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Abstract 

The goal of the project is to develop an algorithm for face reconstruction from monocular RGB 

video.  

Recently it has been shown that neural networks can achieve accurate results for single-image 

facial reconstruction, outside the scope of limited linear models.   

In this project we will explore the world of 3D Face Reconstruction from video by using the 

following approaches:   

• Extending the 2.5D output of current single-image methods with state-of-the-art geometric 

algorithms for dynamic 3D reconstruction to incrementally build a complete high-quality facial 

model.  

• Experimenting with novel deep learning architectures to directly regress 3D models from images 

and also using recurrent neural networks to make use of temporal information. 
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Previous works 

Unrestricted Facial Geometry Reconstruction Using Image-to-

Image Translation 

It has been recently shown that neural networks can recover the geometric structure of a face from 

a single given image. Many existing face geometry reconstruction methods restrict the solution 

space to some low-dimensional subspace for example by directly regressing coefficients of a 3D 

Morphable Faces Model. As an alternative, an Image-to-Image translation network that jointly 

maps the input image to a depth image and a facial correspondence map was proposed in 

“Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation” viii. Resulting 

depth and face correspondence can be then utilized to provide high quality reconstructions of 

diverse faces under extreme expressions, using a purely geometric refinement process consisting 

from geometric deformation and refinement steps. Both qualitative and quantitative analyses 

demonstrate the accuracy and the robustness of this approach. 

DynamicFusion: Reconstruction and tracking of non-rigid scenes 

in real-time 

DynamicFusioni is the first real-time dense dynamic scene reconstruction system, which succeeded 

to remove the static scene assumption pervasive across realtime 3D reconstruction and SLAM 

systems. It achieved this by generalizing the volumetric TSDF fusion technique to the non-rigid 

case, as well as developing an efficient approach to estimate a volumetric 6D warp field in real-

time. DynamicFusion obtains reconstructions of objects whilst they deform and provides dense 

correspondence across time.  

In this project we’ll try to combine both systems in order to recover the geometric structure of a 

face from a video by incrementally building a detailed face model. 

Convolutional mesh autoencoder 

The deep learning approach is based on COMAii work. In the work authors used convolutional 

mesh operators in spectral domainiii and down/up sampling using QSLIM like approachiv in order 

to encode mesh of 5023 points into 8 real numbers and decode it back with low error.  

Chebyshev spectral convolution 

The Laplacian of the graph is defined as 𝐿 = 𝐷 − 𝐴, where 𝐷𝑖𝑖 is degree of vertex 𝑖 and 𝐴 is 

adjacency matrix of 𝐴.  

The Chebyshev polynomial of order 𝑘 is given by 𝑇𝑘(𝑥) = {
1 0 = 𝑘
𝑥 1 = 𝑘

2𝑥𝑇𝑘−1(𝑥) − 𝑇𝑘−2(𝑥) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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The filter defined as 𝑔Θ(𝐿) = ∑ Θ𝑘𝑇𝑘 (
2𝐿

𝜆𝑚𝑎𝑥
− 𝐼)𝐾−1

𝑘=0 , where 𝜆𝑚𝑎𝑥 is largest eigenvalue of 𝐿, and 

Θ𝑘 is trainable parameter and the convolution 𝑦𝑗 = ∑ 𝑔Θ𝑖,𝑗
(𝐿)𝑥𝑖

𝐹𝑖𝑛
𝑖=1 . 

Down and up sampling  

Down sampling is performed by multiplication with binary sparse matrix 𝑄𝑑  which is constructed 

by contracting vertex pairs iteratively by minimizing surface error approximation. And up 

sampling matrix 𝑄𝑢  is built at the same time. During down sampling original vertex mapped into 

down sampled surface by projecting it into closest triangle and computing barycentric coordinates, 

the up sampling weights are chosen respectively. 

 
Figure 1. QSlim mesh down sampling 

Preprocessing 

In articles authors worked on low resolution meshes which they standardized vertex wise (the latter 

fact appeared to be crucial for learning). 

