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Abstract 

Driving assistance systems for tasks such as aiding in navigation and improving safety are an increasingly 

important part of modern vehicles. These systems rely more and more on knowledge of the vehicleôs 

precise localization. Localization estimates for current vehicles come predominantly from automotive 

GPS, but its coarse positioning and issues such as signal unavailability mean that it cannot be relied on for 

the accuracy needed for this type of function. 

In this work, we propose a vision-based solution for globally localizing vehicles on the road using a 

single on-board camera and exploiting the availability of priorly geo-tagged street view images from the 

surrounding environment together with their associated local point clouds. Our approach is focused on the 

integration of image-based localization into a tracking and mapping system in order to provide accurate 

and globally-registered 6DoF tracking of the vehicleôs position at all times. The method incrementally 

tracks the position of the vehicle using mapping and tracking techniques, which inevitably drift over time, 

and combines the tagged images as a source of accurate global positioning in order to correct the 

accumulated drift, whenever a good match is detected between the camera image and the tagged street 

view images. The proposed approach is tested on the public KITTI dataset, which covers realistic driving 

situations, and show that we are able to achieve lane-level localization in global coordinates. As our 

results indicate, the solution provides a reliable alternative to GPS systems, which is purely based on 

vision. We also show how the localization produced by our method can be utilized to provide accurate 

Augmented Reality overlays for a driver assistance application.
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1 Introduction  

Precise localization is a pre-requisite in modern vehicles for tasks ranging from driver assistance to 

autonomous driving. For example, augmented reality apps for road navigation today rely on high 

precision pose estimation for pixel-accurate graphical overlays. In this respect, lane-level localization 

with an error of a few meters is the desired goal in most cases. Current localization methods rely mostly 

on GPS information. However, GPS signals are not always available (e.g. inside tunnels or in urban 

canyons) and are usually accurate up to a range of several meters. The most reliable solution to the 

vehicle localization problem thus far has been through the use of 3D Lidar sensors, such as the Velodyne 

[1], which in addition to being expensive, are active sensors with their own set of challenges. Cameras 

provide an attractive sensing alternative to 3D Lidars. They have become ubiquitous (found in almost 

every mobile device) and cheap and their effectiveness to the problem at hand has already been shown in 

literature. 

In this work, we propose a vision-based solution for globally localizing vehicles on the road. Our central 

idea is to leverage large image databases, such as Google Street View, as abundant sources of accurate 

geo-tagged street view imagery. We assume each database image also contains a sparse 3D point cloud of 

its observed environment. To make our approach as general as possible, we only make use of a single on-

board camera. 

Our work is focused on the integration of image-based localization into a real-time 6DOF tracking and 

mapping system. Our approach incrementally tracks the position of the vehicle from the camera images 

using computer vision techniques. These incremental methods inevitably drift over time and are only 

given in a local reference frame. We utilize the database images as anchors to the ground truth and as a 

source of global positioning, in order to correct the drift accumulated and to register localization to the 

global reference frame, whenever a good match is detected between the camera image and the street view 

images. This integration allows us to obtain an accurate continuous pose estimate of the vehicle at all 

times, even when the street view images are wide apart and sparsely distributed along roads. 

Our approach can be considered as a reliable alternative to GPS systems, which computes accurate 

positioning from street view images. For this reason, we tested our method on the KITTI visual odometry 

benchmark [2].In the experiments, we show that with our technique we are able to obtain a localization 

error of only a few meters, usually achieving even sub-meter accuracy. 

The rest of this work is organized as follows: the following section (2) discusses related work. In 

section 3 we review the required theoretic background. Section 4 gives a brief overview of the proposed 

approach. In section 5 we lay out our assumptions about the geo-tagged street view database and 

sections 6-7 detail the main building blocks of the approach. Section 8 describes the experimental 
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procedure and demonstrates the experimental results. Section 9 demonstrates the use of our proposed 

system in a simple AR driver assistance application. We conclude the work in section 10 and in 

section 11 we suggest possible directions for future work. 
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2 Related Work 

Vision-based methods to localization can be classified into three main categories based on the amount of 

prior knowledge we have on the surrounding environment. Assuming that a model of the target scene is 

known, model-based localization techniques can be used. If no information about the target scene is 

available, we can use mapping and tracking techniques that simultaneously build the model of the 

environment and localize within it. If only partial information about the scene is provided, a combination 

of both techniques can be used.  

2.1 Model-Based Localization 

One line of research has emerged towards model-based tracking, i.e., tracking directly from a pre-made 

environment model that is acquired offline. In this approach localization is performed by matching the 

acquired camera image directly to the scene model and estimating the position of the camera relative to 

the model. Many scene model representations exist in literature. Authors have looked into localizing 

images in large scale metrical 3D point cloud maps built from structure-from-motion ( [3], [4], [5], [6] ). 

Although localization results are promising, this approach still presents disadvantages. Firstly, it is time 

consuming and expensive to reconstruct an accurate map. Secondly, a robot (or another vehicle) has to 

visit the environment beforehand to build the map. Thirdly, matching each query image to the entire point 

cloud is computationally expensive and does not scale well to large-scale maps. 

Other authors have looked into scene models that are already available and more light-weight in the form 

of large geo-tagged image corpora acquired from specially equipped platforms (e.g., Google Street View 

data [7]). Zamir and Shah [8] build a dense map from 100,000 Google street view images and then 

localize query images by a GPS-tag-based pruning method. Majdik et al. [9] localize a Micro Aerial 

Vehicle by matching images acquired from air to Street View images. Both methods only solve a place 

recognition problem (that is, topological localization). We, on the other hand, compute a full 6DOF 

metrical localization. Zhang and Kosecka [10] triangulate the position of the query image by matching 

features with two or more geotagged images from a large database. Their method relies on the density of 

the tagged database images and will not work for tagged images that are wide apart (as no visual overlap 

will exist between the query image and at least two tagged images). 

All methods mentioned above have the additional limitation that the online localization cannot extend 

beyond what was captured by the offline model. 

In our work we apply techniques from image-based localization by utilizing already available geo-tagged 

street view images from the surrounding environment along with their associated local point clouds. The 

resulting ñmapò of the environment is relatively light-weight (not a full reconstruction of the target 
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environment) and can scale up to large areas easily. The local point clouds are necessary to compute a 

6DOF metrical localization. In order to fill-in the trajectory of the vehicle in places were the tagged 

images do not exist we use mapping and tracking methods, which are outlined next. 

2.2 Mapping and Tracking 

Another line of research is that of tracking without any prior environment knowledge. A popular method 

in this category is that of Visual SLAM (Simultaneous Localization and Mapping). Visual SLAM systems 

use the camera itself to determine device position, by tracking and mapping detectable features in the 

surrounding environment. They aim at obtaining a globally consistent estimates of the vehicleôs path and 

the map. Visual SLAM has a long history in computer vision and robotics and we refer the reader to [11] 

for a relatively recent survey. Davidson et al. [12] were the first to propose monocular SLAM using a 

filtering approach. Klein and Murray proposed keyframe-based SLAM [13]. In their approach, selected 

frames (keyframes) are sampled from the camera and processed using optimizations in a background 

thread to produce a point cloud reconstruction (the map). In parallel, the current camera image is tracked 

using the map. It was later shown by Strasdat et al. [14] that the keyframes + optimization approach of 

Klein and Murray [13] ï based ultimately on well-known bundle adjustment methods ï is strongly 

advantageous compared to the filtering methods like those of Davidson et al. [12]. For this reason current 

approaches to monocular SLAM use the former. The most accurate solutions (Lim et al. [15], Engel et al. 

[16], Mur-Artal et al. [17]) provide high accuracy camera tracking in real-time, and are based on a Visual 

Odometry (VO) component. Visual Odometry consists in determining simultaneously the camera pose for 

each video frame and the position of features in 3D world, using only images in an incremental way and 

in real time. Nister et al. demonstrated the seminal real-time monocular VO system [18] in 2004. While 

current implementations in monocular VO demonstrate impressive performance [19], their incremental 

characteristics inevitably lead to large drift at long distances, making the localization result unusable. This 

is especially true in the monocular scheme, where the absolute scale of the world is not observable, thus 

leading to rapid drift in scale [20]. We refer the reader to [21] for an in depth tutorial on VO.  

