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Abstract

Driving assistance systerfar tasks sah as aiding in navigation and improving safatg an increasingly

i mportant part of modern vehicles. These systems

preciseocalization Localization estimates for current vehicles come predominantly dgomotive

GPS, buits coarse positioning and issues such as signal unavailabdday that it cannot be relied on for
the accuracy needed for this type of function.

In this work, we propose a visidrased solution for globally localizing vehicles on tbadusing a

single onboard camera and exploiting the availability of priorly ¢@gged street view images from the
surrounding environment together with their associated local point cloudspproacts focused on the
integration of imagdased locization into atracking and mapping system in order to provide accurate
and globallyr egi st ered 6DoF tracking of the vehicleobs
tracks the position of the vehicle using mapping and tracking techniques,indvithbly drift over time,

and combines the tagged images as a source of accurate global positioning in order thheorrect
accumulated driftwvhenever a good match is detected between the camera image and the tagged street
view imagesThe proposed appach is testedn the public KITTI dataset, whiatovess realistic driving
situations andshow that we are able to achieve ezl localization in global coordinate&s our

results indicate, the solution provides a reliable alternative to GPS systeitts s purely based on
vision. We also shw how the localization producéday our method can be utilized to provide accurate

Augmented Reality overlays for a driver assistance application.

vi
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1 Introduction

Precise localization is a prequisite in modern Vecles for tasks ranging from driver assistance to
autonomous driving-or example, augmented reality apps for road navigation tetiagn high

precision pose estimation for pixatcurate graphical overlaya this respect, lankevel localization

with an error of a few meters is the desired goal in most cases. Current localization methods rely mostly
on GPS information. However, GPS signals are not always available &dg. imnnels or in urban
canyons) and are usually accurate up to a range afasevetersThe most reliable solution to the

vehicle localization problem thus far has been through the use bid2Dsensors, sucls éhe Velodyne

[1], which in addition to being expensive, are active sensors with theisewvai challenge€Cameras
provide arattractive ensing alternative to 3Didlars.They have become ubiquitous (found in almost
every mobile device) and cheap and their effectiveness to the problem &akatrdadybeen shown in
literature.

In this wok, we propose a visiofbased solution for globallpcalizing vehicles on the road. Our central
idea is to leverage large image databases, such as Google Street View, as abundant sources of accurate
geotaggedstreet viewimagery.We assume each databasage also contains a sparse 3D point cloud of
its observed environmerko make our approach as general as possible, we only make use of a single on
board camera.

Our work is focused on the integration of imdmesed localization into a retine 6DOFtradking and
mapping systemOur approach incrementally tracks the position of the vefriaie the camera images
using computer vision techniguéghese incremental methoitkevitably drift over timeand are only

given in a local reference framéle utilize he database imagesaschors to the ground truth andaas
source of global positioningn order to correct the drift accumulated and to register localization to the
global reference frame, whenever a good match is deteeteddn he camera image andetistreet view
images.This integration allows us to obtain an accurate continuous pose estimate of the vehicle at all
times, even when trareet viewimages aravide apart angdparsely distributed along roads.

Our approach can be considered as a rel@denative to GPS systems, which computes accurate
positioning from street view images. For this reason, we tested our method o Theviklial odometry
benchmari?2].In the experiments, we show that with our technique weahle to obtain a localization
errorof only a few meters, usually achieving even-mudter accuracy.

Therest of this work is organized as followketfollowing sectior{2) discusses related work. In

section3 we review therequiredtheoretic backgroundsectiond gives a brief overview of the proposed
approachin section5 we layout our assumptions about the gagged street view database and

sections6-7 detail the main building blocks of the approach. Se@idascribes the experimental



procedure and demonstrates the experimergallts Sectiond demonstrates the use of our proposed
system in a simplAR driver assistancapplication We conclude the work in sectid® and in

section 11 we suggest possible directions for future work.



2 Related Work

Vision-based methods to locaditton can be classified into thre®in categories based on the amount of
prior knowledgewe have on the surrounding erriment. Assuming that a model of the target scene is
known, modebased localization techniques can be used. If no information about the target scene is
available, we can use mapping and tracking technigues that simultaneously build the model of the
environment and localize within it. If only partial information about the scene is provided, a combination

of both techniques can be used.

2.1 Model-Based Localization

One line of research has emerged towards roasdd tracking, i.e., tracking directly from a-prade
environment modehat is acquired offlineln this approach localization is performed by matching the
acquiredcameramage directly to the scene model and estimating the position of the camera relative to
the modelMany scene model representati@xsst in literatureAuthors have looked into localizing

images inarge scale metrical 3D point clondaps built from structurfom-motion ( [3], [4], [5], [6] ).
Although localization results are promising, this approach still presents disadvantages. Firstly, it is time
consuming and expensive to reconstraictaccurate map. Secondly, a robot (or another vehicle) has to
visit theenvironmat beforehando build the mapThirdly, matching each query image to the entire point
cloud is computationally expensive and does not scaletavlargescale maps

Other authors have looked into scene models that are already avaidbierelight-weightin the form

of large geetagged image corpora acquired from specially equipped platforms (e.g., Google Street View
data[7]). Zamir and ShalB] build a dense map from 100,000 Google street uieages and then

localize query images by a GR&ybased pruning methoajdik et al.[9] localize a Micro Aerial

Vehicle by matching images acquired framto Street View images. Both methaxdy solvea place
recognitionproblem (that is, topological localization). We, on the other hand, compute ®@H 6

metrical bcalization. Zhang and Kosecki)] triangulate the position of the query image by matching
features with two or more geotaggethges from a large database. Their method relies on the density of
the tagged database images and will not work for tagged images that are wide apart (as no visual overlap
will exist between the query image and at least two tagged images).

All methods metioned above have the additional limitation that the online localization cannot extend
beyond what was captured by the offline model.

In our work weapplytechniquegrom imagebased localization by utilizinglready available getagged
street viewimagesfrom the surrounding environment along with their associaizal point clouds. The

r esul t iofitge efviroarpeais relatively lightweight (not a full reconstruction of tharget
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environment) and can scale up to large areas easily. The lochtlonids are necessary to compute a
6DOF metrical localizatiorin order to filkin the trajectory of the vehicle in places were the tagged

images do not exist we use mapping and tracking metindidsh areoutlined next.

2.2 Mapping and Tracking

Another lineof research is thaf tracking without any prior environment knowledgepopular method

in this category is that of Visual SLAM (Simultaneous Localization and Mappitigyal SLAM systems

use the camera itself to determine device position, by trackihgnapping detectable features in the
surrounding environmenThey aim at obtaining a globally consistent estisvaté t he vehi cl ebs
the mapVisual SLAM has a long history in computer vision and robotics and we refer the refitigr to

for a relatively recent survelpavidson et al[12] were the first to propose monocular SLAM using a
filtering approach. Klein and Murrgyroposed keyframbased SLAM13]. In their approachselected

frames (keyframesgre sampled from the camera and processed using optimizations in a background
thread to produce a point cloud reconstruction (the map). In parallel, the current camera image is tracked
using the maplt was latershown by Strasdat et §14] that the keyframes + optimization approach of

Klein and Murray[13] i based ultimately owell-knownbundle adjustment methodss strongly
advantageous compared to thering methoddike those of Davidson et dlL2]. For this reason current
approaches to monocular SLAM use the forriiée most accurate solutiorisrq et al.[15], Engel et al.

