
	 1	

Symbolic Autoencoder
Oryan Barta

Abstract

Developing effective unsupervised learning techniques is an essential stepping stone towards next generation
machine learning models. Such models would no longer be bottlenecked by their dependence on massive labeled
datasets which are often difficult or impossible to obtain. We propose a novel architecture for deep feature extraction
from unlabeled data and intelligent labeling of data using an implicitly defined and learned symbolic language. The
model can then be used in a semi-supervised context to reduce the amount of labeled data necessary for training.

1 INTRODUCTION	AND	BACKGROUND	
Given some distribution 𝒟 over vectors 𝑥~𝒟, the task of
an unsupervised model is to implicitly or explicitly find
some approximation 𝑝%&'() to the density function 𝑝𝒟
given some subset 𝑆 ⊂ 𝒟 . Such a model can arguably
be said to understand the intrinsic structure of the data
domain 𝒟.

1.1 UNSUPERVISED	VERSUS	SUPERVISED	MODELS	
In supervised learning, labels 𝑦~ℒ are imposed on the
vectors 𝑥~𝒟. These labels come from some artificial
distribution ℒ with density function 𝑞 𝑥 = 𝑞 𝑦 𝑥 ,
and ideally carry some human learned information about
the deep structure of the vectors 𝑥. More formally, we
hope the cross entropy between 𝑝 and 𝑞 is low, where
we define this value as:1

𝐻(𝑝, 𝑞) = − 𝑝(𝑥)log	 𝑞(𝑥)
9∈𝒟

Low values of 𝐻 means the structure of density function
𝑞 of labels is similar to the structure of density function
𝑝 of data points. The supervised model 𝑀 is given tuples
𝑥, 𝑦 from the joint distribution (𝒟, ℒ) and is now

tasked with arriving at some density function 𝑝%&'()
which minimizes 𝐻(𝑝%&'(), 𝑞).

The problem of minimizing 𝐻(𝑝%&'(), 𝑞) is usually
easier than the unsupervised task of minimizing
𝐻(𝑝%&'(), 𝑝), as ℒ is a more abstracted domain than 𝒟,
however sampling (𝑥, 𝑦) is usually restrictively
expensive and thus supervised learning tasks are often
limited or impossible. It is also possible that the density
𝑞 is not a good proxy for 𝑝, and therefore unsupervised

																																																													
1	For	continuous	distributions,	𝐻 𝑝, 𝑞 = −E9~=(log 𝑞) =
𝐻 𝑝 + 𝐷@A 𝑝 ∥ 𝑞 ,	where	𝐷CD	is	the	Kullback–Leibler	

models which are unshackled to preconceived human
notions embedded in 𝑞 can gain a better understanding
of 𝒟 then their supervised counterparts.

1.2 OVERVIEW	OF	COMMON	UNSUPERVISED	

MODELS	
Generally unsupervised models come in one of two
forms: explicit and implicit models.

Explicit models attempt to directly compute 𝑝%&'(). For
example, PixelRNN or PixelCNN attempt to directly
compute 𝑝%&'() using the formula 𝑝%&'() 𝑥 =
ΠFGH
I 𝑝(𝑥F|𝑥H, … , 𝑥FLH) for 𝑥F being pixel 𝑖 in an image,

explicitly interpreting an image as a statement over a
language of length 256 (by first quantizing pixel values)
and then training an RNN (recurrent neural network) to
learn this language. Note that no labels are required for
training: the model objective is simply predicting the
next pixel given all previous pixels.

Implicit models, on the other hand, attempt to implicitly
encode 𝑝%&'() in the model weights without defining
any tractable way of directly computing 𝑝%&'() for any
given sample. This is done by training a generator
function which learns to sample 𝑥~𝑝%&'(). Examples of
such models include autoencoders, variational
autoencoders (VAEs) and generative adversarial
networks (GANs) among others.

divergence	𝐷@A(𝑝 ∥ 𝑞) = 𝑝(𝑥)log	 =(9)
N(9)

𝑑𝑥
P

LP
	and	𝐻(𝑝)	is	

the	entropy	of	𝑝,	𝐻 𝑝 = − 𝑝 𝑥 log 𝑝 𝑥 𝑑𝑥P
LP 	

	 2	

1.2.1 Naïve	Autoencoders	
Autoencoders work by trying to reconstruct images
using a naïve 𝑙R loss between the input image and the
generated image. However, they tend to be unable to
learn deep features, instead blurring the input in inverse
proportion to the feature vector size. The failure of naïve
autoencoders can arguably be attributed to an ineffective
metric, as a pixelwise comparison is clearly not optimal
for learning deep features which are largely invariant to
pixelwise changes.