The main difference between VO and a complete Visual SLAM system is the ñloop closingò capability. 

By closing loops, localization error caused by drift, especially in a large environment, can be reduced 

considerably. In the context of SLAM, Loop Closure is the process of detecting an overlap between the 

current map and a pre-existing map, and then estimating the registration between the two maps. Typically, 

loop closure is used to detect overlaps within a single SLAM map, for example when the path of the 

camera crosses over itself. This forces the vehicle to drive in loops, so that the algorithm can recognize 

the same landmarks and thus compensate for errors in localization. However, driving in loops severely 

limits the vehicleôs freedom of movement and restricts exploration. In our case, we are interested in 
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detecting the overlap of the current map with some part of the pre-existing global ñmapò mentioned in the 

previous section, so the vehicle is not forced to drive in loops.  

Another limitation of pure monocular SLAM is that the camera pose is only given in a local reference 

system, defined with respect to the first camera frame. Since our global map is given in global coordinates 

we can anchor tracking to the global reference frame when detection occurs. 

In comparison to the pure model-based approaches mentioned in the previous section, the use of a 

tracking and mapping system allows for continuous 6DOF tracking even in areas not covered by the 

offline map. 

2.3 Mapping and Tracking and Model-Based Localization Combination 

A few previous works also use some combination of mapping and tracking with global registration using 

model-based localization approaches. In [22], the authors of [9] advanced their previous topological 

localization by computing and tracking the position of the flying vehicle in 3D space using cadastral 3D 

city models. In their work they describe an algorithm to track the position of the flying vehicle using VO 

and to correct the accumulated drift, whenever a match is detected between the airborne MAV and the 

street-level images. They do this by back-projecting the geo-referenced images onto the 3D cadastral 

model of the city to obtain the depth of the scene. Their tracking system only resets the drift when a good 

match is detected. It does not correct the drifted path between detections to achieve an overall accurate 

localization, as we do in our method. In addition, their method only works in an urban setting where a 3D 

cadastral model of the city is available. The authors of [23] use VO to track the position of the camera 

from a short monocular camera trajectory. They then estimate the 3D positions of the points in the 

environment based on the camera poses obtained from the odometry estimates using optimizations. 

Finally, they find Google Street View panoramas that match the images and compute their 6DOF 

transformation with respect to the camera trajectory and the estimated 3D points. As the GPS coordinates 

of the panoramic images are known, they obtain estimates of the camera positions relative to the global 

GPS coordinates. Their method only works offline, their localization results rely on an IMU aided VO 

which is much more accurate then pure monocular VO (as in our case), and the method only works for 

short trajectories. Other works that are worth mentioning are [24] that combines monocular SLAM with a 

pre-made globally registered point cloud reconstruction of the target environment, which was created 

offline. They achieve a 6DoF tracking and mapping system that provides globally registered tracking in 

real-time on a mobile device. [25] and [26] combine publicly available road maps (such as 

OpenStreetMaps) with VO, and are able to significantly reduce the drift compared to standard VO. 

Finally, [27] uses corners detected on road markings, which were previously tagged with an accurate 
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GPS, in combination with VO to obtain localization accuracy comparable to SLAM systems, in global 

coordinates. 
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3 Theoretic Background 

In this section, the theory on which the implemented system relies is presented. Starting with the theory 

on how the camera maps the environment to an image, continuing with how to incrementally estimate the 

motion from the images, and ending with how SLAM algorithms can be used to obtain globally consistent 

estimates of the cameraôs trajectory and map. While our work is not focused on building a standard 

SLAM system, much of the techniques we use in our approach are based or motivated by the components 

of a complete SLAM pipeline. 

3.1 Cameras 

A camera maps reflected light from 3D objects in space onto a 2D image. To use the images to build a 

map of the environment, the way the camera projects the environment to the image must be known. The 

maps considered here are locations of points on the surface of objects in the world. A mathematical 

camera model is used to represent the camera projection. 

In addition, the representation of the camera pose and the geometric relations between two camera views 

are presented. These are necessary for later sections. 

3.1.1 Camera Pose 

The pose (or frame) of the camera relative to the world frame is represented as a 3D rigid body 

transformation, (), 3
1

c w SE
è ø
= Íé ù
ê ú

R t
T

0
. It consists of a rotation R  and a translation t  and allows 

mapping points from the world reference frame to the camera frame. It is also referred to as a 6DoF 

(Degrees of Freedom) transformation (since rotation in 3D has 3 degrees of freedom and translation 

another 3). The position of the camera center is not explicitly represented, but can be recovered as

=-T
c R t . 

The inverse transformation that maps points from the camera frame to the world frame is satisfied by 

, ,
1

w c c w

è ø
= =é ù

ê ú

T

-1 R c
T T

0
 and the relative pose between two camera frames 

1,c wT  and 
2 ,c wT  can be 

computed with 
1 2 1 2 1 2, , , , ,c c c w c w c w w c= Ö = Ö-1T T T T T  , which allows mapping from 2c  frame to 1c frame of 

reference. 

The pose of the camera can also be represented as a matrix [ ]|=M R t , also called the extrinsic camera 

matrix. 



8 

 

3.1.2 Minimal Pose Representation 

Optimizations that include the camera pose parameters, require that the camera parameters be provided in 

a minimal representation. 

The camera pose has 6 degrees of freedom, 3 for translation and 3 for rotation, and so could be 

represented by a 6-dimensional vector. 

There are many ways to represent the rigid body transformation ()3
1

SE
è ø
= Íé ù
ê ú

R t
T

0
 as a 6-

dimensional vector. 

One way is to use the Lie algebra ()3se  corresponding to the tangent space of ()3SE  at the identity. 

Another way is to represent the rotation part as a 3-dimensional vector using either the Euler Vector, by 

applying the well-known Rodriguesô formula on the rotation matrix, or using quaternions. In these cases 

the translation part remains as it is. 

3.1.3 Camera Projection Model 

Transforming 3D scene points into 2D image plane locations requires a camera model capturing the 

intrinsic parameters of the imaging device. The most basic model is given with the pinhole camera model: 

the image is formed by intersection of the light rays from the objects through the center of the lens 

(projection center), with the focal plane (see Figure 3.1). Let ( ), ,x y z=
T

X  be a scene point in the 

camera reference frame and ( ),u v=
T

p  its projection on the image plane measured in pixels. The 

mapping from the 3D world to the 2D image is given by: 

0

0, ,   0

0 0 1

x

y

u f s u x
u u v

v f v y
v w w

w z

å õ è ø å õ
å õå õ æ ö æ öé ù
= = Ö = Öæ öæ ö æ ö æ öé ùç ÷ç ÷ æ ö æ öé ùç ÷ ê ú ç ÷

T

K X   

Where xf  and yf  the focal lengths (in pixels), 0u , 0v  the image coordinates of the projection center, also 

called the principal point, and s  is the skew parameter. The skew parameter will be zero for most normal 

cameras. These parameters are called the intrinsic parameters and K is called the camera intrinsic matrix 

or calibration matrix. 
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Figure 3.1: Pinhole Projection Model 

World point X  in the camera reference frame is projected onto the image plane at pixel coordinates 

( ),u v=
T

p . C  is the camera center and ( )0 0,u v  are the coordinates of the principal point. 

 
 

The pinhole projection is an ideal projection. However, real ï especially wide-angle ï lenses introduce 

distortion. This is most visible at the border of the images. In our work, we use a distortion model that 

accounts for radial and tangential distortion. The distorted image coordinates ( ),d d dx y=
T

p  are 

expressed as a function of the undistorted image coordinates ( ),x y=p , the distance to the principal point 

r =p  and the polynomial coefficients 1 5, ,k k : 

( )
( )

( )

2 2

4 52 4 6

1 2 3 2 2

4 5
radial distortion

tangential distortion

2k xy+k r +2x
1

k r +2y +2k xy

d

d

x x
k r k r k r

y y

å õå õ å õ
æ ö= + + + +æ ö æ ö
æ öç ÷ç ÷ ç ÷

 . 