[16], Mur-Artal et al.[17]) provide high accuracy camera tracking in {t&@le, andare based on a Visual
Odometry (VO) component. Visual Odometry corssistdetermining simultaneously the camera pose for
each wdeo frame and the position of features in 3D world, using iomges in an incremental wayd

in real time Nister et al. demonstrated the semimaHime monocular VO systefii8] in 2004.While

current implementsgonsin monocular VOdemonstrate impressive performaiit®], their incremental
characteristics inevitably ledd large drift at long distances, making the localization result unuSahte.

is especially true in the monocular schembere the absolute scale of the world is not observable, thus
leading to rapid drift in scalR0]. We refer the reader {&1] for an in depth tutorial on VO.

The maindifference between VO andcampleteVisual SLAM systenis thefloop closing capability.

By closing loops, localization error caused by drift, especially in a large environment, can be reduced
considerablyln the context of SLAMLoop Closurés the process of detecting an overtegtween the

current map and a pexisting map, and then estimating the registration between the two maps. Typically,
loop closure is used to detexterlaps within a single SLAM map, for example when the path of the
camera crosses over itsérhis forces the vehicldgo drive in loops, so that the algorithm can recognize

the same landmarks and thus compensate for errors in localization. However, driving in loops severely

limitsthevdhi cl eds freedom of mo v énroer nake, veera thtereseedih r i ct s e x
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detecting the overlap of tloeirrent map with some part of thee-existingglobalfimapm mentioned in the
previous sectiofso the vehiclés not forced to drive in loops

Another limitation ofpuremonocular SLAM is that the camera pasenly given in a local reference
system, defined with respect to the first camera fr&imee ourglobal map is given in global coordinates
we can anchor tracking to the global reference frame when detection occurs.

In comparison to the pure modehsedapproaches mentionéalthe previous sectignhe use of a

tracking and mapping system allows for continuous 6DOF traekiagin areashot covered by the

offline map

2.3 Mapping and Tracking and Model-Based Localization Combination

A few previous works atsuse some combination of mapping and tracking with global registrating
modetbasedocalizationapproachedn [22], the authors 0] advanced their previous topological
localization by comuting and tracking the position of the flying vehicle in 3D space using cadastral 3D
city models. In their work they describe an algorithm to track the position of the flying vehicle using VO
and tocorrectthe accumulated drift, whenever a match is detebetween the airborne MAV and the
streetlevel images. They do this by bapkojecting the geoeferenced images onto the 3D cadastral
model of the city to obtain the depth of the scdineir tracking system only resets the drift when a good
match is @tected. It does not correct tthéfted path between detections to achieve amativaccurate
localization, as we dim our methodIn addition, their method only works in an urban setting where a 3D
cadastral model of the city is availablde author®f [23] useVO totrack the position of the camera

from a short monocular camera trajectdriiey then estimate the 3D positions of the points in the
environment based on the camera pad#ained from the odometry estimatesig optimizations.

Finally, they find Google Street View panoramas that match the images and compute their 6DOF
transformation with respect to the camera trajectory and the estimated 3D points. As the GPS coordinates
of the panoramic images are known, tlbyain estimates of the camera positions relative to the global
GPS coordinates. Their method only works offline, their localization resljtenan IMU aidedvO

which is much more accurate themremonoculatvO (as in our casepnd the method onlyavks for

short trajectoriesOther workshat are worth mentioning af24] that combines monocular SLAM with a
premade globally registergubint cloud reconstruction of the target environmerttich was created

offline. Theyachieve &DoF tracking and mapping system that provides globally registered tracking in
reaktime on a mobile devicg25] and[26] combine publicly available road mami¢h as
OpensStreetMaps) witVO, and are able to significantly reduce the drift compared to standard VO.

Finally, [27] uses corners detected on raaarkings, whichwere previously tagged with an accurate



GPS in combination with VCto obtainlocalization accuracy comparable to SLAM systenmsglobal

coordinates



3 Theoretic Background

In this section, the theory on which the implemented system relies is presented. Starting with the theory
on how the camera maps the environtte an image, continuingith how to incrementally estimate the
motion from the images, and ending with how SLAM algorithms can be usdxdaio globally consistent
estimates of t he c aNhiéeowa dakistnot Bogused dn buildng@ndadd ma p
SLAM system, muclof the techniques we use in our approactbased omotivated by the components

of a complete SLAM pipeline.

3.1 Cameras

A camera maps reflected light from 3D objects in space onto a 2D image. To use the images to build a
map of the environmenthe way the&eamera projects the environment to the image must be known. The
maps considered here are locations of points on the surface of objects in the world. A mathematical
camera model is used to represent the camera projection.

In addition the representation d¢iie camera pose atite geometric relations between two camera views

arepresentedThese are necessary for later sections.

3.1.1 Camera Pose

The posdor frame)of the cameraelative to the world framis represented as a 3D rigid body
: eR t . . :
transformation T, ,, = &0 1 3SE(3) . It consists of a ration R and a translatiott and allows
e u

mappingpoints from the world reference frame to the camera fr#tmgealso referred to as a 6Bo

(Degrees of Freedom) tréfosmation (since rotation in 3D has 3 degrees of freedom and translation

another 3). The position of the camera center is not explicitlysepted, but can be recovered as

c= Rt.

The inverse transformation that maps points from tieeca frame to the world frame is satisfied by
RT c

T, =Tjw rg 0o 1 and the relative pose between two camera fraes and T, ,, can be

w,c

computed withT, . =T, , O, T ,T €, which allows mapping frone, frame toc, frame of
refererce.

The pose of the camera can also be represastadnatrixM = [R |t] , also called the extrinsic camera

matrix.



3.1.2 Minimal PoseRepresentation

Optimizationsthatincludethe camera pose parameteegjuire thathe camera parametdye provided in
a minimal representation.
The camera pose has 6 degrees of freedom,tBafwglation and 3 for rotatipand so could be

represented bg 6-dimensional vector.

~

eR t
There aremany ways to represent the rigid body transformafion &0 1 ﬁSE(B) asab
é u

dimensional vector.
Oneway is to use theie algebrase(3) corresponding to the tangent spaceSt(3) at the identity.
Anotherway s to represent the rotation part as-@difdensional vector using either the Euler Vector, by

applyingthewelk nown Rodri guesd f or muwsirgquaternionshiretheseacasest i on m

the translation part remains as it is.

3.1.3 Camera Projection Model

Transforming 3D scene points inB image plane locati@requires a camera model capturing the
intrinsic parameters of the imaging device. The most basic model is given with the parhelaenodel:

the image is formed by intersection of tight rays from the objects through the center of the lens

(projection center), with the focplane (sed-igure3.1). Let X = (x, Y, Z)T be a scene point in the

camera reference frame apd= (u, v)T its projection on the image plane measured in pixels. The

mapping from the 3D world to the 2D image is gimsn

sy a0 o T ad o fe s 4 ¥
au 030 Vv ¢ 0 é u .3
3%98%,;\/9 3 K XO g6 f, v Va3
¢ - & ¢ é0g 0 1 ugz?

Where f, and fy the focal lengths (in pixels),,V, the image coordiates of the projection center, also

called the principal poineaind s is the skew parameter. The skew parameter will be zero for most normal
camerasThese parameters are caltbdintrinsic parameters anld is called thecamerantrinsic matrix

or calibration matrix



Figure 3.1: Pinhole Projection Model
World point X in the cameraeaference frame is projected onto the image plane at pixel coordi

T . . L .
p= (u, V) . C is the camera center ar(dlo, VO) are the coordinates of the principal point.

