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Abstract

We propose a framework for creating planar puppets
from frontal images of subjects captured by commodity cam-
eras. A deep convolutional neural network is first used to
localize body joints. Reverse ensembling aggregates the re-
sponses of the model on multiple affine deformations of the
input. Joint locations are further refined using facial loca-
tion and skin tone cues. We exploit the skeletal pose graph
to create ”auto-scribbles”: automatically generated fore-
ground/background scribble masks that can be used with a
wide range of segmentation algorithms to directly extract
the subject’s body from the background. Simple segmenta-
tion aware cropping produces individual body part crops
which can be used to generate a planar marionette for
repositioning and animation. The proposed joint detection
pipeline compares favorably with the state-of-the-art and
together with the auto-scribbles enables a fully automatic
segmentation method for marionette generation.

1. Introduction

The wide availability of modern devices with cameras
has resulted in a dramatic increase in the number of pic-
tures captured by everyday users. Simple image processing
methods have thus become a common tool for regular users
to improve the style and quality of their images. However,
tools that allow more complicated, interactive image ma-
nipulation have been not been widely adopted by the same
audience. The computational difficulties associated with
such functionality result in poor usability. This is caused by
lengthy and complex user experiences where multiple man-
ual steps are required to facilitate the algorithmic pipelines.
One specific functionality which is of much interest and that
suffers from usability problems is full body segmentation.
In this scenario one wishes to extract the body image of a
person facing a camera from an image and segment it into
its constituent body parts. In this note we propose a method
for fully automating the body segmentation process, thus
enabling a wide variety of consumer and security applica-
tions and removing the friction caused by manual input.

Figure 1: Visualization of the different phases of the pro-
posed method, using either distance-based or contour-based
segmentation. The last row illustrates reposing of the gen-
erated marionettes.

General image segmentation requires some sort of user
input and this is often entered in the form of rough image
scribbles over the object of interest. The scribble masks are
then used as seeds that guide the segmentation of the object
from the background [1]. The manual nature of this input
process makes this approach inappropriate for general auto-
mated segmentation scenarios. Another family of segmen-
tation algorithms take a given initial curve and uses contour
evolution to move it towards the boundaries of the object
[4]. The curve interior then represents the desired object
however the result strongly depends on the initial curve.

For the more specific problem of frontal image body seg-
mentation we can encode our prior knowledge of the ex-
pected image content and rough subject pose. We do this
by automatically generating the required inputs for a fam-
ily of segmentation algorithms using what we call ”auto-
scribbles” or ”auto-contours”. The key step in the genera-
tion of auto-scribbles is human joint detection and pose es-
timation. For this we need to extract from the input image
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the 2D body joint locations based on a predefined human
skeletal pose model. This then yields useful information re-
garding the object of interest which can be directly utilized
for generating the desired scribbles.

An important consideration is that scribble-based seg-
mentation algorithms tend to assume that the given input
is sparse, yet accurately covers the desired foreground and
background pixels without false labellings. As a result,
we require precise pose estimation when producing valid
input for segmentation at the next stage of our proposed
pipeline. Here we note that recent successful machine learn-
ing approaches have employed either Random Forests [6] or
deep Convolutional Neural Networks [26, 27, 28] to pro-
duce state-of-the-art joint localization on different public
datasets. We specifically choose to build upon the neu-
ral network architecture of [26] because of it’s flexibility.
Crucially we show that reverse ensembling of the results
on small affine distortions of the input image can signifi-
cantly improve the joint localization accuracy. In addition
to this we fine-tune the final detections using human body
part color cues to ensure that joint detections in fact rest on
actual body pixels and not on background pixels.

Accurate auto-scribbles can be derived from the ex-
tracted joint locations using our prior knowledge about the
expected human shape. A foreground scribble can be gener-
ated as a skeleton-like graph connecting the detected joints.
Carefully choosing those connections should result in a
network of lines that provides coverage of most internal
regions of the object without intersecting it’s boundaries.
Similarly, simple heuristics can be used to introduce a back-
ground scribble that remains sufficiently close to the ob-
ject of interest without actually overlapping with it. For
contour-based algorithms, we create a human-shape like
auto-contour based on the detected joint locations in the im-
age plane. Using such an approach an initial contour can
breach the boundaries of the object without affecting the fi-
nal result. The resulting output scribbles or contours feed
into the segmentation algorithm yielding an automatic seg-
mentation procedure.