Typical distortions are dominated by the coefficients 1k  and 2k . The above equation can be used to 

undistort a whole image by sampling in the ideal image domain, computing the distorted coordinates and 

interpolating the distorted image domain (resampling). 

3.1.4 Projection Function 

The function ( ), wˊ T x that maps points in the world to the camera image takes as input the camera pose 

1

è ø
=é ù
ê ú

R t
T

0
 and a point in the world frame

3

wÍx  and projects the point to the image coordinates 

( ),u v
T

 through the pinhole camera model. The projection  ́is determined by the intrinsic camera 

parameters which are known from calibration. 
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The function first applies the Projection Matrix, which is composed of the camera extrinsic and intrinsic 

matrices, followed by perspective division: 

[ ]
Projection Matrix Projection Matrix

, ,   [ | ] |
1 1

w w

u
u u v

v
v w w

w

å õ
å õ å õ å õå õ æ ö
= = Ö = Ö Öæ ö æ ö æ öæ ö æ öç ÷ç ÷ ç ÷ ç ÷æ ö

ç ÷

T
x x

K R t K 0 T  

Note that we assume the image is first undistorted before applying the projection function. 

3.1.5 Reprojection Error  

In an ideal situation the projection of a scene point 
3Íx on the camera image and the corresponding 

image observation ( ),
T

u v=u would satisfy: 

( ) ( ), ,u v =
T
ˊ T x  

But in practice, due to noisy image measurements and due to estimation errors of camera pose and 3D 

point, the image measurement and the re-projected scene point will generally not exactly coincide. 

The reprojection error is defined as the difference between the coordinates of the image measurement and 

the coordinates of the scene point reprojected onto the image:  

( ),= -r u ˊ T x 

3.1.6 Back-Projection 

The direction d  of an observed 3D point 
3Íx with respect to the camera center, corresponding to an 

image observation u , can be recovered given the camera calibration: 

Ĕ

1 1

å õ å õ
= = Öæ ö æ ö
ç ÷ ç ÷

-1
u u

d K   

d  is called the back-projection of u , or a bearing vector in the direction of x .  

It defines a ray originating from the camera center and intersecting the image plane at the 3D coordinate

( ), fu , where f  is the focal length in metric scale. The scene point (in the ideal situation) lies 

somewhere along this ray, but the depth cannot be recovered. This is why a calibrated camera is often 

called a bearing sensor. 

Ĕu  is referred to as the normalized image coordinates of the image observation, since the effect of the 

known calibration matrix has been removed (by applying the inverse of K ), and the ray intersects Ĕu at 

the imaginary image plane with focal length 1 (or at depth 1 along the ray). 
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3.1.7 Camera Calibration 

The aim of the camera calibration procedure, which is done offline, is to find the distortion coefficients 

and intrinsic parameters of the camera. The calibration typically requires images of a calibration object 

from different distances and angles. The most popular method uses a planar checkerboard-like pattern. 

The positions of the squares on the board are known and it is simple to detect the corresponding corner 

points in the images and thus construct sets of 2D/3D point correspondences for each image. The 

calibration requires the extrinsic camera parameters to be estimated, too. The procedure consists of 

several steps. The intrinsic and all the extrinsic camera parameters are initialized using the DLT algorithm 

( [28] pp. 88-91,178-179) by ignoring distortions. This initial solution is then refined by solving a 

nonlinear least squares problem that minimizes the reprojection error between correspondences. 

3.1.8 Epipolar Geometry 

The epipolar geometry is the intrinsic projective geometry between two views (or cameras), viewing the 

same 3D scene. It is independent of the scene structure, and only depends on the internal and external 

parameters of the two cameras. A world point,X , is projected onto the image plane of two views at x  

and ¡x . The two camera centers, C  and ¡C , the world point and the projected points will be coplanar, as 

can be seen in Figure 3.2. Let us call this plane, p, the epipolar plane. Knowing that the projected points 

have to be on the epipolar plane, the search for a matching point for x in the second view is limited to the 

line where the image plane intersects the epipolar plane, the epipolar line l¡, as is shown in Figure 3.2. 

This geometric constraint is called the epipolar constraint. The epipoles, e and ¡e , are the points where 

the baseline, the line between the two camera centers, intersects each image plane. 
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Figure 3.2: Epipolar Geometry 

The left figure is showing the two camera view centers, C  and ¡C , the world point, X , the projected 

image points, x  and ¡x , and the epipolar plane p. The right figure shows the epipoles, e  and ¡e , the 

epipolar line of the second view, l¡, and how all world points in the direction of X  must be projected 

onto this line.  

 

The Fundamental Matrix, F , is a central part of epipolar geometry. The Fundamental Matrix projects 

image points in one view to their corresponding epipolar lines in the second view and relates the two 

views as 0¡ =x Fx , where x  and ¡x  is the projection (in homogeneous image coordinates) of a world 

point,X , in the first and second view, respectively. The Fundamental Matrix is independent of scene 

structure. However, it can be computed from correspondences of imaged scene points alone, without 

requiring knowledge of the camerasô internal parameters or relative pose. This can be done using the 

normalized 8-point algorithm ( [28] pp. 279-282). In our work we will use the epipolar constraint through 

the Fundamental Matrix, to constrain matching image points in two views.  

The Essential Matrix, E , is the specialization of the fundamental matrix to the case of normalized image 

coordinates, that is, to the case of calibrated cameras. It fulfills the epipolar constraints Ĕ Ĕ0¡ =x Ex in terms 

of the normalized image coordinates of the corresponding image points x  and ¡x . The relation between 

the Fundamental Matrix and the corresponding Essential Matrix is: ¡TE = K FK  where K  and ¡K  are 

the calibration matrices of the corresponding cameras. E contains the camera motion parameters, up to an 

unknown scale factor for the translation, between the two views. It can be computed from 

correspondences of imaged scene points in normalized image coordinates and thus calibration of both 

cameras is required. In section 3.3.3 we will explain how to compute E and decompose it into the 

rotation and translation components. More information about epipolar geometry and multi-view geometry 

can be found in [28].  
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3.2 Monocular SLAM  

Although this work is not focused on another approach to classical monocular SLAM, it is worth 

mentioning the research undertaken by monocular simultaneous localization and mapping, as much of our 

work is based or inspired by it. 

3.2.1 Problem Background 

SLAM (simultaneous localization and mapping) is the problem of estimating the motion of a moving 

robot in real-time as it continuously observes and maps its unknown environment using different sensors. 

Visual SLAM systems use cameras as the only sensor to determine the robotôs motion, by tracking and 

mapping detectable features in the surrounding environment. 

The visual SLAM methods are classified into two main categories by the number of cameras employed: 

monocular and stereo. The monocular systems have several advantages over stereo systems in terms of 

cost, flexibility, and computational efficiency. A single camera always costs less than stereo camera 

systems, and also provides flexibility in installation of the camera to robots. For example, a stereo camera 

should have more than a half meter baseline for enough disparity when it is operated in a car for outdoor 

navigation. However, robots like micro aerial vehicles (MAVs) may not have the space for a wide 

baseline stereo camera at all, and when the distance to the scene is much larger than the stereo baseline 

(i.e., the distance between the two cameras), the stereo scheme degenerates to the monocular case. 

Despite its advantages, it has proven more difficult to achieve real-time large-scale mapping with a 

monocular camera, due to its nature as a purely projective sensor (a bearing sensor). Geometry does not 

just ópop outô of the data from a moving camera, but must be inferred over time from multiple images. In 

addition, due to the purely projective nature and without the known inter-camera distance of a stereo rig 

to serve as an anchor, the motion estimates and map structure can only be recovered up to scale. The fact 

that a single camera does not measure metric scale means that the scale of locally constructed map 

portions and the corresponding motion estimates is therefore liable to drift over time. 