The pinhole projectio is an idal projection. Howevereali especially wideanglei lenses introduce

distortion. This is most vibie at the border of the imagéds our work, we use a distortion model that

accounts for radial and tangential distortion. The distorted image coordm]ateéxd, yd)T are
expressed as a function oethndistorted image coordinates (X, y) , the distance to the principal point
r =|p|| and the polynomial coefficients, ..., k;:

ax a2k xy+ks(r* +2¢)

éXd 0 2 4 6
51 Kro kro ks ® +
3(1 9 ( -|k1 radial disztortion 3 ) @ 96&4 (r2 +2y2) +2k5 Xy

tangential distortion
Typical distortions are dominated by the coefficiektsind k, . The above equatiaran be used to

undistort a whole image by sampling in the ideal image domain, computing the distortedatesrdind

interpolating the distorted image domain (rapéng).
3.1.4 Projection Function

The function” ( T v;() thatmaps points in the world to the camera image takes as input the camera pose

%

T= anda point in the wordl fram@(wi R® and projects the point to the image coordinates

t
&0 1
(u, V)T through the pinhole camera model. The projectiois determined by the intrinsic camera

parameters which are known fromlibration.



The function first applies the Projection &, which is composed of the camera extrinsic and intrinsic

matricesfollowed by perspective division:

N Vi i

au 6ad v ¢ 0_

% B 0 o o POl plT O
G Y% - éﬁ, 9Project|on Matrix lQ PrOJectlon Matrix

Note that we assume the imagdiiist undistoredbefore applyinghe projection function.

3.1.5 Reprojection Error
In an ideal situation the projection of a scene paihtR®on the camera imagand the corresponding

imageobservationu = (U, v)T would satisfy:

(uv)'="(T)

Butin practice, due to noisy image measurements and due to estimation errors of camera pose and 3D
point, theimage measurement and theprejected scene point willenerally not exactly coincide

The reprojection error is defined as the difference betwheenoordinates of the image measurement and

the coordinates of the scene point reprojected onto the image:
r=u - (T)
3.1.6 Back-Projection

Thedirectiond of an observe®D point xi R*with respecto the camera centarorresponding to an

imageobservationu, can be ecoveredyiven the camera calibration

d is called the backrojection ofu, or abearing vector in the direction of.

It defines a ray originating from the camera center and intersecting the image plen8tcoordinate

(u, f), where f is the focal length in met scaleThe scene point (in the ideal situation) lies
somewhere along this ray, but the depth cannot be recovered. This is why a calibrated camera is often
called a bearing sensor.

tt is referred to as the normalized image cooaties of the image observation, since the effedteof t

known calibration matrix haseen removed (by applying the inverseof), and theay intersectdrat

the imaginary imagplane with focal lengti (or at depth 1 along the ray)
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3.1.7 Camera Calibration

The aim of the camera calibration procedure, which is done offline, is to find the distortion coefficients
and intringc parameters of the cameikhe calibration typically requires images of a calibratiorctbj

from different distances and angles. The most popular method uses a planar checkkeopaittern.

The positions of the squares on the board are known and it is simple to detect the corresponding corner
points in the images and thus construct se2Dd3D point correspondences for each image. The
calibration requires the extrinsic camera parameters to be estimated, too. The procedure consists of
several steps. The intrinsic and all the extrinsic camera parameters are initialized using the Diifnalgori
([28] pp. 8891,178179)by ignoring distortions. This initial solution is then refined by solving a

nonlinear least squares problem that minimizes the reprojection error between correspondences.

3.1.8 Epipolar Geometry

The epiptar geometry is the intrinsic projective geometry between two views (or cameras), viewing the
same 3D scene. It is independent of the scene structure, and only depends on the internahaind exte
parameters of the two camas. A world pointX , is projected onto the image plane of two viewx at

and Xj. The two camera center€, and Cj, the world point and the projected points will lmplanar, as

can be seen iRigure3.2. Let us call this plangp, the epipolar plane. Knowing that the projected points
have to be on the epipolar plane, the search for a matching pokinftihe second view is limited to the
line where the image plane intersects the epipolar plane, the epipolbr, lseisshown inFigure3.2.

This geometric constraint is called the epipalamstraintThe epipolese and ej, are the points where

the baseline, the line between the two camera centers, intersects each image plane.
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Figure 3.2: Epipolar Geometry
The left figure is showing the two camera view cent&sand Cj, the world point,X , the projected
image points X and Xj, and the epipolar plang . The right figure shows the epipole®,and €j, the

epipolar line of the second viewj, and how all world points in the dioton of X must be projected
onto this line.

The Fundamental Matrix; , is a central part of epipolar geometry. The Fundamental Matrix projects

image points in one view to their corresponding epipafeslin the second view and relates the two

views asxiFx =0, wherex and X;j is the projectior{in homogeneous image coordinatesa world

point, X , in the first @ad second view, respectively. The Fundamental Matrix is independent of scene

structure. However, it can be computed from correspondences of imaged scene points alone, without
requiring knowledge of the c¢amer anbédonre nsingthen a | par a
normalized 8point algorithm( [28] pp. 279282). In our work we will use thepipolar constrainthrough

the Fundamental Matrixo constrain matching image points in two views.

The Essential MatrixE , is the specialization of the fundamental matrix to the carerafalized image
coordinatesthat is, to the case of calibrated cameras. It fulfills the epipolar constﬁﬁ)tsEOin terms

of the normalized imageoordinates of the corresponding imagénps x and Xj. The relation between

the Fundamental Matrix and the corresponding Essential Matix #sK j'FK whereK andKj are

the calibration matrices of the corresponding camdtasontains the camera motion parameters, up to an
unknown scale factor for the translation, between the two viewanbe computed from

correspadences of imaged scene poimtsormalized image coordinates and tbhalbration of both
cameras is required. In sectidrB.3we will explain how to comput& and decompose it into the

rotation and translation componeriore information about epipolar geometry and muikiw geometry

can be found ifi28].

12



3.2 Monocular SLAM

Although this work is not focsed onanotherapproach to classical monocular SLAMis worth
mentioning the research undertaken by monocular simultaneous localization and mapping, as much of our

work is based or inspired by it.

3.2.1 Problem Background

SLAM (simultaneous localization and mapping) is the problem of estimating the motion of a moving

robot in realtime as it continuously observes and maps its unknown environment using different sensors.
Visual SLAM systems use cameras as the only sensortodetene t he robot 6s moti on,
mapping detectable features in the surrounding environment.

The visual SLAM methods are classified into two main categories by the number of cameras employed:
monocular and stereo. The monocular systems have kadgeatages over stereo systems in terms of

cost, flexibility, and computational efficiency. A single cam&lsaays costs less than stereo camera

systems, and also provides flexibility in installation of the camera to robots. For example, a stereo camera
should have more than a half meter baseline for enough disparity when it is operated in a car for outdoor
navigation. However, robots like micro aerial vehicles (MAVs) may not have the space for a wide

baseline stereo camera at all, and when the distarthe scene is much larger than the stereo baseline

(i.e., the distance betweémetwo cameras)hestereo schemdegenerates to the monocular case.

Despite its advantages, it has proven more difficult to achiev¢imealargescale mapping with a

moncacular camera, due to its natueapurely projective sensorliaaring sensorlGeometry does not

just Opop outd of the data from a moving camer a,
addition, due to the purely projective nature aitthout the known intecamera distance of a stereo rig

to serve as an anchor, the motion estimates and map structure can only be recovered uphe $azte.

that a single camera does not measure metric scale theatise scale of locally constructep

portions and the corresponding motion estimates is therefore liable to drift over time.

3.2.2 Gauge Freedoms andcaleDrift

Metric SLAM systems aim to build coherent maps, in a single coordinate frame, of the areas that a robot
moves through. But they musbrmally do this based on purely relative measurements of the locations of
scene entities observable by theirtmard sensors. There will therefore always be certain degrees of

gauge freedorm the maps that they create, even when the best possibledobeof estimation. These

gauge freedoms are degrees of transformation freedom through which the whole map, consisting of
feature and robot position estimates taken together, can be transformed without affecting the values of the

sensor measurements. 1AMV by a robot moving in 3D and equipped with a sensor like calibrated
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stereo vision or a 3D laser ranfigder, there are six degrees of gauge freedom, since the whole map

could experience a rigid body transformation in 3D space. In monocular SLAM, hopwere are

fundamentally seven degrees of gauge freedom, since the overall scale of the map, as well as a 6DoF rigid
transformation, is undetermined (scale and a rigid transformation taken together are often known as a
similarity transformation).

