

Cucumber plant parts Detection and

Segmentation

Technion - Israel institute of technology

CS 234329 - Project in image processing and analysis

15 May 2019

Abstract
This Project tackles the task of segmentation and indexation on cucumber plant parts. The

approach is to implement an end to end workflow to partially annotated and relatively small

datasets.

Mask RCNN paper from facebook research has proven very efficient in this task even on

small datasets. Therefore the focus is maximizing the effectiveness of a problematic dataset

on different levels. This reports discusses partially annotated datasets, and inconsistent

annotation styles.

The conclusion tends towards a trade-off between investing in the dataset quality and using

augmentation acrobatics to quickly use the existing data. There is no doubt that consistent

fully annotated real pictures will get the most out of the network.

Authors: Simon Lousky, Asher Yartsev, Or Shemesh

Supervisors: Alon Zvirin, Yaron Honen, Dima Kuznichov

Table of Contents
Abstract 1

Table of Contents 2

Introduction 3

System Description 3

 Mask R-CNN in a nutshell 3

 Our dataset 4

 Dataset Inconsistencies 4

 Occlusion management 4

 Multiple polygons for single object 5

 Under supervised datasets 5

Towards data enhancement 6

 First steps 6

 Repairing the dataset 6

 Synthetic datasets 8

 Object filtering 8

 Enhanced blending 8

 Object scenery 9

 Real datasets 10

Mask R-CNN Train and Implementation aspects 12

 Mask R-CNN on Tensorboard 12

 Mask R-CNN flowchart 13

 Monitoring through callbacks 15

 Hyper-Parameters Analysis 16

 RPN architecture 16

 Masking network 16

 General 16

Workflow 17

 Data Viability 17

 Data Organization 17

 Data Augmentation 17

 Training 18

Experiments and Results 18

 Metrics 18

 IoU 18

 Plot overlap matrix 18

 Precision recall graph 18

 Fruit only - real vs synthetic 19

 Leaves only - real vs synthetic 20

 Stems only - real vs synthetic 22

 Flowers only - real vs synthetic 24

 Enhanced blending vs sharp blending 25

 Final results - Team real and team synthetic on a test set 26

 Notes on the Results 27

Conclusions 27

Further Work and Suggestions 27

References 28

Introduction
A wide number of geometrical and AI based models are aimed to detect and segment

objects. In the farming industry this task is particularly interesting and can have massive

impact on automatisation and therefore have environmental and economical values.

Previously used models for this task in the lab were patch based classification, and encoder

decoder to separate different parts of a plant. These techniques yielded valuable results on

tomato plants but did not perform so well on other available datasets like the cucumber

dataset. It was hypothesized that Mask-RCNN should tackle the task easily enough.Hence,

our objective was to use a previously developed model that generated synthetic data to train

on the cucumber dataset, and try to get the best results possible. Since the objective was

getting the best results, and after understanding better how Mask-RCNN works, we

wondered about training the model on a regular ‘coco’ style dataset. This expanded our work

to be the creation of a technical workflow and environment to easily train on generated data

as well as on real datasets.

System Description

Mask R-CNN in a nutshell

Easily put, this network resembles a tree where the nodes are DNN components, each with a

simple and specific task.

Let’s describe the relationship between those components:

 The first block is a CNN (call it backbone network) which should be some state of the art

feature extractor like ResNet (resnet-50 in our case).

The second component would be the RPN (Region Proposal Network) Which shares

convolutional layers with the backbone using a FPN (Feature Pyramid Network). FPN

improves region proposal and is more accurate than using only the last feature map layer of

the backbone.

The third node is a FCN (Fully Connected) that performs both regression on the bounding

boxes and classification inside the regions.

The last one is the masking CNN part which is basically a binary classifier that indicates for

each pixel in the region whether it is part of an object or not.

More Mask R-CNN implementation details are explained in a later chapter.