3.2.2 Gauge Freedoms and Scale Drift  

Metric SLAM systems aim to build coherent maps, in a single coordinate frame, of the areas that a robot 

moves through. But they must normally do this based on purely relative measurements of the locations of 

scene entities observable by their on-board sensors. There will therefore always be certain degrees of 

gauge freedom in the maps that they create, even when the best possible job is done of estimation. These 

gauge freedoms are degrees of transformation freedom through which the whole map, consisting of 

feature and robot position estimates taken together, can be transformed without affecting the values of the 

sensor measurements. In SLAM by a robot moving in 3D and equipped with a sensor like calibrated 
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stereo vision or a 3D laser range-finder, there are six degrees of gauge freedom, since the whole map 

could experience a rigid body transformation in 3D space. In monocular SLAM, however, there are 

fundamentally seven degrees of gauge freedom, since the overall scale of the map, as well as a 6DoF rigid 

transformation, is undetermined (scale and a rigid transformation taken together are often known as a 

similarity transformation). 

It is the number of gauge degrees of freedom in a particular type of SLAM which therefore determines the 

ways in which drift will inevitably occur between different fragments of a map. So maps built by a 

monocular camera with no additional information drift in seven degrees of freedom (rotation, translation 

and scale). 

3.2.3 Solutions to the monocular SLAM problem 

Monocular SLAM was initially solved by filtering ( [12], [29], [30]). In that approach every frame is 

processed by the filter to jointly estimate the map feature locations and the camera pose. It has the 

drawbacks of wasting computation in processing consecutive frames with little new information and the 

accumulation of linearization errors. On the other hand keyframe-based approaches ( [13], [20], [17], 

[15], [16]) estimate the map using only selected frames (keyframes) allowing to perform more costly but 

accurate bundle adjustment optimizations, as mapping is not tied to frame-rate. Strasdat et al. [14] 

demonstrated that keyframe-based techniques are more accurate than filtering for the same computational 

cost. In our work, we have therefore resolved to take a keyframe optimization approach. 

Almost all recent approaches to keyframe-based SLAM consist in two main modules: 

1) A Visual Odometry (VO) approach which consists in determining simultaneously the camera pose for 

each video frame and the position of features in 3D world, using only images in an incremental way 

and in real-time. 

2) A loop closure module which prevents drift to achieve global consistency of the map and path. 

Both modules are described in the next sections. 
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3.3 Monocular VO 

Monocular Visual Odometry (VO) is the process of estimating the ego-motion of an agent (e.g., vehicle, 

human, and robot) using only the input of a single camera. VO operates by incrementally estimating the 

pose of the vehicle through examination of the changes that motion induces on the images of its onboard 

cameras. 

Approaches to monocular VO can be divided into three categories: feature-based methods, direct 

methods, and hybrid methods. Feature-based methods are based on salient and repeatable features that are 

tracked over the frames. In this method, a set of feature observations is extracted from the image and the 

camera position and scene geometry is computed as a function of these feature observations only. Direct 

methods estimate pose directly on the intensities of all the pixels in the image or sub-regions of it, and 

enable the possibility of using all information in the image. By this, direct methods circumvent the 

limitation of feature based methods, that only information that conforms to the feature type can be used 

(for example, information contained in straight or curved edges will be ignored by corner or blob 

detectors). Direct methods have higher accuracy and robustness, compared to feature based methods, in 

particular in areas with few feature points, and in addition provide more information about the geometry 

of the environment. Their main limitation is that that they are computationally demanding. Hybrid 

methods use a combination of the previous two. 

In the first category are the VO solutions described in the recent SLAM works of [15] and [17]. The first 

real-time, large-scale VO with a single camera, presented by Nister et al. [18], was also feature-based. 

Among the direct methods is the VO solution in the SLAM work of [31] that uses all pixels in the image 

to estimate pose. This solution is computationally demanding and requires a high-end GPU to run in real-

time. In [32], the authors proposed a semi-dense solution for direct VO, which significantly reduces the 

computational complexity, compared to previous direct VO works. The approach of the method is to 

spend computations where the information gain is maximized. This is done by calculating a semi-dense 

inverse depth map only for the regions of the image with non-negligible gradient. This solution for VO 

was later incorporated in a full solution for the SLAM problem by [16]. Their results are very impressive 

as the system is able to operate in real-time, without GPU acceleration, building a semi-dense 

reconstruction of the surrounding environment, with more potential applications for robotics than the 

sparse output generated by feature-based SLAM. Nevertheless, their localization accuracy is lower than 

some feature-based SLAM works, such as [17]. In a halfway between direct and feature-based methods is 

the semi-direct VO work of [19], which is able to operate at high frame-rates obtaining impressive results 

in quadcopters with a downward looking camera. 
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In our work, we use the feature-based approach which is most common in literature, and is described 

next. 

3.3.1 Feature-Based Monocular VO 

As already mentioned in 3.2.1 (in the context of SLAM), one important fact about single camera VO 

algorithms is that that they can not recover metric scale. As an intuitive example, consider the observation 

of an object as indicated in Figure 3.3. Only the ratio between the distance to the object and its size is 

known ï the true metric size of the object is undetermined. The ratio between the scale in the VO 

algorithm and the metric scale is denoted by the term visual scale factor. 

 

 

Figure 3.3: Monocular Scale Ambiguity 

In a monocular VO context, only the ratio between the 

distance to the structure and its size is known. The true scale 

remains unknown. 

 

Feature-based (or geometric) monocular VO frameworks can be grouped into two fundamentally different 

classes: 

¶ Following the paradigm of Nister et al. [18], the first class covers solutions that use 2D-2D image 

correspondences in order to incrementally estimate the relative transformation between successive 

camera frames. Similar to the visual scale factor issue mentioned beforehand, these algorithms are not 

able to recover the magnitude of the translation. Therefore, two-view point triangulations and distance 

ratios over two pairs of frames still have to be recovered in order to ensure at least correct visual scale 

factor propagation. 

¶ The second class groups solutions that are also deriving local 3D structure. They use 3D-2D 

correspondences in order to derive incremental relative displacements from consecutive absolute 

poses with respect to local structure. In this way, the visual scale factor is implicitly propagated. It has 

the advantage of continuously delivering camera displacement information, even if the relative 

displacements become too small for a safe direct derivation of relative frame-to-frame 

transformations. However, relative-pose computation is still needed for initialization. 
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Figure 3.4: Basic concept of a geometric single-camera VO implementation with 3D-2D correspondences 

The initialization step involves the determination of the relative pose between the first two keyframes and the 

triangulation of an initial point cloud. Subsequent steps then require only 3D-2D correspondences in order to derive 

absolute pose w.r.t. the current point cloud. New points are added each time the relative parallax surpasses a given 

threshold. 

 

In this work, we use the latter approach only. The basic sequence of processing steps is indicated in 

Figure 3.4. The initialization procedure consists of waiting until the current camera frame shows enough 

disparity with respect to the initial frame, and then deriving the relative position and orientation between 

the current and initial frame in order to triangulate a first point cloud. The subsequent steps then involve 

the computation of the absolute camera pose, meaning the relative pose with respect to the current point 

cloud. New points are added each time the parallax (a measure of the camera displacement relative to the 

distance to the scene) surpasses a given threshold, and the frames from which we triangulate new features 

are called keyframes. 

From this basic concept, we can derive the basic modules for the VO pipeline presented in this work. 



18 

 

¶ Extraction of salient points from an image. 

¶ Matching of salient points between two images in order to establish correspondences. 

¶ Robust computation of relative or absolute pose. 

¶ Triangulation of 3D points. 

¶ Joint nonlinear optimization of multiple camera poses and 3D points. 

The remainder of this section focuses on a brief introduction to these modules. 

3.3.2 Feature Extraction and Matching 

In our context, 3D points originate from triangulating sparse correspondences of salient points in image 

space called features. Thus for subsequent steps, features in the image planes of successive images, that 

are projections of the same point on a physical object, must be identified. 