1.2.2 Variational	autoencoders	
Instead of comparing image pixels directly, VAEs
compare them through a mask provided by several
moments of some chosen distribution. In other words,
they attempt to directly learn the parameters of some
distribution (artificially chosen, for example the two
moments of the normal distribution), over the image
pixels as they relate to a similarly learned distribution
over the feature vector. Although an improvement, they
still tend to produce blurred images with few sharp
features, again due to the limitations of the chosen
distribution which contains far less moments than
necessary to sufficiently represent the image domain,
and therefore an ineffective pixelwise comparison is that
which ultimately drives training. See fig 1.

1.2.3 Generative	adversarial	networks	
GANs [1] currently represent the cutting edge in the field
of unsupervised learning. GAN training is in fact a
minimax game between two players called the
discriminator (𝐷: 𝕀 → {0,1}) and generator (𝐺:ℝI → 𝕀),
each usually implemented as several convolutional or
deconvolutional layers respectively [2]. The generator
produces images from some randomly sampled vector 𝑧,
and the discriminator must learn to discriminate between
the fake images produced by 𝐺 and real images. The
generator then learns to produce increasingly realistic
images in an attempt to fool the discriminator, and thus
both networks are driven to learn deeper features of the
domain by this governing adversarial objective.

GAN networks, unlike autoencoders and VAEs, can
produce remarkably sharp images approaching
photorealism on some domains (see fig. 3), however
these models exhibit significant problems including
unstable training with no convergence measure, mode
collapse problems (inability to deal with multiple modes
in the data), and uninvertibility: in other words, GAN’s
define a method to train a decoder but not its matching
encoder, arguably the more useful side of the
transformation. As a result, GANs are essentially able to

produce impressive artwork, however, without the
inverse transform they lack clear practical application.

2 RELATED	WORK	
Hundreds if not thousands of papers have been published
attempting to tackle these issues. PPGN [3] (plug-n-
play) models introduce “conditioning networks” and use
activity maximization techniques to get a handle on
generator outputs. WGAN [4] attempts to improve
stability and reduce GAN dependence on batch
normalization by modifying the loss to effectively
minimize the more continuous “earth mover” distance
instead of 𝐷CD divergence. AEGAN [5] and BiGAN [6]

Figure	3	State	of	the	art	results	from	BEGAN

Figure	3	Blurry	results	from	VAE	

Figure	1	Basic	autoencoder	

Figure	2	Blurry	results	from	VAE

	 3	

and many others attempt to learn the inverse mapping in
diverse and often complicated ways. InfoGAN [7]
attempts to impose some interpretability on the latent
space mapping by forcing the generator to express
certain elements of its latent input. BEGAN [8], the most
similar model to the currently proposed model, defines
the discriminator as an autoencoder and by adding
regulating constraints to the loss successfully offers a
convergence measure and stabilizes training.

3 PROPOSED	METHOD	
We propose a relatively simple solution which resolves
some of these issues.

The proposed model develops an internal and implicitly
defined language which converges to represent the given
data domain. The language consists of symbols
represented as vectors on the 𝑛 −sphere, where we
interpret this mapping onto the sphere as a language due
to its gradually being learned by two disjoint systems
tasked with communicating between them – in other
words with inventing a language that best represents
encountered stimuli.2

An objective function is defined which encourages the
two systems to agree on similar stimuli (images) while
disagreeing on dissimilar stimuli. For each data sample,
each system produces a symbol 𝑠H,R ∈ 𝑆I, and in essence
they attempt to minimize ⟨𝑠H, 𝑠R⟩. We call this the
syncretic objective between the two units of the
bicameral network or bi-net,

𝐵 = 𝐷bH: 𝕀 → ℝI, 𝐷bc: 𝕀 → ℝI

where 𝜃F denotes trainable parameters.