Morphable Face Models - An Open Framework  

Basel Face Model BFM-2017 

One of the contributions of the workv is PCA basis of face shape (𝑆), expression (𝐸) and colors 

(𝐶). Now if we denote as ⋅𝑏,⋅𝜇 ,⋅𝜎 the basis, mean and standard deviation of PCA basis, then points 

of new mesh could be generated as (𝑆𝜇 + 𝑐𝑠 ⋅ 𝑆𝜎 ⋅ 𝑆𝑏) + (𝐸𝜇 + 𝑐𝐸 ⋅ 𝐸𝜎 ⋅ 𝐸𝑏) and colors as 𝐶𝜇 + 𝑐𝑐 ⋅

𝐶𝜎 ⋅ 𝐶𝑏. And if with 𝑐𝑠, 𝑐𝐶 , 𝑐𝐸  changing smoothly in time, one can generate a mesh video. 
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Figure 2. From left to right: shape, shape with color, shape with color and emotions 

Unsupervised Training for 3D Morphable Model 

Regression 

Differentiable, 3D mesh renderer using TensorFlow 

One of contributions of an articlevi is implementation of renderervii which allowed us to create 

input synthetic images on the fly for training and validation and, what is more important, allowed 

us to add “rendering loss”. 



5 

 
Figure 3. Rendered facial mesh 
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Solution 

“Unrestricted Facial Geometry Reconstruction” applied to video 

 
Figure 4. Algorithmic pipeline 

The algorithmic pipeline of the system is presented in Figure 4. Algorithmic pipeline The input of the 

network is a facial image, and the network produces two outputs: The first is an estimated depth 

map aligned with the input image. The second output is a dense map from each pixel to a 

corresponding vertex on a reference facial mesh. To bring the results into full vertex 

correspondence and complete occluded parts of the face, we warp a template mesh in the three-

dimensional space by an iterative non-rigid deformation procedure. Finally, a fine detail 

reconstruction algorithm guided by the input image recovers the subtle geometric structure of the 

face. 

 

Figure 5. Recursive NRR 
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We started our work by using the most straightforward approach to extend the previous pipeline to 

the video. More specifically, we used original network to obtain dense per-pixel depth and face 

correspondence. 

First depth frame is processed similarly to the original approach where we try to deform a known 

template to a mesh obtained by connecting neighboring pixels of depth frame. When next frame 

arrives, instead of using the same original template we use previous output mesh for this task. 

Since subsequent frames contain the same face, usually with only slight non-rigid motion, this 

approach helps to dramatically reduce number of iterations needed for Elastic Deformation 

algorithm to converge. Furthermore, we found that this way the final meshes behave much 

smoothly in temporal domain producing more perceptually pleasing results. The downside of the 

approach is accumulative mesh deformation artifacts which lead to divergence due to numerical 

inaccuracies. In this case template mesh suddenly “explodes” and we are forced to reset template 

mesh to the original one and start NRR algorithm with more iterations. Our results presented in 

Figure 2 – successful frame reconstruction on the left as well as frame with mentioned deformation 

artifacts on the left. 

Fine detail reconstruction algorithm is left without changes and is applied on each mesh one-by-

one. 

Further improvements to recursive NRR 

After identifying and analyzing the problems of previous approach we decided to design and 

implement some algorithmic improvements to increase its accuracy and robustness. 

Firstly, we refactored the code and optimized it for better performance (e.g. removing duplicate 

code, optimizing, playing with parameters) so now all the steps except of NRR take less than a 

second. 

We found that many of the issues of previous approach were caused by partially inaccurate or 

noisy output of Image-to-Image network. 

In order to tackle the issue of invalid input to NRR (such as strange blobs outside the face or 

distorted values inside it) we developed a simple algorithm to detect and discard the invalid 

network output. 

The algorithm builds mask based on smoothness of x and y correspondence map estimated by the 

Figure 6. Our depth filtering and corresponding reconstructions 
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network – ideally they should be spatially smooth (nearly planar), so we can detect inaccuracies by 

applying thresholding to these coordinates filtered by a Laplacian-of-Gaussian kernel. We found 

this approach to perform reasonably fast and consistently. Since in our case it's more important to 

preserve correctness of canonical model (rather than trying to preserve as much detail as possible) 

we used a relatively low threshold to discard all the outliers with high confidence. 

This results in target mesh which is often half-empty but contains only valid vertices. Registering 

partial meshes requires special handling so we changed NRR the algorithm accordingly. 

First we detect border vertices on the target mesh and store them. All template vertices that 

correspond to them will be "frozen" which means we will increase their membrane term, so that 

they’ll move rigidly relatively to their neighbors.  

Additionally, we introduced more robust matching scheme: when looking for pncc/coordinate 

correspondences we discard ones with high forward-backward errors. We begin by nearest 

neighbor search in target mesh for each template vertex. Then we search for nearest neighbor of 

previously found vertices and look for distance between the result and initial mesh: if it’s higher 

than some threshold we “freeze” these vertices as well. 