There are two different, generally used approaches to find image features corresponding to the same 

world point. The first one is to find features in one image and track them in the following images using 

local search techniques, such as correlation. Often the Kanade-Lucas-Tomasi (KLT) [33] feature tracker 

is used. The second one is to independently detect features in all the images and match them based on 

some similarity metric between their descriptors. The former approach is more suitable when the images 

are taken from nearby viewpoints, whereas the latter more suitable when a large motion or viewpoint 

change is expected. Early research in VO is opted for the former approach while the works in the last 

decade concentrated on the latter approach. The reason is that early works were conceived for small-scale 

environments, where images were taken from nearby viewpoints, while in the last few decades, the focus 

has shifted to large-scale environments, and so the images are taken as far apart as possible from each to 

limit the motion-drift-related issues. For this reason, in our work we use the latter approach. 

Feature Detection 

During the feature detection step, the image is searched for salient keypoints that are likely to match well 

in other images. A local feature is an image pattern that differs from its immediate neighborhood in terms 

of intensity, color, and texture. Common feature detectors include corners or blob detectors, because their 

position in the image can be measured accurately. The appealing properties that good feature detector 

should have are: localization accuracy, repeatability, computational efficiency, robustness to noise, 

distinctiveness (so that features can be accurately matched across different images), and invariance to 

both photometric (e.g., illumination) and geometric changes (rotation, scale, viewpoint). 

A huge variety of feature detectors has been proposed over the years. Commonly used corner detectors 

are Harris [34], FAST [35], Shi-Tomasi [33] and blob detectors are SIFT [36] and SURF [37]. 

Feature detectors usually work in two steps. The first step is to apply a feature response function on the 

entire image. For instance, Harris uses the corner response function and SIFT uses the Difference-Of-
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Gaussians (DoG) operator. The second step is to localize all local extrema points on the output of the first 

step, by applying non-maxima suppression. To achieve invariance to scale, the feature detector is often 

applied to images of different scale. 

Feature Description 

For each detected feature point a compact descriptor based on the region around each point is calculated. 

The simplest feature descriptor is a descriptor of the appearance of the point, i.e. the intensity of each 

pixel in a region around the feature point. Then the sum of squared differences or the normalized cross 

correlation can be used to compare descriptors. However, these descriptors are not very robust to changes 

in orientation, scale and viewpoint. More elaborate descriptors are the SIFT descriptor [36], the SURF 

descriptor [37], BRIEF [38], ORB [39] and BRISK [40]. In common for these descriptors is that they 

generate a vector, usually 64 or 128 elements long. SIFT and SURF produce vectors of real numbers, 

while the others produce binary vectors. 

Feature Matching 

The set of features from the two images can be exhaustively matched, using a similarity measure on the 

feature descriptors. For SIFT and SURF the Euclidean distance can be used, and for binary descriptors the 

Hamming distance can be used. The complexity of exhaustive matching is quadratic in the number of 

features, and becomes impractical when the number of features becomes large. Binary descriptors 

outperform floating point descriptors in speed of matching, as the Hamming distance of a binary vector 

can be calculated extremely fast on a modern CPU in the form of a bitwise XOR operation. The matching 

process can also be speeded up by using an indexing structure, such as a multidimensional search tree or a 

hash table, to rapidly search for features near a given feature. 

3.3.3 Pose Estimation 

Motion estimation is the core computation step performed for every image in a VO system. More 

precisely, in the motion estimation step, the camera motion between the current image and the previous 

image is computed. By concatenation of all these single movements, the full trajectory of the camera and 

the agent (assuming that the camera is rigidly mounted) can be recovered. 

This section explains how the transformation T  between two images 
1I  and 

2I  can be computed from 

two sets of corresponding features1f , 2f . Depending on whether the feature correspondences are 

specified in two or three dimensions, there are three different methods. 

¶ 2D to 2D: In this case, both 
1f  and 

2f are specified in 2D image coordinates and correspond to 

projections of the same 3D scene point observed in both images. Also known as relative pose 

estimation. 
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¶ 3D to 3D: In this case, both 
1f  and 

2f are specified in 3D. This case is not used in our work and will 

not be discussed further (more suitable for stereo VO). 

¶ 3D to 2D: In this case, 
1f  are specified in 3D and correspond to 3D scene points observed by image 

1I , and 
2f  are their corresponding 2D observations in image 

2I . Also known as absolute pose 

estimation. 

2D-2D Relative Pose Estimation 

The relative camera pose computation aims at recovering the relative translation and rotation between two 

image frames observing a common set of unknown 3D world points ï only the 2D measurements in both 

frames are given. 

The geometric relations between two images 
1I  and 

2I  of a calibrated camera are described by the so-

called Essential Matrix, E , presented in section 3.1.8. E contains the camera motion parameters up to an 

unknown scale factor for the translation. The Essential Matrix can be computed from 2D to 2D feature 

correspondences using the epipolar constraints, and rotation and translation can directly be extracted from

E . The minimal case solution involves five 2D to 2D correspondences and an efficient implementation 

was proposed by Nister in [41]. Nisterôs five-point algorithm has become the standard for 2D to 2D 

motion estimation in the presence of outliers. A simple and straightforward solution for 8n²  non-

coplanar points is the Longuet-Higginsô eight-point algorithm [42]. The solution of the eight-point 

algorithm is degenerate when the 3D points corresponding to the 2D matches are coplanar. Conversely, 

the five-point algorithm works also for coplanar points. The eight-point algorithm works for both 

calibrated and uncalibrated cameras, whereas the five-point algorithm assumes the camera is calibrated. 

From the estimate of E , the rotation and translation parts can be extracted. In general, there are four 

different solutions for R  and t  for one Essential Matrix. However, by triangulation of a single point, the 

correct R , t  pair can be identified by choosing the solution where the point is in front of both cameras. 

3D to 2D Pose Estimation 

The absolute camera pose problem consists of retrieving the absolute position and orientation of a camera 

from known correspondences between 3D world points and their 2D image observations. 

The transformation T  is computed from the 3D to 2D correspondences iX  and 
ip . The general 

formulation in this case is to find  T  that minimizes the image reprojection error: 

( )
2

arg min ,i i

i

-ä
T

p ˊ T X . 

This problem is known as perspective from n points (PnP) (or resection), and there are many different 

solutions to it in the literature. The minimal case involves three 3D to 2D correspondences. This is called 
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perspective from three points (P3P) and returns four solutions that can be disambiguated using one or 

more additional points. In the 3D to 2D case, P3P is the standard method for robust motion estimation in 

the presence of outliers. 

A simple and straightforward solution to the PnP problem for 6n² points is the DLT (direct linear 

transformation) algorithm ( [28] pp. 88-91,178-179). The DLT algorithm, however, is over-parameterized 

for the calibrated case (it also computes the intrinsic camera parameters, which is redundant in this case). 

To use this method in the monocular case, it is necessary to triangulate 3D points and estimate the pose 

from 3D-2D matches in an altering fashion. This alternating scheme is often referred to as SFM (structure 

from motion). Starting from two views, the initial set of 3D points and the first transformation are 

computed from 2D-2D feature matches. Subsequent transformations are then computed from 3D-2D 

feature matches. To do this, features need to be matched (or tracked) over multiple frames (at least three). 

New 3D features are again triangulated when a new transformation is computed and added to the set of 

3D features. The main challenge of this method is to maintain a consistent and accurate set of triangulated 

3D features and to create 3D-2D feature matches for at least three adjacent frames. 

3.3.4 Robust Estimation and Outlier Removal 

Point correspondences are usually contaminated by outliers, that is, wrong data associations. Possible 

causes of outliers are image noise, occlusions, blur, and changes in viewpoint and illumination. Outliers 

will bias the result if included in our model estimations (such as motion estimation) and cause 

irrecoverable errors for camera pose and map estimation. For estimating accurately models that rely on 

point correspondences, it is important that outliers be removed. 

RANSAC 

Robust estimators are commonly used to estimate model parameters from data containing atypical values. 