In tandem a single generator function 𝐺be: ℝ
I → 𝕀

produces fake stimuli, and an adversarial objective
drives deep feature extraction using a mechanism similar
to the GAN. The generator produces two symbols 𝑠H,R ∈
𝑆I by producing two fake images and running them
through each unit independently, with the objective of
minimizing 𝑠H, 𝑠R and ⟨𝑠R, 𝑠H⟩ respectively, while the
bi-net has the opposite objective. The input to the
generator is the symbolic output of the bi-net 𝑠H,R from
which it produces 𝑠R,H. This marks a significant shift
from GANs in that no noise is required for training. The

																																																													
2	We	allow	that	“language”	is	simply	a	set	of	abstract	objects	
(symbols)	which	are	used	both	as	proxies	for	stimuli	and	as	
conventions	facilitating	communication.	

cyclic input ensures that the input language and output
language become identical, in other words at
convergence we expect:

𝐷F = 𝐺LH

In figure 4 (next page) a high level schematic is shown
of the model computation, including syncretic and
adversarial forces.

The combination of adversarial and syncretic training
constitutes a new paradigm which we call the symbolic
autoencoder (SAE). A possible interpretation is as
follows: In order to produce a label for a given image,
each unit simply assumes the other unit knows the label,
and adversarial training proceeds under this assumption.
These complementary assumptions are expressed in the
figure by the “crossed” pathways of the symbols (note
that 𝐷H, 𝐷R exchange places between the first and second
half of the figure). We find that this arrangement is
necessary for stable convergence and best results.

3.1 COMPARISON	WITH	GAN	
SAE relies on principles of GAN to drive generalized
and deep feature extraction, however while the GAN
model is defined such that the encoder (discriminator)
network is degenerate – meaning it outputs only a single
number and therefore lacks utility outside of training –
the SAE allows simultaneous training of both the
decoder and encoder. Ideally SAE should be able to
extract most if not all deep features from the data during
unsupervised training, and then be composed with a thin

	 4	

network which would learn from a drastically reduced
set of labeled data how to translate the internal language
to human readable form.

SAE also presents an effective and elegant solution to
the “mode collapse” problem plaguing GAN networks,
which makes it difficult or impossible for GANs to
converge on multimode datasets.3 The dimensionality
expansion of the SAE discriminator unit allows diverse
loci of adversarial training to stabilize on the 𝑛 −sphere,
enabling network nonlinearities to more effectively mask
and disentangle gradient flow from different modes of
the input (explained more in the section
“disentanglement of modes” below).

3.2 COMPARISON	WITH	VAE	
Unlike other autoencoders such as the variational
autoencoder (VAE), at no point in the SAE loss are
image pixels compared. This is significant in that while
other autoencoders tend to blur stimulus in proportion to
the size of their information bottleneck (the encoded
feature vector), SAE tends to generalize stimulus. This is
because the Euclidean loss between image pixels causes
VAE to prefer shallow features (precise positioning of
pixels) over deep features (the object being
reconstructed.

																																																													
3	For	example	a	dataset	of	faces	is	relatively	unimodal	in	
contrast	to	a	dataset	of	handwritten	digits,	as	changes	

3.3 BICAMERAL	ASYMMETRY:	“LEFT	AND	RIGHT	
BRAIN”	

One of the basic ideas behind SAE is that the “optimal”
language, meaning a language with symbolic structure
and interrelationships that most accurately reflect a
particular domain, might be defined by an equilibrium
between two opposing intellectual forces: that of
generalization and that of diversification. If the symbols
produced are either too diverse or too general,
corresponding to the identity or zero transform
respectively, it could be argued that no deep feature
extraction took place. Therefore, the two systems
mentioned above divide the work between them: one is
responsible for learning general features and one for
learning specific features of the data, and in attempting
to communicate with the other each serves as a
stabilizing and moderating force, preventing the system
as a whole from degeneration.

This idea is similar to that used by the Boundary
Equilibrium GAN (BEGAN) [8] mentioned above,
which uses proportional control theory to balance these
two forces and stabilize convergence. Our system does
not require the additional “adaptive term” used in
BEGAN, as instead the generator can strike this balance

between	faces	are	relatively	continuous	compared	to	
changes	between	different	digits.		

Figure 4 Bicameral
network computation: A
true image is run through
the two discriminators
which produce
normalized vector outputs
𝑠F ∈ 𝑆I. These are then
used as seeds for two fake
images produced by the
generator, which are then
further passed into the
two units (in a crossed
fashion – necessary for
stabilization) in order to
produce two further
symbols 𝑠̃H,R. Syncretic
and adversarial forces
than act on the produced
symbols to drive training.