It is the number of gauge degrees of freedom in a particular type of SLAM which therefore determines the
ways in which drift will inevitably occur between different fragments of a map. So maps built by a
monocular camera with no additional information drift inesedegrees of freedofrotation, translation

and scale)

3.2.3 Solutions to the monocular SLAM problem

Monocular SLAM was initially solved by filteringg[12], [29], [30]). In that approach every frame is
processed by the filter to jointly estimate the map feature locations and the camera pose. It has the
drawbacks of wasting computation in processing consecutive frames with little new information and the
accumulation of linedezation errors. On the other hand keyfrabaesed approach€$13], [20], [17],
[15], [16]) estimate the mapsing only selected frames (keyframes) allowing to perform more costly but
accurate bundle adjustment optimizations, as mapping is not tied terfatan&trasdat et.414]
demonstrated that keyfrarbased techniques are maecurate than filtering for the same computational
cost.In our work, we have therefore resolved to take a keyframe optimization approach.
Almost all recent approaches to keyfrabased SLAM consist in two main modules:
1) A Visual Odometry (VO) approach wiiconsis$ in determining simultaneously the camera pose for
each video frame and the position of features in 3D world, using only imagesicrementaivay
and in reatime.
2) Aloop closure module which prevents drift to achieve global consistencg aidp and path.

Both modulesaredescribed in the next sections.
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3.3 Monocular VO

Monocular Visual Odometry (VO) is the process of estimating theneg®n of an agent (e.g., vehicle,
human, and robot) using only the input of a single camera. VO operategdyentally estimating the

pose of the vehicle through examination of the changes that motion indutesimages of its onboard
camera.

Approaches to monocular VO can be divided into three categories: fbaked methodsljrect

methods, and hyltimethods. Featufgased methods are based on salient and repeatable features that are
tracked over the framel this method, a set of feature observations is extracted from the image and the
camera position and scene geometry is computed as a funictimse feature observations orijrect
methodsestimate pose directly on the intensitiésll the pixels in the image or suegions of itand
enablethe possibility of using all information in the imady this, direct methods circumvent the

limitation of feature based methods, that only information that conforms to the feature type can be used
(for example, information contained in straight on&d edgesvill be ignored bycorner or blob
detectors)Direct methods have higher accuracy and rolmsstrcompared to feature based methods, in
particular in areas with few feature points, and in addition provide more information about the geometry
of the environmenfTheirmainlimitation is that that they are computationally demandihgprid

methods us a combination of the previous two.

In the first category are theQ/solutions described therecentSLAM works of[15] and[17]. The first
reaktime, largescale VO with a single camera, presehby Nister et a[18], was also featurbased.

Among thedirect methodss theVO solution in the SLAMwork of [31] that uses all pixels in the image

to estimate pose. This solution is computadity demanding and requirasiigh-endGPU to run in real

time. In[32], the authorproposed a sersiense solution for direct VO, which significantly reduces the
computational omplexity, compared to previoasrect VOworks. The approach of the method is to

spend computations where the information gain is maximized. This is done by calculatingdarssani
inverse depth map only for the regions of the image withnemgtigible gradient. This solution for VO
waslaterincorpoiated in a full solution for the SLAM problem B6]. Their results are very impressive

as the system is able to operate in-taaé, without GPU acceleration, building a sedanse

reconstruction of the surrounding environmevith more potential applications for robotics than the
sparse output generated by featbased SLAM. Nevertheless, their localization accuracy is lower than
some featurdbased SLAM workssuch a$17]. In a halfway betweedirect and featurbased methods is

the semidirect VO work of[19], which is able to operate at high framates obtaining ipressive results

in quadcopters with a downward looking camera.
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In our work, we use the featubasedapproach whih is most common in literature, and is described

next.

3.3.1 Feature-Based Monocular VO

As already mentioned i8.2.1 (in the context of SLAM), ne important fact about single camera VO
algorithns is that that they can not recover metric scale. As an intuitive example, consider the observation
of an object as indicated Figure3.3. Only the ratio between the distance to the object and its size is
knowni the true metric size of the object is undetermined. The ratio between the scale in the VO

algorithm and the metric scale is denoted by the tésmal scale factar

Figure 3.3: Monocular Scale Ambiguity

In a monocular VO context, only the ratio between the
distance to the structure and its size is known. The true !
remains unknown.

Featurebased (or geometric) monocular VO frameworks lbaigrouped into two fundamentally different

classes:

1 Followingthe paradigm of Nister et 4lL8], the first class covers solutions that useZIbimage
correspondences in order to incrementally estimate the relative traastrietween successive
camera frames. Similar to the visual scale factor issue mentioned beforehand, these algorithms are not
able to recover the magnitude of the translation. Thereforeyigvopoint triangulations and distance
ratios over two pairs dfamesstill have to be recovered in order to ensure at least correct visual scale
factor propagation.

1 The second class groups solutions that are also detogat3D structure. They use 32D
correspondences in order to derive incremental relativéademments from consecutiadsolute
poses with respect to local structure. In this way, the visual scale factor is implicitly propagated. It has
the advantage of continuously delivering camera displacement information, even if the relative
displacements lm®@me too small for a safe direct derivation of relative fréoaeame

transformations. However, relatigmse computation is still needed for initialization.
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Initialization: triangulate first point cloud

« Initialization: wait for enough disparity

W\ first \ current frame
keyframe
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Figure 3.4: Basic concept of a geometric singicamera VO implementation with 3D-2D correspondences

The initialization step involves the determination of the relative pose between the first two keyframes and th
triangulation of an initial point cloud. Subsequent steps then require oRRD3Edrrespadences in order to derive
absolute pose w.r.t. the current point cloud. New points are added each time the relative parallax surpasses
threshold.

In this work, we use the latter approach only. The basic sequence of processing rstieésiin

Figure3.4. The initialization procedure consists of waiting until the current camera frame shows enough
disparity with respect to the initial frame, and then deriving the relative position and orientation between
the currentaind initial frame in order to triangulate a first point cloud. The subsequent steps then involve
the computation of the absolute camera pose, meaning the relative pose with respect to the current point
cloud. New points are added each timepghemllax(a measure of the camera displacement relative to the
distance to the scenglirpasses given threshold, and the frames from which we triangulate new features
are callekeyframes

From this basic concept, we can derive the basic modules for the VO pjprelgemted in this work.
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9 Extraction of salient points from an image.

1 Matching of salient points between two images ireotd establish correspondences.
1 Robust computation of relative or absolute pose.

9 Triangulation of 3D points.

1 Joint nonlinear optimizatin of multiple camera poses and 3D points.

The remainder of this section focuses on a brief introduction to these modules

3.3.2 Feature Extraction and Matching

In our context, 3D points originate from triangulating sparse correspondences offgahtsih image

space called features. Thus for subsequent steps, features in the image planes of successibaimages
are projections of the same point on a physical ofbjeast beidentified.