We also improved affine alignment by introducing the forward-backward trick, which helps to 

remove outliers. Then we added an option to iteratively fit the transform using all inliers (instead 

of minimal set in RANSAC) which gives better results on average and converges more quickly. 

The results of our new approach are presented in Figure 3. You can see 2 frames were incorrect 

depth values are identified and then modified Elastic Deformation algorithm successfully 

reconstructs the mesh. 

Although our modifications significantly improved the robustness and also speed of the original 

approach, we found them not sufficient neither for real-world scenarios nor for real-time operation. 

The main performance bottleneck is decomposing and solving formulated energy problem which 

contains approximately 3*25k variables. Current implementation needs 5 seconds to only calculate 

LU decomposition which must be done several times for each frame. 

This leads us to conclusion that decreasing the number of estimated variables is crucial for 

reasonable performance. We’ll address this issue in the next section. 
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Moving to Dynamic Reconstruction approach 

As we already mentioned DynamicFusion was the first system to successfully perform non rigid 

dynamic reconstruction in real-time. We started by looking for some open source implementations 

of the algorithm. After integrating the code to our pipeline, we got the results depicted in Figure 4: 

As can be seen, there are some visible artifacts in the reconstruction. In our opinion it can be 

caused by failing to correctly estimate the warp field which leads to misalignment artifacts 

smoothed by TSDF fusion. The code was also almost 1000x slower than stated in the paper and 

incredibly difficult to get working.  

Modifying and implementing DynamicFusion for Facial 

Reconstruction 

After previous attempt we decided to implement the algorithms by ourselves.  

We also identified some important changes to the original algorithm which would help to simplify 

the implementation and increase frame-rate: 
• Since we have some prior knowledge about the scene, we can use a known template as a starting 

canonical model 

• This enables us to calculate Embedded Deformation and Regularization graphs only once and re-use 

them for each new frame 

• Additionally, in this case there’s no need to use TSDF fusion to accumulate new data as the meshes 

can be added by simply fusing transform graphs 

• This also removes the need to implement TSDF calculation and Marching Cubes algorithm in order 

to move from voxel representation to mesh and vice versa. 

Figure 7 - open source DynamicFusion implementation 
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The first component of the algorithm is Embedded Deformation approach in which instead of 

estimating per-vertex transformation parameters we define a sparse graph of transformation nodes. 

Then each vertex is transformed using weighted average of nearest nodes. Similarly to the original 

paper, we defined the graph of dual quaternions and used Dual Quaternion Blending for per-vertex 

calculation. 

   

 

 

 

 

 

 

 

 

 

Figure 5 illustrates two approaches to building Embedded Deformation graphs: mesh decimation 

which aims to minimize geometric distortion of resulting mesh and farthest point sampling which 

tries to maximize the minimal distance between each pair of nodes. We found the later approach to 

perform much better since it leads to more uniform coverage of the mesh and unlike mesh 

decimation doesn’t have a lot of redundant nodes at the edges. Then we used knn search to define 

regularization graph. In our experiments we found that 700 is optimal number of nodes to achieve 

best performance / accuracy tradeoff. 

Figure 8. Embedded deformation graph built by mesh decimation (center) and 

farthest point sampling (right) 
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Figure 9. Data terms illustrations 

After this step, we proceed to defining different energy terms similarly to DynamicFusion. 

Data terms are: 
• Point term: 𝑟𝑝𝑡−𝑝𝑡,𝑛 = (𝑑𝑖 − 𝑠𝑖)𝑛 

Although this term is not present in the original algorithm, we found that it improves convergence  

• Point-to-Plane term: 𝑟𝑝𝑡−𝑝𝑙 = (𝑑𝑖 − 𝑠𝑖) ∙ 𝑛𝑖 

• Also, in future color/pncc correspondence terms could be added 

In any case, noise, missing data and insufficient geometric texture in the live frame – an analogue 

to the aperture problem in optical-flow – will result in optimisation of the transform parameters 

being ill-posed. How should we constrain the motion of non-observed geometry? Whilst the fully 

correct motion depends on object dynamics and, where applicable, the subject’s volition, we make 

use of a simpler model of unobserved vertices by enforcing spatial continuity with corresponding 

regularization terms: 

• Smooth Transformation term 

Similarly to DynamicFusion we regularize difference between neighboring nodes’ transforms using 

L2 norm 

• Conformal Mapping term 

In original DynamicFusion implementation Dual Quaternion Blending was used were the final 

transforms are normalized by quaternion’s norm. We decided to remove this normalization similarly 

to recent Fusion4D paper as it improves convergence and reduces computations. In this case a scale 

DoF is added to the (original) rigid transform. Instead we add a soft regularization term which 

forces quaternion’s norm to be close to 1. 