	

	 5	

naturally: if it fails on one unit more than the other, the
gradients coming from that unit will be greater causing
𝐺 to prefer to correct itself in the quality it lacks.

3.4 SEMANTIC	BLURRING	
To support the generalization process, we add white
noise to the symbol seeding the generalizing unit’s fake
image. This causes an effect we call semantic blurring:
the generator learns to associate lower frequencies in
symbol space with more general features in image space.
With faces, for example, blurring the symbol causes the
face produced to lose shallower features, such as
hairstyle, but retain deeper features, such as gender. This
noise is also helpful to stabilize training. This feature is
still in infancy – there is much here that needs to be
developed.

																																																													
4	cosR b

R
= Hijklb

R
	

3.5 LOSS	FUNCTION		
The base function for our loss is the sigmoid cross
entropy on the square half angle formula, identical to the
GAN loss though instead of sigmoid arguments we use a
scaled inner product on 𝑆I:

ℎ 𝑥, 𝑝 = −𝑝 ⋅ log
1 + 𝑥
2

− 1 − 𝑝 ⋅ log
1 − 𝑥
2

	

The argument Hi9
R

 is the square of the half angle formula
given 𝑥 = cos 𝜃,4 which takes values in [0,1].

The formula is illustrated in fig. 5.

3.5.1 The	Syncretic	Objective	
In figure 6 can be seen a map of the symbolic sphere (the
mapping 𝐷H, 𝐷R onto 𝑆r) as it trains on 3 modes of mnist,
color coded according to digit type. The inner and outer
rings are samplings from 𝐷H and 𝐷R respectively. The
figure illustrates how different modes naturally
disentangle during training.

The syncretic objective is made of three components: the
shell loss, the kernel loss, and the self loss. The latter
two losses are necessary for maintaining the concentric
ring structure, which we found to be essential to stabilize
and regularize training, and for the need to find an
equilibrium between generalizing and diversifying forces
explained above. The self loss ensures that one unit
constricts its output and the other extends it output,
while the kernel loss ensures that the units are

	

Figure	5

	 6	

concentric. The shell loss then causes 𝐷F to try and agree
on identical images. This causes each meridian on the
sphere, or radii on the plot, to be a site of adversarial
training on a particular image.

3.5.2 The	Adversarial	Objective	
The objective of 𝐺 is to cause 𝐷H 𝐺 𝑠R = 𝑠H → 𝑠R,
and 𝐷R 𝐺 𝑠H = 𝑠R → 𝑠H, in other words to produce
images which cause each unit to produce symbols
approaching the symbol the real image would cause each
to approach. Note that the generator is restricted to the
mapped domain of each unit respectively, so it cannot
force the discriminator to produce a symbol it hasn’t
mapped (this is a consequence of the continuity of
gradient descent optimization). So the objective of 𝐺 is
to produce the closest symbol in 𝐷H’s range to 𝑠R (and
vice versa). This symbol is naturally 𝑠H, as this is the
symbol 𝐷H tries to bring closer to 𝑠R (and 𝑠R in the other
unit’s case).5 𝐷H’s adversarial loss component then
causes it to try and disentangle 𝑠H from 𝑠H (as their
gradients point in opposite directions – one towards 𝑠R
and the other away). To do this it needs to learn features
which differentiate between the real and fake image. As
the fake image becomes increasingly realistic, it will
need to extract increasingly deeper features to
successfully differentiate.6 Note that the importance of
the shell loss is in providing a stable direction for these
opposing gradients, the direction being dependent on the
mode of the data (discussed below), and we don’t expect
the shell loss to necessarily decrease over time as the
symbols are constantly pulled back and forth as the
generator and discriminator in turn learn deeper features.

																																																													
5	The reason we use this “crossed” objective and don’t simply
set 𝐺′𝑠 objective to be 𝑠H (or 𝑠R for the second unit) is for
stability reasons: such an objective would cause 𝑠H to be
constantly “running away” from 𝑠H, which is undesirable.	
6	The limit of this process is in the size of the symbol, or in the
degree of noise masking the generator input.	

Figure 6 Projection (lambert azimuthal aligned to the center of mass
of the first unit) of the symbolic sphere 𝑆r; the generalizing unit and
diversifying unit are the inner and outer rings respectively. Attractive
force between the rings combined with adversarial training drives
feature extraction simultaneous with mode disentanglement.

