	
	
10	
	
11	
	
12	
	
13	
	
	
14	
	
15	
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4 IMPLEMENTATION	
Implementation and testing were done using Tensorflow 
for python. We pulled from the DCGAN implementation 
as a basic framework to build on. 𝐷F and 𝐺 were 
implemented as 5 layer convolutional and 
deconvolutional networks with kernel size 5 and stride 2, 
identical to DCGAN. Relu nonlinearities were used 
except for the final activation on 𝐷F where we used 𝑙R 
normalization. Batch normalization was used to stabilize 
gradient flow, though we noted this was not strictly 
necessary (in contrast to the DCGAN model). ADAM 
optimizer was used for the update step with 𝛽H = 0.5, 
𝜇 = .0002. 

4.1 TESTING	
We tested the model on 3 different datasets: mnist, 
celebA, and music notation. We observed faster 
convergence by several orders of magnitude over 
DCGAN on mnist, and the ability to generate near 
photorealistic images approaching state of the art on the 
celebrity faces dataset. 

We found that within 5 minutes (a few thousand 
iterations) our model exceeded the quality of DCGAN 
after many hours of training (over 100,000 iterations).  

We also found much faster convergence on celebA 
dataset, with image quality approaching photorealism 
even on large image sizes (108×108), another difficulty 
for the original GAN model (although BEGAN resolved 
this issue, but using a much larger architecture than 
DCGAN and ours).  

Results can be found below. 

5 CONCLUSION	&	NEXT	STEPS	
The SAE model although built on GAN is more different 
than similar to its antecedent: it is not dependent on 
noise input, meaning the basic GAN paradigm of latent 
space mapping does not apply, and the main product (in 
terms of usability) of the SAE trainer is an encoder 
instead of a decoder. The main use of SAE is to resolve 
the need for copious quantities of labeled data in neural 
network training, however it is unclear if this goal was 
achieved as the model has not yet been tested in a semi-
supervised setting; this would be an immediate next step.  

There is much work yet to be done: developing a 
mathematical understanding of the dynamics which arise 

during training, stabilizing the “semantic blurring” 
technique and arriving at a convergence measure.  

Finally, if we posit that our model constructs an 
implicitly defined language, a natural evolution of the 
model would involve grammar, in other words a state 
machine. We believe understanding how to incorporate 
an RNN into the computation is the next overarching 
step for this project.  

6 RESULTS	

6.1 CELEBA	RESULTS	
Note how images produced retain general features (such 
as hair style, skin color, facial expression) without 
retaining shallow features (such as precise positioning of 
hair or number of wrinkles etc.) in contrast to other 
autoencoders which tend to blur images to minimize 
pixelwise 𝑙R loss between images:  
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6.2 MNIST	RESULTS	
Mnist training results progress comparison: 

Iterations 0 to 1000 

Iteration New model Elapsed 
minutes 

Original 
Model 

100 

 

0.5 

 

200 

 

1 

 

300 

 

1.5 

 

400 

 

2 

 

500 

 

2.5 

 

600 

 

3 

 

700 

 

3.5 

 

800 

 

4 

 

900 

 

4.5 

 

1000 

 

5 

 

 

Iterations 2000 to 10000 

 

Iteration New model Elapsed 
minutes 

Original 
Model 

2000 

 

13 

 

3000 

 

20 

 

4000 

 

27 

 

5000 

 

34 

 

6000 

 

41 

 

7000 

 

48 

 

8000 

 

55 

 

9000 

 

62 
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10000 

 

69 

 

107500 ………… 
……….. 
……. 
… 

 

 

 

Note how the sampled batch on our model does not 
change as it is seeded from a constant batch of samples, 
while the original model sample batch is constantly 
changing although the latent seed is kept constant. This 
is a symptom of mode instability of GAN, which is 
constantly shifting its latent space mapping. It seems our 
model outdoes 107500 iterations of DCGAN by around 
iteration 3000, an improvement of at least 2 degrees of 
magnitude.  
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