Figure 1 - Schematic of Mask R-CNN architecture

Our dataset

The dataset was 4 sets of 6000 x 4000 pictures, accompanied by a .json file in the COCO

format1 .Our goal was to successfully detect four different classes, preferably doing it in a

single forward pass on a picture. All four classes were four different parts of a cucumber

plant:

1. Fruits (aka cucumber) - 101 Pictures

1 See http://cocodataset.org/#format-data

http://cocodataset.org/#format-data

2. Leaves - 140 pictures

3. Flowers - 131 pictures

4. Stems - 481 pictures

Each class having its own dataset, they differed both in quality and quantity.

Training this Network assumes full supervision of all objects, Therefore not having one

combined dataset is the main issue, given the need to inference through a single network for

all our classes. On the other hand hundreds of picture (one would argue that tens of

pictures) is a reasonable amount for a pre-trained Mask RCNN model, both in terms of

numbers and diversity.

Dataset Inconsistencies

Three major types of inconsistencies made our dataset challenging.

Occlusion management

The first is occlusion management. In some cases the masks contain occluded parts, and in

others the occlusion is omitted. For example in figure 2 , the stem that hides the blue left

 cucumber is annotated as part of it, but the cucumber in the middle of the picture is

separated by a stem. Moreover it is worth noticing that COCO dataset is consistent

regarding the occlusion matter. See figure 2 - The man’s hands are hiding the surfboard but

are not marked as part of it.

Multiple polygons for single object

The second anomaly is annotations of different parts of the same object as different objects.

See the middle pink cucumber in figure 2, the yellow color indicates that it is annotated as a

new fruit. In this case as well the COCO annotation style permits multiple polygons for a

single object. See figure 2 - The car in the background is made of two separate polygons, or

the three parts of the surfboard that are annotated as the same object.

 Figure 2 - Annotation of occluded objects.

Left image shows the typical anomalies found in the original dataset. Middle

Image is the desired annotation for such image.
The Right image is an example from MS-COCO (image id 246120).

 Under supervised datasets

The third inconsistency type is low percentage of annotated objects per image in our dataset.

Like previously said, the network assumes full supervision over the objects, therefore having

relevant but unannotated objects, is a serious pitfall in using the picture as ground truth. Let’s

assume we wish to detect all mature foreground leaves. In figure 3, you can see only one

leaf is annotated out of many leaves that are clearly visible, compared to a non perfect but

yet significantly better annotated image on the right (figure 4), where 13 apples out of 16 are

annotated.

Figure 3 - Annotation of frequent objects images. Left

annotated image from our dataset compared

Figure 4 - Image from MS-COCO (image id 239565)

Towards data enhancement

First steps

The direction we were thrown at, regarding the dataset issue, was synthetic data creation.

Based on the work previously made by the lab, we were about to train the model with

pictures of randomly dispersed objects on neutral backgrounds, generated at training time (

figure 5 and figure 6). This technique seemed promising and we were intrigued by the

question whether this approach would yield results as good as real, fully annotated datasets.

This question lead to some work we discuss later on.

Figure 5 - Synthetic image Figure 6 - Inference after synthetic training

Repairing the dataset

Looking at the final goal that was at stake, we were determined in any way possible to make

the best out of what we got. We knew we’re going to want to play around with the data,

change resolutions, augment the pictures, maybe even fix some of the pitfalls in the dataset.

For this reason we searched for an open source tool that could help us visualize and

manipulate the dataset. The best option we found was called COCO-annotator2, it was

intuitive, easy enough to configure and bring up locally. This tool gave us the ability to

manipulate, add annotations and preview the dataset immediately, but we needed some

additional features we later developed:

1. Merger Tool - This tool was intended to connect few polygons that the original

dataset was considering multiple objects. See figure 2

2. Stylus and Ipad related features - In order to get the most out of the tool, we thought

adapting it to a stylus enabled touch device would make the experience of annotating

and correcting a bad dataset much easier. The obvious additions were:

a. Zoom in out

b. Move around

c. Mouse events changed touch compatible events

3. Performance improvement - The original repository had a background task draining

all the resources of the server and never saving the work done, we fixed this issue as

well.