By solving both the joint localization and segmentation
problems we can exploit the results to introduce a body part
aware cropping technique. This then further enables sep-
arating the observed person into their constituent compo-
nents such as arms, legs, torso, head, and then using images
with a transparency channel active in the region of the back-
ground segmentation mask. We demonstrate the generation
and simulation of a re-posable and physically actuated pla-
nar marionette using our pipeline.

2. Related Efforts
To the best of our knowledge the proposed algorithmic

scheme is the first to use pose estimation and image seg-
mentation to explicitly crop body elements for the problem

of image based subject manipulation. Direct comparison
to related works is therefore somewhat challenging. How-
ever, individually, pose estimation and image segmentation
have a rich history in the field of computer vision. For pose,
the Pictorial Structures (PS) model was introduced by Fish-
ler and Elschlager [12] in the 70s. It was later exploited
by Felzenszwalb and Huttenlocher in [10] and then culmi-
nated in the now classic Deformable Part Models [9] for
pose modeling. Similar to the PS method, Yang and Ra-
manan [31] introduced a flexible mixture model learned us-
ing Support Vector Machines (SVM), while Johnson and
Everingham [17], suggested to integrate a set of different
classifiers thereby providing a more robust approach to part
detection. Following the improved ability to train deep neu-
ral networks using GPUs [19] several methods were intro-
duced to exploit CNNs for human pose estimation. Work
by Tompson et al. [26, 27], successfully used a multi-scale
CNN for rough initial estimation of joint locations and re-
fined the final pose using a graphical model. Similarly the
DeepPose method, introduced by Toshev and Szegedy [28],
uses a CNN to perform an incremental coarse-to-fine lo-
calization of joints. Interestingly, recent work by [14] has
shown that DPMs are in fact neural networks, further justi-
fying the transition to neural network based approaches.

Although pose based methods provide joint localization
they do not directly provide pixel level labelling of body
components. There is however an intrinsic relationship be-
tween object part boundaries and the joints which define
their extent. Without pose knowledge, extracting bounded
areas of general objects with pixel labels is typically per-
formed by general image segmentation methods. These
commonly use sparse user-provided scribbles together with
various image statistics in order to initialize their segmen-
tation pipelines. Classic graph cuts based techniques try to
produce a foreground/background segmentation by solving
a min-cut/max-flow problem over the image, as done by the
GrabCut family of algorithms [24, 25]. Somewhat related
to the graph based approach are those that exploit weighted
geodesic distances in order to produce segmentation maps
[1]. While geodesic distances are usually approximated us-
ing Dijkstra’s algorithm on the graph of image pixels, other
methods utilize alternative image based graphs in order to
obtain more refined results, such as the level set tree ap-
proach of Dubrovina et al. [7]. Another classic approach in
computer vision for performing image segmentation is by
directly locking on to an object’s contour such as in the im-
plicit curve evolution approach of Castelle et al. [4]. Inter-
estingly, although this method uses an implicit and topolog-
ically closed representation of an object contour, we can still
use our auto-scribble based initialization as we will show
in Section 3.2.1. In contrast to general segmentation ap-
proaches, semantic segmentation methods learn the visual
characteristics of a given set of object classes. CNNs have



recently been applied in this domain and shown promising
results. The scene-labeling method by Pinheiro and Col-
lobert [23] and the the Fully Convolutional Networks (FCN)
proposed by Long et al. [20] are two such examples. A
notable extension of [20] is the end-to-end training of a
FCN with a Conditional Random Field (CRF) introduced
by Zheng et al. [32]. This method uses global and local
cues to produce more refined segmentations compared to
previous efforts.

Similar to our work, the connection between pose and
segmentation has been explored by other researchers. The
model proposed by Wang and Koller [29] optimizes both
pose and pixel-wise segmentation with a relaxed dual de-
composition. They solve the two problems together by us-
ing cues from one solution to improve the other. However
their results produce qualitatively jagged edges, use a com-
putationally expensive message passing scheme and does
not aim to perform part specific segmentation. Ferrari et al.
[11] suggest an approach for upper body pose estimation
that uses rough segmentation, based on the head location,
in order localize the area of search for the other joints. Al-
though their method produces rough part outlines, it does
not result in part specific segmentations. similarly, the work
of Kohli et al. [18] suggests using a CRF based approach
with a ”stickman” prior to produce better segmentation re-
sults but does not provide part level labels. Unlike these
methods the PaperDoll framework of Yamaguchi et al. [30]
does provide explicit part labels but is not appropriate for
our problem because it is specifically aimed at recognizing
clothing items, not body parts. It also depends on a near-
est neighbour search with a high computational and stor-
age penalty, something which our approach does not suffer
from.