• Levenberg-Marquardt dumping term 

The main computational complexity in minimizing E involves constructing and factorizing the 

Gauss-Newton approximation of the Hessian:  

(𝐽𝑇 ∙ 𝐽 + 𝜆 ∙ 𝐼) ∙ 𝛿 = 𝐽𝑇 ∙ 𝑓 

 



12 

 
Figure 10. Levenberg Marquardt algorithms converges much quickly compared to gradient descent 

We used several techniques to improve the speed:  

• Evaluating 𝐽𝑇 ∙ 𝐽 and 𝐽𝑇 ∙ 𝑓  in place instead of explicitly storing them in the memory 

• Similarly to DF algorithm we neglect off-block-diagonal data terms 

• Most operations are highly parallel, so our vectorized Matlab implementation achieves 

reasonable frame-rate (almost 25x faster than previous approach) mainly due to lees 

overhead of matrix solver 

• We also implemented significant part of the algorithm to be run on GPU using CUDA 

framework and interfaced it to Matlab with CudaMex. This indeed gave us significant 

performance boost and we saw potential for real-time performance. Unfortunately we got 

stuck on trying to implement NN-search on GPU and later found it increasingly difficult to 

mae algorithmic changes to GPU code so we decided to completely move to Matlab branch 

of the algorithm. 

We believe, that in future our work could be finished to achieve real-time frame-rates. 

Results of the final algorithm are in Figure 8: 
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We 

also found it helpful to dynamically decrease smoothness term similarly to Elastic 
Deformation implementation provided by Matan and Elad, as this helps to avoid getting 
stuck near local minima after first iterations. 
As can be seen our algorithm achieves convergence although some artefacts are visible 
as well. 

After implementing a single-frame alignment scheme we decided to extend the algorithm 
to video by initializing node transform by values from the previous iteration. 
We also found it helpful to initialize the template by result of the original recursive NRR 
applied to the first frame. 
Figure 9 shows a successful frame on the left as well as a failure case on the right. 

Figure 11. Our DynamicFusion implementation after a couple iterations and near the 

convergence 

Figure 12. Our algorithm applied to a video 
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After evaluating the new algorithm on our test set we came to conclusion that the new 
approach doesn’t provide significant improvement in terms of perceptual quality. From the 
other hand it is much faster which makes it significantly more suitable for practical 
applications.  
Additionally, the usage of non-linear optimization could help us to introduce more data 
terms and also add robust regularizers (instead of L2 norm). 
We’ll address this points in the following section. 

Picture to vertex 

We used encoder decoder model like suggested in COMA, replacing mesh encoder with picture 

encoder, increasing latent space from 8 to 165 and few other modifications, until network started to 

work.  

Since QSlim implementation worked unbearably slow on full BMM mesh size, we down sampled 

mean shape with MATLAB reducepatch function. On the beginning we worked on mesh with 

4096 triangles and after debugging moved to 25000 triangles. 

As the input we used images of shape 224x224x3, generated from mesh before down sampling. 

We started by stacking 3 pictures channel-wise and eventually after increasing of network size 

succeeded to regress mesh from single picture. The rendering parameters (rotation, translation, 

illumination, background, focal distance) were generated randomly. Here we should mention the 

clear miss of using single colored background. 

 
Figure 13. Network used for mesh with 4096 faces. Red arrows are image convolutions followed by down sampling. 

Green arrows are fully connected layers. Blue arrows are mesh up samplings followed by mesh convolution. 

 
Figure 14. Network used for 25000 faces. 

Clear advantage of encoder-decoder architecture is its extendibility to predict new targets. For 

example, on some stage we added rotation prediction just as another decoder “tail” from same 

latent space. 

224x224x3x3 128x128x16 64x64x16 32x32x16 16x16x32

165

9x3235x16138x16549x162194x16

224x224x3x3 112x112x16 56x56x16 28x28x16 14x14x32

165

50x32119x32796x323183x1612732x3
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Figure 15. Network for mesh with 4096 faces, also decoding head rotation angle. 