There are two different, generally used approaches to find imageefeaturesponding to the same

world point The first one is to find features in one image and track them in the following images using
local search techniques, such as correlat@ftenthe Kanadd_.ucasTomasi (KLT)[33] featuetracker

is used The second one is to independently detect features in all the images and match them based on
some similarity metric between their descriptdiise former approach is more suitable when the images

are taken from nearby viewpoints, wherdlae latter more suitable when a large motion or viewpoint
change is expected. Early research in VO is opted for the former approach while the works in the last
decade concentrated on the latter approach. The reason is that early works were concenadestaie
environments, where images were taken from nearby viewpoints, while in the last few decades, the focus
has shifted to largecale environments, and so the images are taken as far apart as possible from each to

limit the motiondrift-related isaes. For this reasom bur work we use the lattapproach

Feature Detection

During the featureletection step, the image is searched for salient keypoints that are likely to match well
in other images. A local feature is an image pattern that diffens its immediate neighborhood in terms

of intensity,color, and texture. Common featutetectors include corners or blob detectors, because their
position in the image can be measured accurately. The appealing properties that good feature detector
shouldhave are: localization accuracy, repeatability, computational efficiency, robustness to noise,
distinctiveness (so that features can be accurately matched across different images), and invariance to
both photometric (e.g., illumination) and geometric gemn(rotation, scal&jewpoin.

A huge variety of feature detectors has been proposed over theGeamsonly used corner detectors

are Harris[34], FAST][35], Sh-Tomasi[33] and blob detectors aréFS [36] and SURH37].

Feature detectors usually work in two steps. The first step is to apply a feature response function on the

entire image. For instance, Harrses the corner response function and SIFT uses the Difféénce
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Gaussians (DoG) operator. The second step is to localize all local extrema points on the output of the first
step, by applying nemaxima suppression. To achieve invariance to scalee#iteré detector is often

applied to images of different scale.

Feature Description

For each detected feature point a compact descriptor based on the region around each point is calculated.
The simplest feature descriptor is a descriptor of the appearftieepwint, i.e. the intensity of each

pixel in a region around the feature point. Then the sum of squared differences or the normalized cross
correlation can be used to compare descriptors. However, these descriptors are not very robust to changes
in orientation, scale and viewpoint. More elaborate descriptorbi@i®IET descriptdi36], the SURF
descriptof37], BRIEF[38], ORB[39] and BRI [40]. In common for these descriptors is that they

generate a vector, usually 64 or 128 elements long. SIFT and SURF produce vectors of real numbers,

while the others produce binary vectors.

Feature Matching

The set of feat@s from the two images can be exhaustively matched, using a similarity measure on the
feature descriptors. For SIFT and SURF the Euclidean distance can be used, and for binary descriptors the
Hamming distance can be used. The complexity of exhaustive imgislguadratic in the number of
featuresand becomes impracticahen the number of features becomes large. Binary descriptors

outperform floating point descriptors in speed of matching, as the Hamming distance of a binary vector

can be calculated extreely fast on a modern CPU in the form of a bitwise XOR operation. The matching
process can also be speeded up by using an indexing structure, snehittdimensionakearch tree or a

hash tableto rapidly search for features near a given feature

3.3.3 PoseEstimation

Motion estimation is the core computation step performed for every image in a VO system. More
precisely, in the motion estimation step, the camera motion between the current image and the previous
image is computed. By concatenation of all treagle movements, the full trajectory of the camera and

the agent (assuming that the camera is rigidly mounted) can be recovered.
This section plains how the transformatioh between two images, and |, can be computed from
two sets of corresponding featurks f, . Depending on whether the feature correspondences are

specified in two or three dimensions, there are three different deetho

f 2D to 2D: In this case, botff, and f, are specified in 2D image coordinatesl correspond to

projections of the same 3D scene paibserved irboth imagesAlso known as relative pose

estimation.
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f 3D to3D: In this caseboth f, and f,are specified in 3D. Thisaseis not used in our work anwill

not be discussed further (more suitable for stereo VO).

f 3D to 2D: In this casef, arespecified in 3Dand correspond to 3D &ge points observed by image
[,,and f, are their corresponding 2@bservationsn image | ,. Also known as absolute pose
estimation.

2D-2D Relative Pose Estimation
The relative camera pose computation aims at recovering the relative translation and rotation between two
image frames observing a common set of unknown 3D world ooy the 2D measements in both

frames are given

The geometric dations between two imagds and |, of a calibrated camera are described by the so

called Essential MatrixE , presented inextion3.1.8 E contains the camera motion parameters up to an
unknown scale factor for the translation. The Essential Matrix can be computed from 2D to 2D feature
correspondences using the epipolar constraints, and rotation and imartslatdirectly be extracted from

E . The minimal case solution involvéise 2D to 2D correspondences and an efficient implementation
wasproposed by Nister if#l]. Ni s t e #pdirg algbrithin das lmwme the standard for 2D to 2D

motion estimation in the presence of outliers. A simple and straightforward solutin® férnon

coplanar points is the Longueti g g i n gpdint adordghim¥2]. The soltion of the eighipoint

algorithm is degenerate when the 3D points corresponding to the 2D matches are coplanar. Conversely,
the fivepoint algorithm works also for coplanar points. The embitt algorithm works for both

calibrated and uncalibrated camagrwhereas the fiygoint algorithm assumes the camera is calibrated.
From the estimate dE , the rotation and translation parts can be extracted. In general, there are four
different solutions forR andt for one Essential M&x. However, by triangulatioof a single point, the

correctR ,t pair can be identifiely choosing the solution where the point is in front of both cameras

3D to 2D Pose Estimation
The absolute camera pose problem consists of retrieving the absolute position and orientation of a camera

from known correspondences betw@&Ehworld points and theRD imageobservations

The transforration T is computed from the 3D to 2D corresponden¥gesand p, . The general

formulation in this case is to findl' that minimizes the imageprojection errar
T , 2
arg mingy - (T X
i

This problem is known ggerspective from n poin{®nP) (or resection), and there are many different

solutions to it in the literature. The minimal case involves three 3D to 2D correspondences. This is called
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perspective from three poinfB3P) and reirns four solutions that can be disambiguated using one or

more additional points. In the 3D to 2D case, P3P is the standard method for robust motion estimation in
the presence of outliers.

A simple and straightforward solution to the PnP problenmfér6 points is the DLT (direct linear
transformation) algorithn0[28] pp. 8891,178179).The DLT algorithm howeverjs overparameterized

for the calibrated case (it also computesitiignsic camera parametg which isredundant in this case).

To use this method ithhe monocular case, it is necessary to triangulate 3D points and estimate the pose
from 3D-2D matches in an altering fashion. This alternating scheme is often referred to as SFM (structure
from mdion). Starting from two views, the initial set of 3D points and the first transformation are
computed from 2E2D feature matches. Subsequent transformations are then computed f&in 3D

feature matches. To do this, features need to be matched (or tracked)ultiple frames (at least three).

New 3D features are again triangulated when a new transformation is computed and added to the set of
3D features. The main challenge of this method is to maintain a consistent and accurate set of triangulated

3D feaures and to create 32D feature matches for at least three adjacent frames.

3.3.4 Robust Estimation and Outlier Removal

Point correspondences are usually contaminated by outliers, that is, wrong data associations. Possible
causes of outliers are image noiseglasions, blur, and changes in viewpoint and illuminatutliers

will bias the result if included inur model estimatiosi(such as motion estimatioahd cause

irrecoverable errors for camera pose and map estim&orestimating accurately modelsthely on

point correspondences, it is important that outliers be removed.

RANSAC

Robust estimators are commonly used to estimate model parameters from data containing atypical values.
RANSAC (Random Sample Consensj4] estmates a global relationship adapting data, and at the

same time classifies data under inliers (data which is consistent with the relationship) and outliers (not
consistent with the relationship). RANSA@s been established as the statidnethod for mode

estimationin the presence of outliers. The idea behind RANSAC is to estimate a number of hypothesis
models by repeatedly sampling a randomly selected minimum datapointand count the total

number ofother data points consensus with the estited hypothesisThe hypothesigenerating the

highest number of data points in consensus vitlill be selected as a solution arte torresponding

data points (in consensus with the hypothegik)e selected as inlierés an example, for tweiew
motion estimation as used in VO, the estimated model is the relative rr(dRi,dl) between the two

camera positions, and thata pointsare the candide (or putative) feature correspondendgsexample
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of how the RANSAC sampling procggdo estimate a line in a plane, could look like is illustrated in

Figure3.5.