3. The Proposed Method

The algorithm consists of two main parts; in the first we
apply a human pose estimation algorithm to the image, gen-
erating the human pose from which we automatically de-
rive the so called auto-scribbles. Those scribbles are then
used in the second phase as priors for our segmentation al-
gorithm. We start by describing the proposed human pose
estimation method.

3.1. Human Pose Estimation

Our baseline approach is derived from the method sug-
gested by Tompson et al. [27] as it has been shown to pro-
duce state-of-the-art results on challenging datasets. The
CNN network takes an input image and returns a set of heat-
maps, one map per each joint, representing the probabil-
ity of the joint to reside at different locations in the image.
These heat-maps are then used to derive the pose estima-
tion, as shown in figure 2.

Figure 2: Pose estimation results of our method.

Figure 3: The neural network architecture, depicting the
feature maps during the process. The layers are described
between the matching feature maps.

3.1.1 The Network Architecture

A general solution would be to apply a sliding window part
detector over an input image resulting in a class label prob-
ability vector for each pixel. Concatenating all the pixels
results in a multichannel probability map with the ith chan-
nel representing the localization probability or heat map for
the ith joint. Each map therefore encodes the likelihood
that a joint will be localized at a particular location as can
be seen in Figure 4.

Because we use a CNN the network convolutions di-
rectly provide this sliding window framework. When an
input image is fed into the network, the convolutional filters
are applied to each patch locally, resulting in dense feature
maps describing local features of the patches. Those feature
maps are then passed through another set of convolutional
filters emulating a fully connected network. This results in
the neural network architecture presented in Figure 3, which
is fed with an input image as a whole, and returns an heat-
map over the image for each joint. Further details of the
architecture can be seen in the supplementary material to
this paper.

One can see that the disadvantage of this method, com-
pared to a sliding-window approach, is the significant loss
of resolution during the pooling steps, though the provided
resolution was still sufficient for our needs.

3.1.2 Extracting the Joints

The model described above takes an image and returns a
set of heat-maps matching each joint. If we assumed that



predicted heat-maps were accurate then one could simply
take the maximal value from each map and denote it as the
matching joint location. However, the locations provided by
the CNN can be very unstable. In other words small vari-
ations in the input can lead to a large variation in the pre-
dicted location of the joint. We now introduce our approach
for processing the heat-maps and localizing the joints.

3.1.3 Reverse Ensembling

In order to overcome the instability of the network we pro-
pose a form of model ensembling which we call reverse en-
sembling. In typical ensemble methods multiple models are
trained and applied to the same input image and the results
are aggregated. However here we reverse this logic and ap-
ply the same trained model to multiple deformed variations
of the same image and then reverse the deformations on the
predicted outputs and aggregate the reversed results. There-
fore, instead of relying solely on the heat-maps generated
from the single input image, a set of transformations is ap-
plied on the input image to create an augmented input set.
Each transformed image is then fed into the network, and
an inverse transformation is applied on the localization re-
sults. Similar to regular ensembling this method gives us
a set of ”different opinions” regarding the whereabouts of
the joints, which can be then combined to get a statistically
more stable result. Apart from the significant performance
improvement we obtain using this method, we also note that
the added computational complexity can be easily offset by
running each prediction in parallel.

A straightforward way to aggregate the results is to sum
up all the heat-maps, resulting in a single final map, where
the maximal value represents the pixel that has the max-
imum sum. However we improve on this simple linear
combination by defining a confidence value for each heat-
map. By examining our predicted heat-maps we found that
good results tend to look like Gaussian and are concen-
trated around the joint location, as defined in our training
set. However, when the network has a low confidence in the
joint location, a more scattered and sparse heat-map over
the image is obtained as shown in Figure 4.