2 Original COCO-annotator by jsbroks - https://github.com/jsbroks/coco-annotator

Altered version for our project - https://github.com/simonlousky/cucu-annotator

https://github.com/jsbroks/coco-annotator
https://github.com/jsbroks/coco-annotator
https://github.com/simonlousky/cucu-annotator
https://github.com/simonlousky/cucu-annotator

Figure 7- Our altered version of COCO Annotator

Having the final goal in mind, we used the newly improved coco-annotator and did some

work on the original dataset.

One additional thing to note is that in any step we took regarding manipulation of the dataset,

including data augmentation we later talk about, we insisted on having a way back to the

original format of the data set. That is - A simple directory with a bunch of picture and a

single .json file with all the annotations.

Synthetic datasets

The first step in image generation was singling out objects out of the pictures, using the

segmentation coordinates found in the .json file. This was done using a semi-smart script

that could find any object, cut around its edges, normalize its size, and apply transparency to

its background. In order to get minimal manual work on the resulting object bank, the script

Iterates over all the segmentations in the annotations file, filtered out objects with irrelevant

size or bad width/height ratio, resized all of them and saved them in a new directory, one for

each class.

Object filtering

As stated before, objects were filtered using simple logic. One parameter was the size of the

object compared to the picture, we fixed a minimum size of 10% of the pictures’s height. The

Second parameter was the minimal height:width aspect ratio of an object. Fruits ratio was

fixed at 3:1, leaves at 1:1, stems at 4:1. Another matter to address was occluded objects

which could yield partial objects. For this we only singled out objects made of one polygon.

Using this simple filtering algorithm reduced the manual work by an order of magnitude.

Although you could arguably use the direct output of this script to train the network and get

good results, we decided to manually filter the data even more carefully.

Figure 8 - Sample of cut and filtered objects

Enhanced blending

One might argue that incorporated objects in a synthetic pictures can become easy targets for

a deep neural network. The sharp edges of the cut object definitely break the pattern of any

background and therefore the network might focus on this feature. In an attempt to imitate real

life images, we blurred the mask contour to make the edges of the RGB picture blend with the

background more realistically (See figure 9) . This theory is later put to the test.

Figure 9- Blurred mask makes the RGB

content fade to the background RGB

content, without blurring the RGB content

itself.

Figure 10- on the left a sharp edge, on the right a leaf edge with

enhanced blending applied

Object scenery

One other aspect of generating an image is the composition of the pictures. How many

leaves are there, how are they dispersed, how big they are etc…

These hyper parameters are all concentrated in a configuration file and the tests were

performed with the following ones:

● MIN_SCALE_OBJ = 0.1: The minimum size of an object is 10% of the picture’s

height or width.

● RPN_ANCHOR_SCALES: The maximum size of an object is 30% of the picture’s

height or width.

● MIN_GENERATED_OBJECT = 5: The minimum number of objects in picture is 5.

● MAX_GENERATED_OBJECT = 20: The maximum number of objects in picture is

20.

● OBJECT_IOU_THRESHOLD = 0.05: The maximum intersection between object is

5% of the picture’s size

Final image

cucumber masks

Leaf masks

Flower masks

 Figure 11 - Sample image from a mixed synthetic dataset

Real datasets

In spite that the original work was about training the network using the generated pictures

technique, we found ourselves interested in comparing the results with a fully supervised

training set of original pictures. This dataset would also need to be augmented in the DNN

fashion way. Here we describe the treatments made offline (not in during training time) to

improve the dataset.

We decided to enlarge our dataset by using a stochastic augmentation method, that can

sample altered pictures from any dataset, applying directional flips, skews, brightness and

contrast shifts by some degree of randomness. To do so, we used the Python module

Augmentor3. In this process we tried to preserve the quality of the dataset by erasing

nonsense annotations that rather looked like artifacts on the altered pictures. Objects smaller

than 150 pixels in a 1536 x 1024 image and annotations of objects with extreme aspect

ratios were removed. Pictures left with no annotations were removed as well.