RANSAC (Random Sample Consensus) [43] estimates a global relationship adapting data, and at the 

same time classifies data under inliers (data which is consistent with the relationship) and outliers (not 

consistent with the relationship). RANSAC has been established as the standard method for model 

estimation in the presence of outliers. The idea behind RANSAC is to estimate a number of hypothesis 

models by repeatedly sampling a randomly selected minimum set of data points and count the total 

number of other data points in consensus with the estimated hypothesis. The hypothesis generating the 

highest number of data points in consensus with it will be selected as a solution and the corresponding 

data points (in consensus with the hypothesis) will be selected as inliers. As an example, for two-view 

motion estimation as used in VO, the estimated model is the relative motion ( ),R t  between the two 

camera positions, and the data points are the candidate (or putative) feature correspondences. An example 
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of how the RANSAC sampling process, to estimate a line in a plane, could look like is illustrated in 

Figure 3.5. 

 

 

Figure 3.5: RANSAC illustration for estimating a line 

The figures show two randomly selected points in blue, rejected outliers in red and the inliers in green for four 

different hypotheses. Here the hypothesis in the bottom right image will be selected, as it is supported by more inliers 

than the other hypotheses. 

 

As observed, RANSAC is a probabilistic method and is nondeterministic in that it exhibits a different 

solution on different runs. However, the solution tends to be stable when the number of iterations grows. 
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The number of subsets (iterations) N  that is necessary to guarantee that a correct solution is found can 

computed by 

( )

( )( )
log 1

log 1 1
s

P
N

e

-
=

- -
 , 

Where s is the number of correspondences from which the model can be instantiated, e is the 

percentage of outliers in the correspondences, and P  is the requested probability of success. 

As can be seen from the above equation, N  is exponential in the number of correspondences s  

necessary to estimate the model. Therefore, there is a high interest in using a minimal parametrization of 

the model and so we would prefer using the 5-point algorithm ( 5s= ) over the 8-point algorithm ( 8s= ) 

for relative pose estimation. Similarly, we would prefer using the 3-point algorithm ( 3s= ) over the DLT 

algorithm ( 6s= ) for absolute pose estimation. This can also be viewed as another advantage of the 3D-

2D method over the 2D-2D method (mentioned in section 3.3.1) for estimating motion. As mentioned 

previously, the 2D-2D case requires a minimum of five-point correspondences (using the 5-point 

algorithm). However, only three correspondences are necessary in the 3D-2D motion case (using 3-point 

algorithm). This lower number of points results in a much faster motion estimation. 

3.3.5 Triangulation  

Some of the steps mentioned earlier require triangulation of 3D points (structure) from their 2D image 

observations in two (or more) images. Structure computation is also needed by bundle adjustment, which 

will be discussed later, to compute a more accurate estimate of the trajectory. 

Triangulated 3D points are determined by intersecting back-projected rays from their 2D image 

correspondences of at least two image frames. In order to back-project rays in a common coordinate 

system, the cameras must be calibrated and their poses known. In perfect conditions, these rays would 

intersect in a single 3D point. However, because of image noise, camera model and calibration errors, and 

feature matching uncertainty, they never intersect. Therefore, the point at a minimal distance, in the least-

squares sense, from all intersecting rays can be taken as an estimate of the 3D point position. 

Triangulation is usually carried out using a linear least squares method followed by a non-linear 

refinement step. Linear triangulation methods are described in detail in ( [28] pp. 312-313). Notice that 

the standard deviation of the distances of the triangulated 3D point from all rays gives an idea of the 

quality of the 3D point. Three-dimensional points with large uncertainty will be thrown out. This happens 

especially when frames are taken at very nearby intervals compared with the distance to the scene points. 

When this occurs, 3D points exhibit very large uncertainty. One way to avoid this consists of skipping 

frames until the average uncertainty of the 3D points decreases below a certain threshold. Frame selection 

is a very important step in VO and even more so in SLAM and will be described in section 3.5.  
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3.3.6 Bundle Adjustment 

Assume a scene represented by 3D points and a set of cameras, each viewing some part of the scene. 

Bundle Adjustment (BA) ( [28] pp. 434-435) aims to jointly optimize motion (camera poses) and 

structure (3D points) given image observations of the scene points onto the cameras (see figure ?). 

 

 

Figure 3.6: Bundle Adjustment visualization 

Cameras and 3D scene points are explicitly linked through the 

respective image observations. Cameras are implicitly linked to 

other cameras through observations of the same scene points. 

 

In more detail: 

Consider a set of camera poses, 
iT , and a set of 3D scene points, jX , and the corresponding image 

observations, ,i jx (of point jX observed in the image of camera 
iT ). Due to noisy image measurements, 

,i jx , the image coordinates of the 3D point reprojected onto the image, ( ),i i jˊ T X, generally will not 

exactly coincide with the measurement. Therefore, the objective is to find estimates of the camera poses 

and 3D point positions, ĔiT  and Ĕ
jX , respectively, that minimize the total reprojection error. Assuming 

Gaussian image noise on the measurements, the MAP (maximum a posteriori) estimates of the parameters 

can be found by minimizing the weighted sum of the squared reprojection errors: 

{ }{ }{ }
{}{}{ }

2 1 , , ,
, ,
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Where ( ), , ,i j i j i i j= -r x ˊ T X is the error term, , ,i j i j= -1ȿ Ɇ  is the information matrix for measurement 

,i jx  which indicates how accurate the measurement is, and C  is the set of pairs ,i j , for which point jX  
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is visible from pose 
iT , i.e., ,i jx  exists. 1T  is usually held fixed and not optimized in order to anchor the 

optimization to the reference frame of the first camera (that usually also represents the world frame). 

This minimization problem can be carried out using non-linear iterative optimization techniques such as 

Gauss-Newton ( [28] pp. 597-600) or Levenberg-Marquardt ( [28] pp. 600-613). 

The sparseness pattern in BA, that there are only links between points and cameras, but no point-point or 

camera-camera constraints and that not every point is visible in every camera, can be exploited in the 

optimization to significantly reduce complexity. 

The optimization requires a good initial estimate of the parameters in order to converge to the global 

minimum. It also requires that a minimal representation for the parameters is provided. 

Local BA 

In our context, our employed VO concept depends on the feasibility of robustly computing absolute pose 

w.r.t local 3D structure. This in turn, requires the availability of accurate 3D point coordinates. 3D points 

are ï in the easiest case ï triangulated and optimized from two views only. In practice, however, a point is 

typically observed by more than two frames, and tracked over a sequence of multiple camera frames. An 

optimal result for the structure is thus achieved by considering all feature measurements for each point, 

which finally constitutes a full BA optimization. Full bundle adjustment as described above adjusts the 

pose for all frames (apart from the first, which is a fixed datum) and all map point positions. It exploits 

the sparseness inherent in the structure-from-motion problem to reduce the complexity of cubic-cost 

matrix factorization from ( )( )3O N M+  to ( )3O N  with N and M being the number of frames and 

points, respectively, and so the system ultimately scales with the cube of frames. One way or the other, it 

becomes an increasingly expensive computation as map size increases: For example, tens of seconds are 

required for a map with more than 150 frames to converge. 

A way of reaping the benefits of the optimality of BA, while maintaining constant complexity, making it 

possible to use BA for VO, is to only consider a so-called window of the n  last image frames and then 

perform a parameter optimization of camera poses and 3D landmarks for this set of image frames only. 

This is called local BA (first proposed by the VO work of [44]). The idea is to reduce the number of 

calculated parameters in optimizing only the parameters of the n last cameras and taking account of the 

2D projections of the points they observe in the N  (with N n> ) last frames. Thus, it optimizes only the 

last n  frames and all the map points seen by those frames. The earlier N n-  frames that see those points 

are included in the optimization but remain fixed. As a sliding window BA is applied, the optimization 

window has to be anchored to the previous map (BA is invariant to reference frame and scale if 

unconstrained). Thus, at least 7DoF (rotation, translation and scale) should be fixed and we must have 

2N n² + to fix the reconstruction frame and the scale factor at the sequence end. 
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Local BA reduces the drift compared to two-view VO because it uses feature measurements over more 

than two image frames. The current camera pose is linked via the 3D landmarks, and the image features 

track not only the previous camera pose but also the camera poses further back. The current and 1n-  

previous camera poses need to be consistent with the measurements over N image frames. 