Figure 3.5: RANSAC illustration for estimating a line

The figures show two randomly selected p®iim blue, rejected outliers in red and the inliers in green for four
different hypotheses. Here the hypothesis in the bottom right image will be seéesitésl supported by more inlier:
than the other hypotheses.

As observed, RANSAC is a probabilsmethod and is nondeterministic in that it exhibits a different

solution on different runs. However, the solution tends to be stable when the number of iterations grows.
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The number of subsets (iteratiorld) that is necessary guarantee that a correct solution is found can

computed by
N = log(1- P)
Iog(l— (1 -e)s)

Where s is the number of correspondences from which the model can be instardiasetthe

percentage of outlie inthe correspondences, aftlis the reuested probability of success.

As can be seen from the above equatidnis exponential inthe number of correspondences

necessary to estimatiege model. Therefore, there is a high interest in using a minianahygetrization of

the model and so we would prefesing the Epoint algorithm( s =5) overthe 8point algorithm(s=28)

for relativepose esthation. Similarly, we would prefer using theg®int algorithm( s =3) over the DLT
algorithm (s=6) for absolute pose estimatiorhis can also be viewed as another advantage of the 3D
2D method over the 2RD mettod (mentioned in sectioB.3.]) for estimating motionAs mentioned
previously, the 2E2D case requés a minimum of fivgooint correspondences (using thpdnt

algorithm). However, only three correspondences are necesghgy3D2D motion case (usingfoint

algorithm). This lower number of points results in a much faster motion estimation.

3.3.5 Triangulation

Some of the steps mentioned earlier require triangulation of 3D points (structure) from their 2D image
observations itwo (or more) images. Structure computation is also needed by bundle adjustment, which
will be discussed later, to compute a more accurate estimate of the trajectory.

Triangulated 3D points are determined by intersecting-pagjected rays frortheir 2D image
correspondences of at leasbtimage framedn order to backproject rays in a common coordinate

system, the camesanust be calibrated and ih@ose known. In perfect conditions, these rays would
intersect in a single 3D point. However, becausenage noise, camera model and calibration errors, and
feature matching uncertainty, they never intersect. Therefore, the point at a minimal distance, i the least
squares sense, from all intersecting rays can be taken as an estimate of the 3D point posit
Triangulation is usually carried out using a linear least squares method followed biirreaon

refinement step. Linear triangulation methods are described in deté@dhpp. 312313). Notice that

the standard deviain of the distances of the triangulated 3D point from all rays gives an idea of the
quality of the 3D point. Thredimensional points with large uncertainty will be thrown out. This happens
especially when frames are taken at very nearby intervals cainpdhethe distance to the scene points.
When this occurs, 3D points exhibit very large uncertainty. One way to avoid this consists of skipping
frames until the average uncertainty of the 3D points decreases below a certain thfeah@dselection

is avery important step in VO arelyenmore so in SLAM and will be described in sent3.5.

23



3.3.6 Bundle Adjustment

Assume a scene represented by 3D points and a set of cameras, each viewing some part of the scene.
Bundle Adjustment (BA) [28] pp. 434435)aims to jointly optimize motion (camera poses) and
structure(3D points) given image observations of the scene points onto the cdessrdigure ?)

corresponding
feature points

Figure 3.6: Bundle Adjustment visualization

Cameras and 3D scene points are explicitly linked through tr
respedie imageobservations. Cameras are implicitly linked tc
other cameras through obseivat of the same scene points.

In more detail:

Consider a set of camera pos#s, and a set of 3D scene poind, , ard the corresponding image

observationsy; ; (of point X ; observed in the image of camefg). Due to noisy image measurements,

X; ; » the image coordinates of the bint reprojected onto the image, ( L Pg generally will not
exactly coincidevith the measurementherefore, the objective is to find estimates of the camera poses
and 3D point position:s"Ei and )Ej , respectively, that minimize the total reprojection error. Assuming

Gaussian image noise on the measurements, the MAP (maximum a posteriori) estimates of the parameters

can be found by minimizing the weighted sum of the squared reprojectis: err

(58 0, gy

Wherer, ; =X;; -, ( T, j>9 is the error terng ; ; = ElJ is the information matrix for measurement

X; ; Which indicates how accurate the measurement is(amsithe set of pairs, j , for which pointX
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is visible from poseT; , i.e., X; | exists. T, is usually held fixed and not optimized irder to anchor the

optimization to the reference frame of the first camera (tbadllyalsorepresents the world frame).
This minimization problem can be carried out using-loear iterative optimization techniques such as
GaussNewton( [28] pp. 597600)or Levenbergviarquardt( [28] pp. 600613).

The sparseness pattern in BA, that there are only links between points and cameras, bupnmpomt
cameracamera constraints and that not evesinpis visible in every camera, can be exploited in the
optimization to significantly reduce complexity.

The optimization requires a good initial estimate of the parametersler to convergto the global

minimum It also requires that a minimal repeegation for the parameters is provided.

Local BA

In our contextpur employed VO concept depends on the feasibility of robustly computing absolute pose
w.r.t local 3D structure. This in turn, requires the availability of accurate 3D point coordinaiesindd

arei in the easiest cagetriangulated and optimized from two views only. In practice, however, a point is
typically observed by more than two frames, and tracked over a sequence of multiple camera frames. An
optimal result for the structure isuh achieved by considering all feature measurements for each point,
which finally constitutes a full BA optimizatioftull bundle adjustment as described above adjusts the

pose for all frames (apart from the first, which is a fixed datum) and all mappositipns. It exploits

the sparseness inherent in the strueftom-motion problem to reduce the complexity of mibost

matrix factorization frm O(( N + M)3) to O( N3) with N and M being the number of frames and

points, respectively, and so the system ultimately scales with the cube of frames. One way or the other, it
becomes an increasingly expensive computation as map size increases: For example, tens of seconds are
required for a map with more than 150 frames toveage.

A way of reaping the benefits of the optimality of BA, while maintaining constant complexity, making it
possible to use BA for VO, ® only consider a soalled window othe n last image frames and then

perform a paramet@ptimization of camera poses and 3D landmarks for this set of image frames only.
This is called local BAfirst proposed byhe VO work of[44]). The idea is to reduce the number of
calculated parameters in optimizing onlg tharameters of the n last cameras and taking account of the

2D projections othe points they observe in thé¢ (with N > n) last framesThus, itoptimizesonly the

last n framesand d the map points seen by thasames. Thesarlier N - n frames that see those points

are included in the optimization but remain fixed. As a sliding window BA is applied, the optimization
window has to be anchored to the previous (Bpis invariant to reference frame and scale if
unconstrained). Thus, at least 7DoF (rotation, transland scale) should be fixed and must have

N2 n -+ to fix the reconstruction frame and the scale factor at the sequence end.
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Local BA reduces the drift compared to twiew VO because it uses feature measurements over more
than two image frames. The current camera pose is linked via the 3D landmarks, and the image features
track not only the previous camera pose but also the egmses further backhe current anah- 1

previous camera poses need to be consistentlwgtheasurements oved image frames.