3 Original library - https://github.com/mdbloice/Augmentor

Altered version for our purposes - https://github.com/simonlousky/alteredAugmentor

https://github.com/mdbloice/Augmentor
https://github.com/simonlousky/alteredAugmentor

Figure 12 - Example of new augmented images generated from the same original image (IMG_2718.jpg) in the center.

Mask R-CNN Train and Implementation aspects

Mask R-CNN on Tensorboard

We invested some effort to redesign the original matterport/Mask_RCNN implementation to

take advantage of Tensorboard’s visual power, since the original code wasn’t written with

this design in head.

That way we, and others following us, will be able to analyze the net structure with

confidence.

Figure 13 - Graph generated by Tensorboard after editing the model.

Full size png can be found in project repository on GitHub.

Figure 14 - A very small part of the default generated graph which make the net impossible to track and debug when
needed

Mask R-CNN flowchart

During the first steps and last steps of our project we realized that fully understanding the

architecture of Mask R-CNN is helping us focus on hyperparameters better. Unfortunately no

satisfactory documentation was found, and TensorFlow showed way too much graphic

“noise” that clouded the big picture. So with patience and full correspondence to the

implementation we leaned on, and formulated a flowChart (figure 16) to help us and others in

the future.

Figure 15

Figure 16

Monitoring through callbacks

The implementation we worked with, used embedded TensorFlow callbacks, this way we

could graphically monitor each Loss function. (Figure 17)

Figure 17

The graphs were taken from small experimental training procedures, in which we just tested

an innovative training technique on generated data. Every few epochs we generated totally

new data, gradually incrementing the number and scale of generated objects. We were

guided by the intuition that a good practice to avoid overfit is generating more complicated

dataset every few epochs. In other words, each time the model is performing well on the

dataset we challenge it harder.

In our research process, during first training phazes, we noticed that many times our training

session reached a plateau in terms of minimizing the Loss.

We put efforts to support more TensorFlow Callbacks allowing visualization of weight

distribution in each layer during training.

Unfortunately, results can only be shown with the initialization weights, and their evolution

over time could not be monitored.

We eventually found out that due to poor implementation design pursuing this thread would

be too time consuming.

Hyper-Parameters Analysis

We believe it’s vital to elaborate on optional configurations that affect this network. This

section expresses the vast domain of possible twicks and fine-tunings.

RPN architecture

● RPN_ANCHOR_SCALES: We put some thoughts in the size we want our anchors to

be, since a better set of anchor sizes, one that statistically fits most of the objects,

should lead to a slightly better convergence of rpn_bbox_loss.

● RPN_ANCHOR_RATIOS: Ratios are sometimes also a consideration to improve

bbox_loss, for example, training on stems should require high and thin anchors. For

some implementational reasons, adding ratios instead of replacing them leads to

dimension mismatches. Pursuing this thread could be interesting since thin objects

and thin parts in general seem challenging according to our experience and to some

related topics on the internet.

● RPN_NMS_THRESHOLD: Intersection percent over which two ROIs are considered

one single object and only one is kept. We can’t determine exactly what is better:

Values closer to 1 filter out best matches, therefore converge faster at the beginning,

or smaller values that slow down convergence at the beginning but might produce

better results since the learning curve is slower.

● RPN_TRAIN_ANCHORS_PER_IMAGE: The final number of ROIs to consider on a

single forward pass. The ROIs are randomly selected from the result of the RPN. It’s

important to realize that this HyperParameter is coupled with RPN_NMS_THRESHOLD

since, the higher the threshold, the more diverse ROI proposal is. High NMS will be

more likely to choose dispersed anchors to train on. This should represent better the

underlying distribution of objects in the scene.

Masking network

● USE_MINI_MASK: This boolean is for faster performance at the cost of masks

accuracy.

Empirically we can state that turning on this variable had a significantly bad effect on

our masks quality. We always prefered to turn it off.