The pixel with the highest probability is extracted from
the joint specific heat-map, and a new heat-map is gener-
ated with a Gaussian centered around the extracted pixel.
The joint prediction confidence is then defined by the Mean
Square Error (MSE) between these two heat maps, normal-
ized by sum of energy of the two maps. High MSE values
yield low confidence, and vice versa. For the reverse enem-
bling these confidence values are used to calculate a con-
fidence weighted-sum of the heat-maps thus reducing the
influence of incorrect estimations on the final result. An ex-
ample of the stabilizing effect of reverse ensembling can be
seen in Figure 5.

(a) (b) (c)

Figure 4: Heat-maps results with different confidence val-
ues. (a,b) are results with high confidence, while (c) is one
with low confidence.

(a) (b) (c)

Figure 5: The process of ensembling. In (a) we can see the
different results colored by the originating network, while in
(b) the results are colored by the matching joint. Though the
results are centered about the right joint, there are notable
deviations. Figure (c) shows the ensembled result.

3.1.4 Color-based Tuning

One of the more difficult set of joints to find with sufficient
accuracy are the wrist joints; as they are often thin and even
small deviations can place a prediction outside the bound-
aries of the body. In order to improve the localization accu-
racy of the wrist joint we define a wrist specific correction
mechanism. To do so we note that, unlike the wrist, the
head is usually detected with high accuracy, as it covers a
relatively large area and includes distinctive features. Given
the head location we can infer the color of the subject’s face
and therefore general body skin tone which will also apply
to the wrist. This information can be utilized for refining
the joint location.

To obtain the skin color profile we predefine a set of
points about the predicted head location with the sampling
radius automatically set to be proportional to the distance
between the detected shoulder locations. The gathered sam-
ples are then used to generate a skin likelihood map. We
then sum this with the wrist localization heat maps and
recompute the predicted wirst locations. This correction



(a) (b)

(c) (d)

Figure 6: The process of tuning. (a,c) show the original
joint heat-map on the left column, the pdf heat-map on the
right column, and the combined heat-map in the middle col-
umn. While (b,d) show in red the extracted maximum after
tuning, compared to the the original maximum in blue.

mechanism causes detections placed off of the body to be
nudged towards the base of the hand as can be seen in Fig-
ure 6.

3.2. Full Body Segmentation

We perform segmentation by using any of a family of
segmentation procedures which depend on scribble based
initialization. We briefly cover the general approach of
these methods and then describe our auto-scribble ap-
proach.

3.2.1 Scribble Based Segmentation Algorithms

Generally, in scribble based or contour based segmentation,
the algorithm is provided with a pair of input scribbles or
an initial object contour. Let F be the foreground scribble
and B be the background scribble. The group of pixels la-
beled by the label L ∈ {F ,B} will be denoted as ΩL. From
those input scribbles, a foreground likelihood function can
be derived for the whole image. First, a color profile for the
foreground and background is obtained from ΩF and ΩB,
by generating color likelihood maps from the scribble pix-
els. We denote these likelihoods by Pr(x|F) and Pr(x|B),
respectively. The relative likelihood for a pixel to belong to
the foreground is then defined as

PF (x) =
Pr(x|F)

Pr(x|F) + Pr(x|B)
(1)

For contour based algorithms, one first defines an initial
curve inside the resulting likelihood image. A contour evo-
lution algorithm is then applied to deform the curve towards
the object boundaries. We use a piece-wise constant seg-
mentation model based on Chan and Vese [5], applied to the
likelihood image PF (x) with geodesic active contour reg-
ularization [4] and contour evolution performed using the

level set framework of Osher and Sethian [22].
In a similar fashion, in distance-based algorithms [1, 7],

one first defines the weighted geodesic distance between a
pair of pixels

d(s1, s2) := min
Cs1,s2

1∫
0

|W · Ċs1,s2(p)|dp (2)

where Cs1,s2(p) is some path connecting the pixels s1 and
s2, and the weight function is derived directly from the like-
lihood function such that W = ∇PF (x).

The weighted geodesic distances are then calculated
from both scribbles to each and every pixel by applying dis-
tance calculation on the image graph [1] or on the level-set
tree of the image [7, 3, 13]. The segmented object is finally
defined as the group of pixels that are closer to the fore-
ground scribble than to the background scribble based on
the respective weighted geodesics distance maps.

3.2.2 Auto-scribbles

In order to eliminate the need for user input we exploit the
estimated pose to generate auto-scribbles. These are heuris-
tically defined scribbles which are problem specific. It is
useful to note however that the methodology is not unique
to a human form and could be applied for other articulated
objects.