3.5.3 Disentanglement	of	Modes		
At first, the only modes the system need learn are “real”
and “fake,” similar to the original GAN model: The
discriminators can use simple features which do not
differentiate between modes in the real distribution.
However, as training progresses and the generator begins
producing more realistic images spanning multiple
modes,7 the discriminators are forced to begin
discriminating not just between the real and fake
domains but within the real domain itself: in other
words, to begin labeling the different modes of the data.
𝐷’s objective is to pull apart real and fake symbols,
however if the fake symbols are close enough to real
symbols than as a side effect it also learns to
differentiate real from real. This leads to clustering of
the data around the surfaces of two concentric spheres of
dimension 𝑚 − 1 (𝑚 being the symbol dimension),
which can be seen in figure 6 with 𝑚 = 3. The
clustering is done using ever deepening features of the
data, perhaps making it possible to refer to this process
as “automatic labeling.”

7	Note that 𝐺 has sufficient domain to span this range of
modes even without noise input as 𝑠R (the seed of 𝑠H) is more
spread out than 𝑠H by the diversification loss (second unit’s
self loss).	

	 7	

3.6 ALGORITHM	
Let 𝐼~𝒟 be a batch of size 𝑛 of sampled images, and
𝐷 𝐼 = 𝑠 ∈ ℝI×% where 𝑚 is the symbol dimension.

Let 𝜃xy,z, 𝜃{ be trainable parameters of the differentiable
functions 𝐷|,H, 𝐺 described above.

Note also that 𝑠 ∈ 𝑆%, so 𝑠H, 𝑠R = cos 𝜃HR.

 Step by step explanation of iteration:

1. Sample true symbols
2. Sample fake images
3. Sample fake symbols.
4. True intra-unit correlation – attractive &

repulsive
5. True inter-unit correlation – attractive only
6. Fake inter-unit correlation – repulsive
7. Fake inter-unit correlation – attractive
8. Discriminator intra unit self loss for

specialization of units
9. Discriminator inter unit attractive kernel loss for

centralization of units
10. Discriminator inter unit repulsive kernel loss for

adversarial training
11. Discriminator elementwise inter unit loss for

syncretic training
12. Generator elementwise inter unit loss for

adversarial training
13. -16. Sum the losses and update weights.

	 	

𝐹𝑜𝑟	𝑡 = 0…∞:	
𝑠|,H ← 𝐷|,H(𝐼)
𝐼�|,H ← 𝐺�𝑠|,H�
𝑠̃|,H ← 𝐷|,H(𝐼�H,|)
𝐴F ← ℎ(𝑠F�𝑠F, 𝑖)
𝐵 ← ℎ(𝑠H�𝑠R, 1)
𝐶F ← ℎ(𝑠��𝑠̃F , 0)
𝐶�F ← ℎ(𝑠��𝑠̃F , 1)

𝑙�()�� ←
1
𝑛R
�𝐴F��
I

F�

𝑙�(�I() ←
1
𝑛R
�𝐵F�

I

F�

𝑙��(�I()� ←
1
𝑛R
�𝐶F��
I

F�

𝑙��()) ←
1
𝑛
tr(𝐵)

𝑙���())� ←
1
𝑛
tr�𝐶���

𝑙� ← 𝑙��()) + 𝑙�(�I()
+ � 𝑙�()�� + 𝑙��(�I()�

�∈{|,H}

𝑙{ ← � 𝑙���())�

�∈{|,H}

𝜃x� ← 𝜃x� − 𝜇
𝜕𝑙�
𝜕𝜃x�

𝜃{ ← 𝜃{ − 𝜇
𝜕𝑙{
𝜕𝜃{

	

1	
2	
3	
4	
5	
6	
7	
	
8	
	
9	
	
	
10	
	
11	
	
12	
	
13	
	
	
14	
	
15	
	
16	
	

	 8	

4 IMPLEMENTATION	
Implementation and testing were done using Tensorflow
for python. We pulled from the DCGAN implementation
as a basic framework to build on. 𝐷F and 𝐺 were
implemented as 5 layer convolutional and
deconvolutional networks with kernel size 5 and stride 2,
identical to DCGAN. Relu nonlinearities were used
except for the final activation on 𝐷F where we used 𝑙R
normalization. Batch normalization was used to stabilize
gradient flow, though we noted this was not strictly
necessary (in contrast to the DCGAN model). ADAM
optimizer was used for the update step with 𝛽H = 0.5,
𝜇 = .0002.