General

● LEARNING_RATE: We explored few approaches:

 ○ Extra small learning rate (micro scale)

 ○ A big learning rate(~0.1)

○ Incremental approach where in each epoch we reduce learning rate. We’ve

found out that high learning rates lead to poor train results. Extra small learning rate

had no significant benefit over a decaying learning rate that starts from

0.001. Therefore, we decided to move on with our incremental approach.

Workflow
Here we describe the flow of actions from getting a problematic dataset to training and

testing the model.

Data Viability

1. Quickly inspect the json to check it is formatted correctly. In our case some of the

files had the wrong order of segmentation values. We used a python script4 to correct

the data.

2. Visually check the sanity of the data by opening it in our COCO-Annotator5.

3. Correct the data if needed. If your dataset is small, and you find a significant pitfall,

the right tools will get you through it very fast, and save you time later trying to

bypass those.

Data Organization
1. Split the dataset to train and validation sets, we made a script for this as well.

2. Resize the dataset pictures if needed. We could not train on our 4000x6000 original

pictures therefore we resized all of them to 1536x1024 and 768x512 using the altered

Augmentor6.

3. Extract the single objects for synthetic image generation. Keep track of object created

from the training set and those created from the validation set. This step as well is

assisted by a script. This step is followed by an optional manual filtering step.

4. Keep the dataset organized in a practical fashion. We used the layout you can see in

figure 18 to organize the datasets. Take in consideration that the data generating

class we created assumes this layout in order to properly work.

Data Augmentation

1. For real supervised dataset, use the altered augmentor to sample a dataset big

enough. We sampled 2000 pictures from every original dataset.

2. For generated dataset, tune the object scenery parameters according to your

understanding. The parameters are depicted in the chapter about synthetic datasets.

4 The script is available in the altered COCO-Annotator repository
5 Instructions on how to do that is found in the repository
6 Instructions on how to use the Augmentor scripts can be found in the repository

Figure 18 - Generated layout has no resolution

 layer since all objects and backgrounds are

compatible with every synthetic image resolution.

Training

1. Read the repository readme and just start your training!

2. Have fun!

Experiments and Results

Metrics

IoU

Intersection over union, a method to quantify the percent overlap between target mask and

prediction output.

Plot overlap matrix

Show number of predictions vs actual instances.

Show prediction confidence.

Show IoU for each prediction .

Precision recall graph

sorted Precision* as function of recall

Precision - Number of true positives over total classifications True PoTsirtiuvee P+ oFsiatlivsee Positive

Recall - Number of true positives over total true instances True PosTitrivuee +P Fosaitlisvee Negative

Fruit only - real vs synthetic

Definition of class - foreground mature fruits, occlusion omitted.

 Mean AP - IoU=50

Type Resolution Train set Original 4000 Mean

Synthetic

512 Fruit only 0.38 0.07

0.36 0.06 1024 Fruit only 0.42 0.09

1024 Mixed 0.38 0.42

Real

512 Fruit only (2000) 0.53 0.51

0.65 0.59 1024 Fruit only (2000) 0.70 0.56

1024 Fruit only (10,000) 0.71 0.70

 Mean AP - IoU=20

Type Resolution Train set Original 4000 Mean

Synthetic
1024 Fruit only 0.44 0.09

0.37 0.06
1024 Mixed 0.38 0.44

Real
1024 Fruit only (2000) 0.73 0.56

0.725 0.63
1024 Fruit only (10,000) 0.72 0.70

Side note about synthetic data and high resolution testing: Earlier models trained with much

bigger object sizes reacted very much better on the high resolution pictures. Nevertheless

the real dataset training set makes the model much more robust to resolution change.

 Real 1024 Synthetic 1024 Ground truth

Leaves only - real vs synthetic

Definition of class - foreground mature leaves, occlusion omitted.

The original dataset is only partially supervised making training on a real dataset

problematic. We could just ignore the fact that it is partially supervised but the problem would

then be testing the results. Testing is tricky because the test set have to be be fully

supervised in order to give a correct precision and recall grades.

For this purpose we used the COCO-annotator to supervise a very small dataset (8 training

pictures, and 2 validation pictures).