Structure Only BA 

Some steps require the refinement of 3D structure only, for example, when optimizing a newly 

triangulated point cloud before adding it to the map. This refinement step can be achieved by optimizing 

over the 3D landmarks and keeping the camera parameters fixed in the BA optimization. This effectively 

minimizes the reprojection error of all points involved with respect to the observing cameras in the 

optimization window. 
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3.4 Loop Closure 

As mentioned in sections 3.2.1 and 3.2.2, since VO works by computing the camera path and map 

incrementally (pose after pose), the errors introduced by each new frame-to-frame motion accumulate 

over time. This generates a drift of the estimated trajectory from the real path. In the monocular scheme, 

as well as stereo and RGB-D, drift occurs in rotation and translation. In addition, and in contrast to RGB-

D or Stereo, the monocular scheme is inherently scale-ambivalent, i.e., the absolute scale of the world is 

not observable. Over long trajectories this also leads to scale-drift, which is one of the major sources of 

error. 

Because of the drift inherent in successively building a map by incremental, imperfect odometry, the map 

and path will never be perfectly aligned when returning to a previously visited location. To reduce the 

drift of the VO and to make sure the map is globally consistent, the SLAM algorithm needs to explicitly 

connect the new location with the previously visited location to which it corresponds, and adjust the path 

in between to take the new connection into consideration in order to make the parts of the map involved 

consistent. This process thus has two basic steps: loop detection and loop correction. 

3.4.1 Loop Detection 

Loop detection detects re-observations of previously mapped areas (loops). This is typically done by 

evaluating visual similarity between the current image and past images using place recognition 

algorithms. Traditionally, these methods often relied on visual bags of words based on SIFT or SURF 

features, but their computational overhead degraded the performance of visual SLAM systems. More 

recently, fast scene recognition methods using a vocabulary tree of binary descriptors have been proposed 

( [45], [15], [17] ). With every new frame, the place recognizer will search among all previous frames for 

a loop candidate frame. If a candidate is found, we can match the already mapped scene points associated 

with the loop frame to their image observations in the current frame to establish 3D-2D correspondences 

that will attach the loop. Further geometric verification can be performed to accept the loop candidate and 

to reject outlier correspondences using RANSAC with absolute pose estimation. 

3.4.2 Loop Correction 

Loop correction is in charge resolving the accumulated error along the loop to achieve global consistency. 

Using the 3D-2D correspondences from the previous step we can link the loop frame (and its periphery) 

with the current frame (and its periphery) through the mutually observed map points and their 

corresponding observations in both images (and their peripheries). 

Then we can apply BA using the new global constraints to distribute the loop closing error (due to drift 

accumulation) along the loop and align both sides of the loop. 
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However, optimizing with BA over a large number of frames and points is computationally demanding. 

More seriously, since BA is not a convex problem, and we could be far away from the global minimum 

due to the drift accumulated, the current state of the map could be far from the solution and it is likely that 

BA will get stuck in a local minimum. 

Therefore, most recent SLAM works ( [20], [15], [17] ) compute an initial solution optimizing the pose 

graph formed from the current to the loop frame pose. In a pose graph each node is a camera pose and the 

constraints are the relative transformations between adjacent nodes. In our case this forms a loop of 

constraints. The relative transformation between the loop frame and the current frame is computed by 

utilizing the 3D-2D correspondences. This transformation connects both sides of the loop and informs 

about the drift accumulated along the loop. Then an optimization is performed over relative constraints 

between poses along the loop using pose-graph optimization [46], that distributes the loop closing error 

along the graph. Pose-graph optimization requires much less parameters to optimize than BA, which leads 

to fast convergence to a solution that is close to optimal (pose-graph optimization is only a rough 

approximation of BA). The optimization is usually performed over similarity transformations (7DoF), as 

opposed to rigid body transformations (6DoF), to account for scale-drift [20], [17] (to compute a 

similarity transformation between the loop and current frame we need 3D-3D correspondences, which we 

can establish by associating duplicated reconstructed map points that correspond to the same physical 

scene point observed in both frames). While an optimization over the 6DoF constraints would efficiently 

correct translational and rotational drift, it would not deal with scale drift, and would lead to an 

unsatisfactory overall result [20]. 

Finally, the whole map can be further optimized using the estimated solution as an initial solution to 

structure-only or full BA. Since the initial solution in this case is already very close to the optimal 

solution, BA will converge much faster. 
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3.5 Keyframe Selection 

Frame selection is a very important step in VO and more so in a complete SLAM system. Many video 

frames contain redundant information, particularly when the camera is not moving. As complexity grows 

with the number of frames (due to optimizations), their selection should avoid unnecessary redundancy. 

In addition, as explained in section 3.3.5, when frames are taken at nearby positions compared to the 

scene distance (small parallax), triangulated 3D points will exhibit large uncertainty that will corrupt the 

whole map and trajectory. Thus, we would like to achieve a well spread set of frames observing points 

with significant parallax to achieve accurate results and reduce complexity. This will also allow operation 

with a larger numerical map size. These selected frames are called keyframes. 

The ideal keyframe selection policy would be to select a frame as keyframe only when the parallax with 

respect to the closest keyframe exceeds a certain threshold that allows for accurate triangulation of points. 

The parallax is a measure that depends on the distance of observed scene points relative to the distance 

between the observing cameras. Since both, the scene pointsô locations and the translation between the 

cameras are only estimations and may contain a lot of drift, especially in scale, a heuristic for predicting if 

enough parallax is gained needs to be used. 

Heuristics for selecting a new frame as keyframe could be based on visual change, such as, when the 

median pixel disparity between matched keypoints with respect to the previous keyframe exceeds a 

threshold, or when the number of tracked features from last keyframe drops below a given threshold. 

It could also be based on a geometric change, such as, when the estimated motion of the camera from last 

keyframe exceeds a threshold, or when the depth of the observed scene relative to the baseline with 

respect to the last keyframe exceeds a threshold. 
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4 System Overview 

As mentioned earlier our approach applies Mapping and Tracking techniques in combination with Image-

based localization with respect to a light-weight map that consists of geo-tagged and mapped street view 

images from the surrounding environment. Figure 4.1 shows the general pipeline we employ. We assume 

the camera is calibrated and is rigidly mounted to the vehicle. 

The proposed pipeline receives as input monocular images from the vehicleôs on-board camera. A 

monocular Visual Odometry module is in charge of incrementally tracking the 6DoF pose of the vehicle 

with every frame. Finally an image-based global map registration module is in charge of registering 

tracking with our pre-existing global map in order to achieve globally-referenced tracking and to correct 

the accumulated drift of the VO, whenever a good match is detected between the camera image and the 

tagged street view images. 

 

 

Figure 4.1: System Pipeline 

 

The pipeline is very similar to that of monocular keyframe-based SLAM, consisting of VO and a module 

to correct the accumulated drift and obtain global consistency. However, we do not detect loops with 

areas previously visited by the algorithm nor do we use the map generated by the algorithm to correct the 

drift. Instead we detect overlaps with the surrounding street view images (image-based) and utilize our 

pre-existing ñmapò to correct the drift. That being said, the techniques used to achieve these steps are very 

similar to the loop closure procedure of SLAM frameworks as outlined in section 3.4. 

The next sections describe in detail the main components of the system as well as our assumptions about 

the geo-tagged street view database. 
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5 Geotagged Street View Database 

This database represents our light-weight global scene model that is used for registering tracking to the 

global coordinate frame and correcting the accumulated drift. 

Our motivation is to leverage the availability of large geotagged image databases, such as Google Street 

View image dataset [7], as abundant sources of accurate geotagged imagery. 