Video to vertex 

In order to generate realistic video, we smoothly changed coefficients for PCA basis and also 

smoothly changed rendering parameters (rotation, translation, illumination, background, focal 

distance). 

We upgraded the previous model by adding LSTM layer between encoder and decoder. Basic 

assumption that with frames progress recurrent neural network is going to remember long time 

information about the identity from previous frames and forget irrelevant information about the 

expressions. 

For some reason, when we tried to train RNN end-to-end the training did not converge, so we had 

to initialize encoder and decoder with weights from picture to vertex model. 

 
Figure 16. Recurrent network for mesh reconstruction 

Normal loss 

Since the resulting mesh often had some high frequency noise, inspired by an articleviii we added 

normal loss to network. We computed it by destandardizing output and ground truth mesh, 

computing for each vertex in each triangle Δ𝐴𝐵𝐶 unit normal vector 
(𝐵−𝐴)×(𝐶−𝐴)

‖(𝐵−𝐴)×(𝐶−𝐴)‖
 and taking mean 

absolute difference of the corresponding coordinates. 

224x224x3 128x128x16 64x64x16 32x32x16 16x16x32

165

9x3235x16138x16549x162194x16

224x224x3x3 112x112x16 56x56x16 28x28x16 14x14x32 165

25

16550x32119x32796x323183x1612732x3

3 
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Figure 17. Normal to mesh 

Rendering loss  

The reasonable thing to demand from picture to vertex network is that the output when rendered 

back with the same parameters as it was generated should be close to input. This was not always 

the case before, so we decided to add this loss. 
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Results 

Picture to vertex 

 
Figure 18. Visual comparison between models trained with different losses 

Table 1. Error (in units of BMF) comparison between losses 

 
MAE Median 

absolute 
error 

RMSE R^2 Std absolute 
error 

90% 
absolute 
error 

Regular 1.91 1.23 2.50 0.9989 1.62 4.05 

Rendering 3.24 1.59 4.27 0.9969 1.62 4.05 

Normal 1.89 1.22 2.47 0.9989 1.62 4.05 
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MAE Median 

absolute 
error 

RMSE R^2 Std absolute 
error 

90% 
absolute 
error 

Normal+Rendering 1.91 1.23 2.50 0.9989 1.62 4.05 

Video to vertex 

  
Figure 19. Mean absolute error as a function of frame in RNN (left) and CNN (right) 

 
Figure 20. Input, CNN and RNN outputs 



19 

 
Figure 21. Model when applied to real world data 

Future Work 

Dynamic reconstruction 

Although we achieved significant improvements compared to original “vanilla” algorithm applied 

frame-by-frame and our straightforward implementation we believe some modifications could be 

done to further improve our solution: 
• First our improvements to recursive NRR such as robust matching and boundary vertices “freezing” 

should be integrated to DF approach 

• Robust cost function such as Huber loss should be used instead of L2 norm, especially for 

regularization 

• Explicit color or pncc losses should be implemented (exploiting the ability to add non-linear losses) 

• Visual tracking or facial landmark detection should be used to ensure better temporal smoothness 

• CUDA version of our code should be finished to achieve real-time performance 

Neural network 

The neural network trained on synthetic data indeed captures some expressions on synthetic data 

dataset, but totally fails when applying on real worlds data. The possible directions to improve the 

architecture are: 
• Separate identity from expression 

• Predict colors  

• Use real data 

o BU-4DFE 

o BP4D 

o 3DMAD 

o Florence 
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o CoMA 

Conclusions 

Dynamic reconstruction 

We presented an unrestricted approach for recovering the geometric structure of a face from a 

video. We demonstrated significant improvements in terms of speed, accuracy and perceptual 

quality compared to single-image methods. Then we further improved our approach by 

implementing a custom dynamic reconstruction algorithm. We believe that after some additional 

modifications our work could be useful for a wide variety of real-world applications. 

Neural network 

 

The picture to vertex model is indeed capable of capturing some features, mostly expressions, but 

it smoothens them and the result is noisy and far from perfect.  

The normal loss indeed helps to reduce the noise. The rendering loss together with normal 

improves the visual result a bit, but without normal loss model does not learn at all. 

The RNN indeed learns some internal state, since its error is decreasing with number of frames, 

and even smooths some artifacts. The learning of RNN end-to-end on current data is problematic, 

we had to initialize it with pretrained CNN. 
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