The extracted joint locations are first used to create a
skeleton-like foreground scribble, connecting the detected
joints. We predefine the scribble connections between joints
in order to generate a scribble that covers most internal re-
gions of the subject, without breaching the background. The
background scribble is introduced using simple heuristics
based on human proportions, resulting in a scribble that is
sufficiently close to the object of interest, without actually
intersecting with it. Some resulting scribbles can be seen in
the first row of Figure 7. Note that a larger region is marked
inside the head as it involves a relatively larger support com-
pared to the rest of the joints. Furthermore the feet and wrist
scribbles are extended in proportion to the body size in or-
der to capture both the hands and the shoes. For the contour
based algorithms, a human-like contour is defined by using
the outer contour of a binary morphological dilation of the
previously defined foreground scribble. Examples can be
seen in the second row of Figure 7. We note that although
this initial contour may in fact breech the boundaries of the
object it will subsequently be corrected by the robust curve
evolution.

3.2.3 Body Part Cropping

Once the auto-contour or auto-scribbles have been gener-
ated the next step is to apply the chosen segmentation al-
gorithm. This results in a direct full body segmentation



Figure 7: Automatically generated initial shape contours
and extracted part label maps.

which separates the subject from the background. The sub-
ject’s sub-segments are then extracted by defining cropping
regions aligned with links defined between joint locations
of specific limbs and body parts. Together with the back-
ground label this step provides a body part identity labeling
of every pixel in the input image. An example of such a la-
beling and sub-segment crop shapes can be seen in the third
row of Figure 7.

4. Implementation Considerations
4.0.4 Training considerations

Several datasets exist for human pose estimation. We
trained our model on the FashionPose dataset [6], as it con-
tains a set of images with relatively natural and front facing
poses, as required for body parts extraction. Other datasets,
like the LSP dataset [16], were too general for our needs.
We first resized images to a fixed 200 × 200 frame a Local
Contrast Normalization (LCN) filter to normalize intensity.
Probability maps were created for each joint in the form of
a 2D Gaussian concentrated around the ground-truth’s joint

location. We use Caffe [15] for our CNN implementation.
To prevent overfitting the dataset was augmented by adding
transformed variants of the existing images. The transfor-
mations included flipping around the horizontal axis, and
rotations of the image by a small angle (±10 degrees). One
challenge we encountered was that the network tended to
enter insignificant local minima. For many training config-
urations the network successfully learned most of the joint
heatmaps, except for a random heat-map that would be ze-
roed for every input. Once a heat-map is zeroed, the net-
work tends to keep it that way, making it hard to train a
fully-working model. To overcome this we used AdaGrad
[8] to train our initial network, resulting in a more stable
learning process that produced results without any zeroed
heat-maps. The network was then fine-tuned using simple
Stochastic Gradient Descent (SGD).

The segmentation algorithm was implemented using
OpenCV and its C++ interface, resulting in a fast and effi-
cient algorithm. Dijkstra’s algorithm was used as a distance
function, due to its simplicity and low complexity. For the
likelihood estimation the FIGTree algorithm was used [21].

4.0.5 Scribbles Considerations

It is important to understand that the segmentation algo-
rithm is sensitive to mistakes in the scribbles. If a pixel is
inside the foreground scribble, then the algorithm assumes
it is a foreground pixel, and uses it for the distance com-
putation. Thus, if the line breaches the object boundary, it
could associate a background region with the foreground.

Thus, guiding foreground-scribble to pass through nar-
row regions with low probability of the joint locations could
be risky. Instead of ignoring those regions, they can used
for estimating the pdf, but avoided when considering the
starting points for the distance calculation. The influence of
small deviations in the pdf would not have a large impact
on the estimated probability.

4.0.6 Partitioning the Extracted Object Body

As noted in 3.2.3, the known joint locations are used to di-
vide the segmented object into its sub-segments, thus ex-
tracting the different body parts. For exact segmentation re-
sults some more points of interest are required, such as the
neckline, the intersection between the hands and the body,
and the intersection between the legs. Our already found
segmentation is utilized in order to find those points of in-
terest.