Our assumptions about the database are that: 

¶ The database covers the area travelled by the vehicle. 

¶ The images are collected along roads. We do not assume the images are visually overlapping or that 

they are evenly distributed. 

¶ Each image in the dataset is geotagged with an accurate GPS position and a full 6DoF pose can be 

extracted. 

¶ Every image contains a local mapping of its observed environment in the form of a local point cloud. 

From now on we will refer to the tagged street view images as anchor images, since they contain the true 

3D pose of their respective camera and the true 3D positions of points they observe, in a global reference 

frame.  
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6 Monocular VO Framework 

In our work we use a feature-based VO pipeline as outlined in section 3.3.1.  

This module maintains two main data structures: 

1) A sparse point cloud which represents the map that is built by the algorithm. It holds all reconstructed 

3D map points so far. These points are initialized from image measurements detected by a sparse 

feature detector. Each map point contains a list of references to the keyframes from where it is 

observed. 

2) A set of Keyframes which represent the camera trajectory built so far. Each keyframe stores: 

¶ The corresponding 6DoF camera pose T  (with respect to the world frame), that allows us to 

map points from the world coordinate frame to the camera frame of reference. 

¶ A list of extracted 2D features with references to the corresponding map points (if existing). 

It consists of an initialization stage to bootstrap the system, and the main loop. These will be described in 

detail in the next sections. 

6.1 VO Main Loop 

Figure 6.1 shows the pipeline of the main loop. For each new camera frame, the main loop starts by 

extracting local invariant keypoints from the image. The algorithm then goes on with extracting 

descriptors for each extracted feature, and matches them against those of the last keyframe. 

After the establishment of proper feature correspondences to the previous keyframe, the algorithm 

proceeds to tracking the current map in order to establish 3D-2D correspondences between the current 

map points and the features of the current frame. 

Using these correspondences, the pose of the new camera frame is computed. 

We then apply a heuristic to either accept the frame as keyframe or discard it and continue with the next 

frame. If the frame is chosen as keyframe, we triangulate new points using the new keyframe and the 

previous one and add them to the map. Finally a local optimization is performed in order to refine the last 

keyframe poses and the local map. It is important to note, that the map mentioned in this section is the 

map built by the algorithm and not the pre-existing map. 

In the next subsections the implementation details of the different building blocks are described. 
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Figure 6.1: VO Pipeline (Main Loop) 

 

6.1.1 Feature Extraction  

The feature extraction process is the first process in our pipeline. It receives an undistorted image (using 

the distortion model introduced in section 3.1.3) and uses the SIFT feature detector and descriptor to 

extract keypoints and their corresponding descriptors from the image. 

SIFT is a feature detector and descriptor devised for object and place recognition and found to give 

outstanding results for VO. SIFT features have proved to be stable against changes in illumination, 

rotation, and scale, and even up to 60º changes in viewpoint. 

6.1.2 Feature Matching 

Once keypoints and their descriptors are extracted from the current image we can match keypoints in the 

current frame with those of the previous keyframe by matching their descriptors to find 2D-2D 

correspondences, that is, corresponding points in the image planes that are projections of the same point 

in the scene.  

We first find a putative feature match in the current frame for each feature in the last keyframe by 

applying fast ANN search in descriptor space, and avoid double referencing of features (multiple features 

matched to the same feature) in the last keyframe. We then apply Loweôs ratio test [36] to eliminate 

ambiguous matches. Loweôs ratio test accepts the closest match (the one with the minimum Euclidean 

distance) only if the ratio between the closest and the second closest match is smaller than a certain 

threshold. The idea behind this test is to remove matches that might be ambiguous, e.g., due to repetitive 

structure. 

We then compute a Fundamental Matrix in a robust RANSAC scheme, using the normalized 8-point 

algorithm, and eliminate those matches that do not adhere to the epipolar constraints, that is, the Sampson 

distance ( [28] pp. 313-315 ) from the epipolar line exceeds a threshold. 

In this way we are left with geometrically consistent matches for subsequent steps. 

6.1.3 Map Tracking  

Map tracking associates mapped scene points to their corresponding observations in the current frame. In 

our implementation this is done by utilizing the 3D-2D correspondences (map points associated to their 

respective keypoints) of the most recent keyframe as well as the 2D-2D correspondences found in the 
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matching process in order to establish 3D-2D correspondences between the map points (observed by the 

last keyframe) and the features of the current frame. 

6.1.4 Absolute Pose Estimation 

Given the set of 3D-2D correspondences from the previous step, we can compute the absolute pose of the 

vehicle (with respect to the map) by applying the P3P algorithm of [47] together with a RANSAC scheme 

to discard outliers. Finally, using the inlier points we recompute the camera pose by applying the EPnP 

algorithm [48]. We refine the resulting camera pose estimate using the Levenberg-Marquardt 

optimization ( [28] pp. 600-613 ), which minimizes the reprojection error given by the sum of the squared 

distances between the observed image points and the corresponding reprojected 3D points. 

Finally we dissociate map points from their matched keypoints in the current frame if the matches were 

outliers to the estimated pose. 

6.1.5 Keyframe Selection 

Pose estimation is followed by an estimation of the overall parallax between the previous keyframe and 

the new frame. The availability of enough parallax is usually identified by simply thresholding the outlier-

robust median pixel disparity (Euclidean distance) between the previous keyframe and the current frame. 

This is done by computing the median pixel disparity between the corresponding 2D-2D matches. 

In case this value exceeds a certain threshold, the parallax is considered to be high enough and the new 

frame is selected as keyframe. One problem with this approach is that the nature of the motion is simply 

ignored, meaning that this parallax identification process fails if the disparity in the image plane mainly 

results from rotation instead of translation (and thus not induced by parallax). 

6.1.6 New Points Creation 

2D-2D correspondences between the new and previous keyframe, that were not associated to a map point 

during map tracking, are triangulated using the DLT algorithm ( [28] pp. 312-313 ) to form a new point 

cloud. 

Triangulated points whose reprojection error with respect to their corresponding keypoints is too high, or 

those that are behind one of the cameras (fail the chirality test), are rejected. 

The remaining point cloud is further refined using structure-only BA considering only these two 

keyframes. 

Finally, new surviving points are associated with their corresponding observations in both keyframes and 

added to the map. 
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6.1.7 Local Optimization 

In the final stage, local BA is applied to refine the local trajectory and map. It optimizes the currently 

processed keyframe along with a fixed number of the last keyframes, and all the map points seen by those 

keyframes. A fixed number of earlier keyframes that see those points are included in the optimization but 

remain fixed. The minimal representation for the camera pose parameters is provided by representing 

rotation as an Euler Vector and leaving the translation part as it is (see section 3.1.2 for more details on 

minimal pose representation). 

6.2 VO initialization  

When the system is initialized from scratch, there are no 3D points available as we consider a monocular 

camera (due to its purely projective nature, it cannot observe scene structure using one image). The goal 

of the initialization stage is thus to compute the relative pose between the first two keyframes to 

triangulate an initial set of map points, for the subsequent absolute pose estimations. Figure 6.2 shows the 

initialization pipeline. 

In this case the first frame is selected as keyframe and features are extracted as usual (section 6.1.1).  

Features are extracted from subsequent frames and matched to the first keyframe as in 6.1.2. The second 

keyframe is chosen as in 6.1.5. We now have 2D-2D keypoint matches and can use the 5-point algorithm 

of [41] with RANSAC to estimate the relative pose (up to a scale factor in translation). We can now 

initialize the initial point cloud using the first two keyframes as in 6.1.6. 

 

 

Figure 6.2: VO Pipeline (Initialization)  

 

Remarks 

The translation in the initialization stage is estimated only up to a scale factor. In our current 

implementation, we assume the real translational scale between the first two keyframes is known, and we 

correct the scale of the reconstruction with this ground truth scale. 

This scale is implicitly propagated to the rest of the map and poses through the use of absolute pose 

estimations in the main loop. 

In addition, we assume the pose of the first keyframe in the global coordinate system is known. 


























