 Mean AP - IoU=50

Type Resolution Train set Original 4000 Mean

Synthetic

512 Leaf only 1.0 0.0

 0.33 0.0 1024 Leaf only 0.0 0.0

1024 Mixed 1.0 0.0

Real
512 Leaf only (2000) 1.0 0.0

 1.0 0.38
1024 Leaf only (2000) 1.0 0.77

 Mean AP - IoU=20

Type Resolution Train set Original 4000 Mean

Synthetic
1024 Leaf only 0.48 0.0

0.74 0.07
1024 Mixed 1.0 0.14

Real 1024 Leaf only (2000) 1.0 0.77 1.0 0.77

 Synthetic 1024 Real 1024 Ground truth

The results are not very informative because of the small size of the validation set. Anyway the bias in

favor of real datasets stays the same.

Stems only - real vs synthetic

Definition of class - Foreground main stem, occluded location included.

 Mean AP - IoU=50

Type Resolution Train set Original 4000 Mean

Synthetic

512 Stem only 0.0 0.01

0.01 0.01 1024 Stem only 0.03 0.01

1024 Mixed 0.0 0.0

Real
512 Stem only (2000) 0.05 0.01

0.08 0.045
1024 Stem only (2000) 0.11 0.08

 Mean AP - IoU=20

Type Resolution Train set Original 4000

Synthetic

1024 Stem only 0.24 0.22

1024 Mixed 0.01 0.002

Real 1024 Stem only (2000) 0.62 0.54

 Real 1024 Ground truth

The model trained on the real dataset is not particularly wrong with its decisions, but the limited aspect

ratio seems to be responsible for splitting the stems. Split detections are not counted as true positives

thus the very small precision.

On the other hand the model trained on synthetic data does not perform well at all on stems.

Flowers only - real vs synthetic

Definition of class - Foreground main stem, occluded location included.

 Mean AP - IoU=50

Type Resolution Train set Original 4000 Mean

Synthetic

512 Flower only 0.22 0.06

0.17 0.05 1024 Flower only 0.20 0.07

1024 Mixed 0.09 0.04

Real
512 Flower only (2000) 0.43 0.30

0.45 0.29
1024 Flower only (2000) 0.47 0.28

 Mean AP - IoU=20

Type Resolution Train set Original 4000 Mean

Synthetic
1024 Flower only 0.30 0.12

0.23 0.14
1024 Mixed 0.16 0.15

Real 1024 Flower only (2000) 0.64 0.56 0.64 0.56

 Synthetic 1024 Real 1024 Ground truth

Enhanced blending vs sharp blending
 Mean AP - IoU=50

 Cucumber only Stem only Mixed on flower Mixed on cucumber Mean

Erode and Blur 0.42 0.03 0.07 0.29 0.2025

No blending 0.41 0.001 0.01 0.22 0.16025

 Mean AP - IoU=20

 Cucumber only Stem only Mixed on flower Mixed on cucumber Mean

Erode and Blur 0.45 0.24 0.14 0.30 0.2825

No blending 0.43 0.12 0.02 0.23 0.2

Blur and erosion properties clearly influence the result, and should be optimized.

Final results - Team real and team synthetic on a test set

To produce these final results on the real data team we inferenced a validation set through

the best model of each class, and then combined the results to a single picture, colorized by

class.

 Mean AP - IoU=50

Type Resolution Train set Original

Synthetic 1024 Mixed 0.29

Real 1024 Single models combined 0.42

 Mean AP - IoU=20

Type Resolution Train set Original

Synthetic 1024 Mixed 0.33

Real 1024 Single models combined 0.55

 Synthetic 1024 Real 1024 Ground truth

It is clearly notable that the models react very well to singled out objects, and has a hard time

with crowds. Moreover leaves are more easily recognized when shot from above, as they

appear in the training set.

Overall the models seem to mostly do their job.

Notes on the Results

● Due to hardware limitations, inference on 6000x4000 pictures need to apply

cropping. Mask-RCNN has to apply an image patching approach, that causes big

objects to partially appear in each patch, thus reducing IoU. This causes Mean-AP to

decrease, since many maskings don’t cross the 50% IoU threshold.