Structure Only BA

Some steps require the refinement of 3D structure only, Bonpbe, when optimizing a newly
triangulated point cloud before adding it to the map. This refinement step cariddeddly optimizing
over the 3D landmarks and keeping the camera parameters fixed in the BA optimizasaffectively
minimizes the reqjection error of all points involved with respect to the observing cameras in the

optimization window.
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3.4 Loop Closure

As mentioned in sectiorgs2.1and3.2.2 since VO works by computing theroara path and map
incrementally (pose after pose), the errors introduced by each newtbrdrase motion accumulate

over time. This generates a drift of the estimated trajectory from the real path. In the monocular scheme
as well as stereo and RAR drift occurs in rotation and translation. In addition, and in contrast to-RGB

D or Stereo, the monocular scheme is inherently saralgivalent, i.e., the absolute scale of the world is

not observable. Over long trajectories this also leads to-ddétlevhich is one of the major sources of

error.

Because of the drift inherent in successively building a map by incremental, imperfect odometry, the map
and pathwill never be perfectly aligned when returning to a previously visited locaftimneduce the

drift of the VO anda make sure the map is globally consistent, the SLAM algorithm needs to explicitly
connect the new location with the previously visited location to which it corresponds, and adjust the path
in between to take the new connection into comatiits in order to make the parts of the map involved

consistentThis process thus has two basic steps: loop detection and loop correction.

3.4.1 Loop Detection

Loop detection detects-mhservations of previously mapped areas (loops). This is typically done by
evaluating visual similarity between the current imageasd images using place recognition
algorithms.Traditionally, hese methaloften reliedbn visual bags of words based on SIFT or SURF
featuresbut their computational overhead degraded theopaeince of visual SLAM systems. More

recently, fast scene recognition methods using a vocabulary tree of binary descriptors have been proposed
([45], [15], [17] ). With every new frame, the place recognizer will search among all previous frames for

a loop candidatérame If a candidate is foundye can matclhe already mappestenepoints associated

with the loop frame to their image observations in the current frarastablish 3E2D correspondences

that will attach the loag-urther geometric verification can be performed to accept the loop candidate and

to reject outlier correspondences using RANSAC with absolute pose estimation.

3.4.2 Loop Correction

Loop correction isn charge resolving the accumulated error along the loop to achieve global consistency.
Using the3D-2D correspondencdsom the previous step we can link the loop frgianed its periphery)

with the current framéand its peripherybhrough the mutually olesved map points and their

corresponding observations in both imafgew their peripheries)

Then we can apply BA using the new global constsamtlistribute théoop closingerror(due to drift

accumulationplong the loop and align both sides of lihap.
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However, optimizing with BA over a large number of frames and points is computationally demanding.
More seriously, since BA is not a convex problem, and we could be far away from the global minimum
due to the drift accumulatethe current state ohé map could be far from the solution anid likely that

BA will get stuck in a local minimum.

Therefore, most recent SLAM work$20], [15], [17] ) compute an ini&l solution optimizing the pose
graph formed from the current to the loop frame pose. In a pose graph each node is a camera pose and the
constraints are the relative transformations between adjacent nodes. In our case this forms a loop of
constraints. Theelative transformation between the loop frame and the current frame is computed by
utilizing the 3D2D correspondences. This transformation connects both sides of the looypoamd

about the drift accumulated alotige loop.Then an optimization is prmedover relative constraints
between poseslong the loopusingposegraph optimization46], that distributes the loop closing error
along the grapHPosegraph optimization requires much less parameters to optimize thantBch leads

to fast convergence to a solution that is close to opi{jptalegraph optimization is only a rough
approximation of BA)The optimization is usually performed over similarity transformat{@isF), as
opposed to rigid body transformatiof@oF), to account for scaldrift [20], [17] (to compute a

similarity transformation between the loop and current frame we ne@D3idrrespondences, which we
can establish by associatidgplicatedreconstructeanappoints that correspond to the same physical
scenepointobserved in both framgedNhile an optimization over the 6DoF constraints would efficiently
correct translational and rotational drift, it would not deal with scale drift, anttdvead to an
unsatisfactory overall resyRQ].

Finally, the whole map can be further optimizethgghe estimated solution as an initial solution to
structureonly or full BA. Since the initial solution in this case is alilgvery close to the optimal

solution,BA will converge mucHaster.
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3.5 Keyframe Selection

Frame selection is a very important step in VO and more a@amplete SLAM systenMany video

frames contain redundant information, particularly when the cam@t imoving. As complexity grows

with the number of frames (due to optimizations), their selection should avoid unnecessary redundancy.

In addition, as explained in sectiBrB.5 when frames are taken at nearby positions compared to the

scene distance (small parallax), triangulated 3D points will exhibit large uncettaintyill corrupt the

whole map and trajectory. Thus, we would like to achieve a well spread satesfobserving points

with significant parallax to achieve accurate results and reduce complexity. This will also allow operation
with a larger numerical map siZEhese selected frames are calkkegiframes

The ideal keyframe selection policy would besédect a frame as keyframe only when the parallax with
respect to the closest keyframe exceeds a certain threshold that allows for accurate triangulation of points.
The parallax is a measure that depends on the distance of observed scene points teatistaoce

between the observing cameras. Since both, the scenedpmiations and the translation between the
cameras are only estimations and may contain a lot of drift, especially in scale, a heuristic for predicting if
enough parallax is gaine@&ds to be used.

Heuristics for selecting a new frame as keyframe could be based on visual change, such as, when the
median pixel disparity between matched keypoints with respect to the previous keyframe exceeds a
threshold, or when the number of trackedttires from last keyframe drops below a given threshold.

It could also be based on a geometric change, such as, when the estimated motion of the camera from last
keyframe exceeds a threshold, or when the depth afibervedsceneaelative to the baselewith

respect to the last keyframe exceeds a threshold.
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4 System Overview

As mentioned earlier our approach applies Mapping and Tracking techniques in combination with Image

based localization withesspect to a lighiveight maphatconsists ofjectaggedand mappedtreet view

images from the surrounding environmdtiggure4.1 shows the general pipeline we empldye assume

the camera is calibrated and is rigidly mounted to the vehicle.

The proposed pipelineceives asinputonn oc ul ar i mages -HoardbcametahAe vehi cl e
monoculatVisual Odometry module is in chargkincrementally tracking the 6Fopose of the vehicle

with every frame. Finallymimagebasedjlobal map egistration modulés in charge ofegistering

tracking withour preexistingglobalmapin order to achieve globaHlseferenced trackingndto correct

the accumulated drift of the VO, whenever a good match is detected betweenehe icaamgeand the

taggedstreet viewimages

Geo-tagged Street
View Database

Video Stream @
Image-based
|:> Visual Odometry |:> Global Map

Registration

Figure 4.1: System Pipeline

The pipeline is very similar to that of monocular keyfrapased SLAM, consisting of VO and a module

to correct the accumulated drdfitd obtain global consistendfowever, we do not detect loopithv

areas previously visiteoly the algorithrmor do we use the map generated by the algorithm to correct the
drift. Insteadwe detect overlapsith the surrounding street view imag@sagebased)and utilize our

pree x i st i rogcorm@amtbepddft. Mat being said, the techniques used to achieve these stepsyare
similar tothe loop closure procedure of SLAM framewodssoutlined in sectio8.4.

The next sections describe in deth&é main components of the systasmwell as our assumptions about

the geetagged street view database
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5 Geotagged Street View Database

This database represents our liglgightglobal scene moddhat is usedor registering tracking to the

global coordinate frame and correcting #teumulated drift.

Our motivation is to leverage the availability of large geotagged image databases, such as Google Street

View image datasd¥], as d#undant sources of accurate geotagged imagery.

Our assumptions about the database are that:

1 The database covers the area travelled by the vehicle.

1 The images are collemialong roads. We do not assume the images are visually overlapping or that
they are eenly distributed.