4.1 TESTING	
We tested the model on 3 different datasets: mnist,
celebA, and music notation. We observed faster
convergence by several orders of magnitude over
DCGAN on mnist, and the ability to generate near
photorealistic images approaching state of the art on the
celebrity faces dataset.

We found that within 5 minutes (a few thousand
iterations) our model exceeded the quality of DCGAN
after many hours of training (over 100,000 iterations).

We also found much faster convergence on celebA
dataset, with image quality approaching photorealism
even on large image sizes (108×108), another difficulty
for the original GAN model (although BEGAN resolved
this issue, but using a much larger architecture than
DCGAN and ours).

Results can be found below.

5 CONCLUSION	&	NEXT	STEPS	
The SAE model although built on GAN is more different
than similar to its antecedent: it is not dependent on
noise input, meaning the basic GAN paradigm of latent
space mapping does not apply, and the main product (in
terms of usability) of the SAE trainer is an encoder
instead of a decoder. The main use of SAE is to resolve
the need for copious quantities of labeled data in neural
network training, however it is unclear if this goal was
achieved as the model has not yet been tested in a semi-
supervised setting; this would be an immediate next step.

There is much work yet to be done: developing a
mathematical understanding of the dynamics which arise

during training, stabilizing the “semantic blurring”
technique and arriving at a convergence measure.

Finally, if we posit that our model constructs an
implicitly defined language, a natural evolution of the
model would involve grammar, in other words a state
machine. We believe understanding how to incorporate
an RNN into the computation is the next overarching
step for this project.

6 RESULTS	

6.1 CELEBA	RESULTS	
Note how images produced retain general features (such
as hair style, skin color, facial expression) without
retaining shallow features (such as precise positioning of
hair or number of wrinkles etc.) in contrast to other
autoencoders which tend to blur images to minimize
pixelwise 𝑙R loss between images:

	 9	

	 10	

6.2 MNIST	RESULTS	
Mnist training results progress comparison:

Iterations 0 to 1000

Iteration New model Elapsed
minutes

Original
Model

100

0.5

200

1

300

1.5

400

2

500

2.5

600

3

700

3.5

800

4

900

4.5

1000

5

Iterations 2000 to 10000

Iteration New model Elapsed
minutes

Original
Model

2000

13

3000

20

4000

27

5000

34

6000

41

7000

48

8000

55

9000

62

	 11	

10000

69

107500 …………
………..
…….
…

Note how the sampled batch on our model does not
change as it is seeded from a constant batch of samples,
while the original model sample batch is constantly
changing although the latent seed is kept constant. This
is a symptom of mode instability of GAN, which is
constantly shifting its latent space mapping. It seems our
model outdoes 107500 iterations of DCGAN by around
iteration 3000, an improvement of at least 2 degrees of
magnitude.

7 REFERENCES		
[1] Ian Goodfellow, Jean Pouget-Abadie, Mehdi
Mirza, et al. Generative adversarial nets. In NIPS,
2014.  	

[2] Alec Radford, Luke Metz, Soumith Chintala,
Unsupervised Representation Learning with
Deep Convolutional Generative Adversarial
Networks, conference paper at ICLR 2016	

[3] Anh Nguyen, Jeff Clune, Yoshua
Bengio, Alexey Dosovitskiy, Jason Yosinski, Plug
& Play Generative Networks: Conditional
Iterative Generation of Images in Latent Space,
IEEE 2017

[4] Martin Arjovsky, Soumith Chintala, Léon
Bottou, Wasserstein GAN, arxiv 2017

[5] Junyu Luo, Yong Xu, Chenwei Tang, Jiancheng
Lv, Learning Inverse Mapping by Autoencoder
based Generative Adversarial Nets, arxiv 2017

[6] Jeff Donahue, Philipp Krähenbühl, Trevor
Darrell, Adversarial Feature Learning, arxiv 2017

[7] Xi Chen, Yan Duan, Rein Houthooft, John
Schulman, Ilya Sutskever, Pieter Abbeel,
InfoGAN: Interpretable Representation
Learning by Information Maximizing
Generative Adversarial Nets, arXiv 2016

[8] David Berthelot, Thomas Schumm, Luke Metz,
BEGAN: Boundary Equilibrium Generative
Adversarial Networks, arxiv.org, May 2017
	