● The results suggest that mixed-object models perform worse than single-object

models. By analyzing our research containers and observing generated dataset for

the model, we understood that our generator generates up to 20 objects, no matter

what they are. Thus the richer the object distribution got, the less actual objects from

each type appeared.

● The only viable results are the results on the fruits and the stems.

Leaves - Only a tiny test set is fully supervised therefore do not represent real life

 results.

Flowers - Real dataset is trained on the box style flowers and performs perfectly, but

the synthetic models use 3 manually cut flowers therefore this is not a fair fight.

● Objects scenery may have a big influence on the results. The results just point out

that this may be a difficult task.

Conclusions
● Mask R-CNN is very well fitted for fruit and flower detection. Detecting leaves and

stems in a dense or crowded environment of a lot of the same makes the detections

very challenging. Moreover it is much more difficult to clearly define the objects we

are trying to segment and the ones we are not (as explained in the dataset section).

● Training on generated data does not make sense when you have the tools to fully

supervise a small training set. The real dataset used to train the leaf model in the

final results is made of only 8 pictures (traditionally augmented to 2000 picture). It

could be interesting to try to beat the real datasets with synthetic data, by changing

the blending properties, the object scenery and maybe add additional tricks.

Nevertheless the results are clear on this point - You are better off fully annotating

 a dozen of pictures than spending hours in creating the perfect synthetic

data.

Further Work and Suggestions
● Smart synthetic plants - spreading leaves and cucumbers around a stem.

● Transfer learning of masks between classes (e.g for flowers masking).

● Real time inference - run real time inferences while keeping track of object

indexation. Keep track of evolution for each leaf or cucumber as well.

● LSTM or any RNN concept to improve object detection (flower turns to

cucumber, stems grows up, etc).

● Use a 3D engine platform to generate data. Create infinite angles, curvature

and lighting of leaves, using a single leaf texture.

● Background generative models. Generate backgrounds instead of using a finite

bank of backgrounds. Possibly this would better mimic real supervised

pictures.

● Investigate the loss of the model for very thin objects and thin parts, and try to

propose a better performing mask detector for them.

● Further improve and adopt the COCO-annotator for easy, fast and cheap

annotations. Put effort in tablet aspects and usage.

● Further improve the altered Augmentor. Add HSV color alteration, maybe

incorporate the png-to-json script inside for seamless augmentation.

● Localize intersecting pictures in datasets and combine their annotations.

References
Mask R-CNN paper - https://arxiv.org/abs/1703.06870

Faster R-CNN paper - https://arxiv.org/abs/1506.01497

Matterport Mask R-CNN - https://github.com/matterport/Mask_RCNN Dima

repository of Mask R-CNN -

Original COCO-annotator - https://github.com/jsbroks/coco-annotato r

Original Augmentor - https://github.com/mdbloice/Augmentor

COCO dataset - http://cocodataset.org/#home

COCO annotations from scratch - http://www.immersivelimit.com/tutorials/create-coco-

annotations-from-scratch Building a custom mask r-cnn -

https://towardsdatascience.com/building-a-custom-mask-rcnn-model-with-tensorflow-

objectdetection-952f5b0c7ab4

https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://github.com/matterport/Mask_RCNN
https://github.com/jsbroks/coco-annotator
https://github.com/jsbroks/coco-annotator
https://github.com/mdbloice/Augmentor
http://cocodataset.org/#home
http://cocodataset.org/#home
http://www.immersivelimit.com/tutorials/create-coco-annotations-from-scratch
http://www.immersivelimit.com/tutorials/create-coco-annotations-from-scratch
https://towardsdatascience.com/building-a-custom-mask-rcnn-model-with-tensorflow-object-detection-952f5b0c7ab4
https://towardsdatascience.com/building-a-custom-mask-rcnn-model-with-tensorflow-object-detection-952f5b0c7ab4
https://towardsdatascience.com/building-a-custom-mask-rcnn-model-with-tensorflow-object-detection-952f5b0c7ab4