4.1. Puppet Simulation

In order to demonstrate the proposed framework, a server
was set-up, wrapped by a friendly user-interface, to allow
users to easily upload an image and apply the above method.



avg Head Shoulder Hip Elbow Wrist Knee Ankle

With Ensembling 62.87 86.01 80.00 78.43 55.56 54.25 56.47 58.30 43.92 46.01 70.20 68.10 60.65 59.48
Without Ensembling 59.29 84.97 77.39 76.34 50.85 49.15 51.24 49.41 41.83 43.27 68.37 65.49 56.21 56.34
Dantone et al. [6] 52.02 71.35 66.84 64.13 65.68 59.61 43.87 40.90 33.55 28.00 55.48 53.55 47.23 46.06

Table 1: Accuracy of all the extracted joints with a 0.1 Torso units threshold. The table shows a significant improvement
achieved with the ensembling technique.
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Figure 8: Figure a shows the success rate of our Human Pose Estimation with the measure defined in 5.1. Our results are
compared to Dantone et al. and to Yang et al.. Figures (b, c) Shows Precision-Recall plots with respect to the confidence
measure defined in 3.1.3, comparing the accuracy of selected joints with and without ensembling.

The result is then visualized in the format of a human pup-
pet composed of the different segmented body parts. The
puppet can then be manipulated in the plane, as a ragdoll.
The ragdoll itself is based on a d3.js force graph 1, with con-
stant forces between the nodes maintaining a human form.
The demo will be made publicly available on publication.
A video of the procedure can be seen in the supplementary
material.

5. Results
We demonstrate the results of the two main components

of the suggested framework; namely, pose estimation and
body segmentation.

5.1. Human Pose Estimation

The proposed joint locations estimation was tested on the
FashionPose dataset, using the evaluation procedure sug-
gested in [6]. According to this method, the euclidean dis-
tances between the ground truth and the results is normal-
ized by the torso size. Table 1 shows our results compared
to the best results of Dantone et al. [6] using this measure.
In addition, Figure 8 shows the improvement achieved with
the ensembling method compared to our basic method, over
some of the joints. While Figure 9 shows the success rate
of the left and center joints.

1http://d3js.org/
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Figure 9: Accuracy plots for the head and the left side joints
using the measure defined in 5.1.

5.2. Whole Body Segmentation

The body segmentation algorithm was tested using a
small test set captured for our needs. The set was used
to check the effectiveness of the input generation, and to
compare our scribble-based implementation with the curve-



Figure 10: Comparison between different segmentation algorithm results using our input, the Semantic Segmentation algo-
rithm [20] is included for reference. The methods are, from left to right, our curve-based implementation, our scribble-based
algorithm, OneCut [25] with our generated input, and Semantic Segmentation [20].

based one. Results show that, compared to the scribble-
based algorithm, the contour-based variant was less prone to
take small artifacts from the background, due to the smooth-
ness constraint. However, it does not guarantee continuity
of the segmented object, as the curve might evolve into sev-
eral smaller ones. Experiments also show that using the
likelihood function for weights can cause the segmentation
to bleed into the background, in images where a high simi-
larity exists between the object and the background.

Our automatic input generation was also used as input
for the OneCut Algorithm presented by Tang et al. at [25],
showing that it can be easily transferred to similar algo-
rithms. One can see that our automatic pipeline was able
to produce good results on the samples shown in Figure 10.
The Semantic Segmentation algorithm of Long et al. [20],
is also presented as a state-of-the-art reference for automatic
segmentation.

6. Conclusions

We proposed a framework that combines Neural Net-
works with model based segmentation for automatic extrac-
tion of frontal poses of human images. Using Neural Net-
work in an indirect manner, allowed us to exploit its power
while avoiding the need for creating a large dataset specific
to the task. As part of the method, an ensembling technique
that uses an augmented input data was introduced. The use
of ensembling improved the accuracy of the estimated posi-

tions of the detected joints. More importantly, it eliminated
most cases in which the estimated location of a joint was
far from its real location, providing a reliable input for the
automatic segmentation phase.

An important contribution is the replacement of the user
input scribbles in a classical interactive segmentation algo-
rithm by a result provided by a Neural Net. This concept
can be adopted and adapted for a wide variety of segmenta-
tion tasks for specific objects. Our future efforts will focus
on extending the segmentation part to handle more general
human poses. This could be achieved with other model
based segmentation algorithms, like the Geodesic Active
Contours. In that specific case, only an initial guess about
the object’s boundaries should be provided by the net, while
a variational principle then refines the given contour and
guides it to nearby locations with high gradients. We also
plan to extend the simulation and incorporate the control
method suggested by Bar-Lev et al. in [2].
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