1 Each image in the dataset is geotagged withaurate GPS position aadull 6DoF pose can be
extracted.

1 Every image contains a local mapping of its observed environment in the form of a local point cloud.

From now on we will refer tthe taggedtreet viewimages asinchor imagessince they contain the true

3D pose of their respective camera and the trued@iipns of points they obseniea,a global reference

frame.
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6 Monocular VO Framework

In our work weuse a featurbased VO pipline asoutlined in sectior3.3.1

This module maintains two main data structures:

1) A sparse point cloud which represents the map that is built by the algorithm. It holds all reconstructed
3D map points so far. These pointe @nitialized from image measurements detected by a sparse
feature detector. Each map point contains a list of references to the keyframes from where it is
observed.

2) A set of Keyframes which represent the camera trajectory built so far. Each keyfragse stor

1 The corresponding 6DoF camera pdsgwith respect to the world frame), that allows us to
map points from the world coordinate frame to the camera frame of reference.
9 Alist of extracted 2D features with references to the spording map points (if existing).
It consists of an initialization stage bootstrap the systemnd themain loop. These will bdescribed in

detail in the nexsections.

6.1 VO Main Loop

Figure6.1 shows the pipeline of the mdimop. For each new camera frame, the main loop starts by
extracting local invariant keypoints from the image. The algorithm then goes on with extracting
descriptors for each extracted feature, and matches them against those of the last keyframe.

After theestablishment of proper feature correspondences to the previous keyframe, ittaralgor
proceeds to tracking the currenapin order to establish 32D correspondences between the current
map pointsaand the features of the current frame.

Using these corspondences, the pose of the new camera fimgmmputed

We then apply a heuristic to either acciat frame as keyframe or discard it and continue with the next
frame. If the frame is chosen as keyframe, we triangulate new points using the new kayfiahe
previous one and add them to the nfapally a local optimization is performed in order to refine the last
keyframe poses and the local mljs important to note, that the map mentioned in this section is the
map built by the algorithm and nite preexisting map.

In the next subsections the implementation details of the different building blocks are described.
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Camera Frame

Feature Feature |::> Map Pose Keyframe :> New Points Local
Extraction Matching Tracking Estimation Selection Creation Optimization

Figure 6.1: VO Pipeline (Main Loop)

6.1.1 Feature Extraction

The feature extraction press is the first process in our pipeline. It receives an undistorted image (using
the distortion modehtroducedn section3.1.3 and uses the SIFT feature detector and descriptor to
extract keypoints and their corresporglgrescriptors from the image.

SIFT is a feature detector and descriptor devised for object and place recognition and found to give
outstanding result®r VO. SIFT features have proved to be stable against changes in illumination,
rotation, and scale, armen up to 60changes in viewpoint.

6.1.2 Feature Matching

Once keypoints and their descriptors are extracted from the current image we can match keypoints in the
current frame with those ofelprevious keyframe by matchitigeir descriptors to fin@D-2D

correspondences, that is, corresponding points in the image planes that are projections of the same point
in the scene.

We first finda putativefeature match in the current frame for each feature in the last keyisame

applying fast ANN search in descrip&gpace, and avoid double referencing ofdess (multiple features
matched to the same featuie the last keyframeNe t hen appl vy 3¢ melieidade rati o t e
ambiguous matchek. 0o w e Gogdestra@epts the closesatth (the one with the minimum Euclidean
distance) only if the ratio between the closest and the second closest match is smaller than a certain
threshold. The idea behind this test is to remove matches that might be ambiguous, e.g., due to repetitive
strudure.

We then compute a Fundamental Matrix in a robust RANSAC schesimgy the normalizk8-point
algorithm,and eliminate those matches that do not adhere to the epipolar constrairgsthbaBampson
distancg [28] pp. 3L3-315) from the epipolar line exceeds a threshold.

In this way we are left withe@pmetrically consistent matches for subsequent steps.

6.1.3 Map Tracking

Map tracking associates mapped scene points to their corresponding observations in the current frame. In
our implementation this is done by utilizing the-2D correspondencémap points associated to their

respective keypoints)f the most recent keyframe as well as the2ZZDcorrespondences found in the
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matching process in order to establishAD correspodences between the map poifdbserved by the

last keyframepnd the features of the current frame.

6.1.4 Absolute Pose Estimation

Given the set of 322D correspondences from the previous step, we can compute the absolute pose of the
vehicle (with respect to éhmap) byapplying the P3P algorithm §47] together with a RANSAC scheme

to discard outliers. Finally, using the inlier points eompute the camera posg d&pplying the EPnP
algorithm[48]. We rdine the resulting camera pose estimating the Levenberlylarquardt

optimization( [28] pp. 600613 ) which minimizes the reprojection error given by the sum of the squared
distances between the observed image points arabtrespondingeprojected 3D points.

Finally we dissociate map points from their matched keypairitse current frame ithe matchesvere

outliers to the estimated pose.

6.1.5 Keyframe Selection

Pose estimation is followed by an estimation of the ovpeatilax between the previous keyframe and
thenew frame The availability of enough parallax is usually identified by simply thresholdingutier-
robustmedian pixel disparityEuclidean distancd)etween the previous keyframe and the current frame.
This is done by computing thmedian pixel disparity betweéehe corresponding 2E2D matches.

In case this value exceeds a certain threshold, the parallax is considered to be high enough and the new
frame is selected as keyfran@ne problem with this approachthat the nature of the motion is simply
ignored, meaning that this parallax identification process fails if the disparity in the image plane mainly

results from rotation instead of translation (and thus not induced by parallax).

6.1.6 New Points Creation

2D-2D correspondences between the new and previous keyframe/etteatot associated to a map point
during map tracking, are triangulated using the DLT algoritfi28] pp. 312313 )to form a new point

cloud.

Triangulated points wdse reprojection error with respect to their corresponding keypoints is too high, or
those that are behind one of the cameras (fail the chirality test), are rejected.

The remaining point cloud fsirther refined using structwenly BA consicering only thee two

keyframes.

Finally, newsurviving points are associated with their corresponding observations ikdytames and

added to the map
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6.1.7 Local Optimization

In the final stage, local BA is applied to refine the local trajectory and map. It optimizasteetly

processed keyframe along with a fixed number of the last keyframes, and all the map points seen by those
keyframes. A fixed number @arlierkeyframes that see those pointsiacduded in the optimization bu

remain fixed.The minimal represeation for the camera pose parameters is provided by representing
rotation as an Euler Vector and leaving the translation part as it is (see 8eti@for more detail®n

minimal poserepresentation

6.2 VO Iinitialization

When the system is initialized from scratch, there are no 3D points available as we consider a monocular
camera (due to its purely projective nature, it cannot observe scenarstugihg one imageJhe goal

of the initialization stage is thus to compute the relative pose between the first two keyframes to
triangulate an initial set of map points, for the subsequent absolute pose estirkaiimes.2 shows the
initialization pipeline.

In this case the first frame is selected as keyframe and features are extracted(asaigni.1.]).

Features are extracted from subsequent frames and matched to the first keyfrene. 25 he second
keyframe is chosen as @l.5 We now have 2E2D keypoint matches and can use thgofnt algorithm

of [41] with RANSAC to estimate the relatiymse (up to a scale factor in translatidie can now

initialize the initial point cloud using the first two keyframes a6.h6

Figure 6.2: VO Pipeline (Initialization)

Remarks

The translation in the initialization stage is estimated only up to a scale factor. In our current
implementation, wassume theealtranslational scale between the first two keyframes is known, and we
correct the scal of the reconstruction vitthisground truth scale.

This scale is implicitly propagated to the rest of the map and poses through the use of absolute pose
estimations in the main loop.

In addition, we assume the pose of the first keyframe in titsgtoordinate system is known
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