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Abstract  
This Project tackles the task of segmentation and indexation on cucumber plant parts. The 

approach is to implement an end to end workflow to partially annotated and relatively small 

datasets.  

Mask RCNN paper from facebook research has proven very efficient in this task even on 

small datasets. Therefore the focus is maximizing the effectiveness of a problematic dataset 

on different levels. This reports discusses partially annotated datasets, and inconsistent 

annotation styles.  

The conclusion tends towards a trade-off between investing in the dataset quality and using 

augmentation acrobatics to quickly use the existing data. There is no doubt that consistent 

fully annotated real pictures will get the most out of the network.  
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Introduction  
A wide number of geometrical and AI based models are aimed to detect and segment 

objects. In the farming industry this task is particularly interesting and can have massive 

impact on automatisation and therefore have environmental and economical values. 

Previously used models for this task in the lab were patch based classification, and encoder 

decoder to separate different parts of a plant. These techniques yielded valuable results on 

tomato plants but did not perform so well on other available datasets like the cucumber 

dataset. It was hypothesized that Mask-RCNN should tackle the task easily enough.Hence, 

our objective was to use a previously developed model that generated synthetic data to train 

on the cucumber dataset, and try to get the best results possible. Since the objective was 



 

  

  

getting the best results, and after understanding better how Mask-RCNN works, we 

wondered about training the model on a regular ‘coco’ style dataset. This expanded our work 

to be the creation of a technical workflow and environment to easily train on generated data 

as well as on real datasets.  

System Description  

Mask R-CNN in a nutshell  

Easily put, this network resembles a tree where the nodes are DNN components, each with a 

simple and specific task.  

Let’s describe the relationship between those components:  

 The first block is a CNN (call it backbone network) which should be some state of the art 

feature extractor like ResNet (resnet-50 in our case).   

The second component would be the RPN (Region Proposal Network) Which shares 

convolutional layers with the backbone using a FPN (Feature Pyramid Network). FPN 

improves region proposal and is more accurate than using only the last feature map layer of 

the backbone.  

The third node is a FCN (Fully Connected) that performs both regression on the bounding 

boxes and classification inside the regions.  

The last one is the masking CNN part which is basically a binary classifier that indicates for 

each pixel in the region whether it is part of an object or not.  

More Mask R-CNN implementation details are explained in a later chapter.  

  

  

Figure 1 - Schematic of Mask R-CNN architecture  

Our dataset  

The dataset was 4 sets of 6000 x 4000 pictures, accompanied by a .json file in the COCO 

format1 .Our goal was to successfully detect four different classes, preferably doing it in a 

single forward pass on a picture. All four classes were four different parts of a cucumber 

plant:   

1. Fruits (aka cucumber) - 101 Pictures  

                                                
1 See http://cocodataset.org/#format-data  

http://cocodataset.org/#format-data


 

  

  

2. Leaves - 140 pictures  

3. Flowers - 131 pictures  

4. Stems - 481 pictures  

Each class having its own dataset, they differed both in quality and quantity.   

Training this Network assumes full supervision of all objects, Therefore not having one 

combined dataset is the main issue, given the need to inference through a single network for 

all our classes. On the other hand hundreds of picture (one would argue that tens of 

pictures) is a reasonable amount for a pre-trained Mask RCNN model, both in terms of 

numbers and diversity.  

Dataset Inconsistencies  

Three major types of inconsistencies made our dataset challenging.   

Occlusion management  

The first is occlusion management. In some cases the masks contain occluded parts, and in 

others the occlusion is omitted. For example in figure 2 , the stem that hides the blue left

  cucumber is annotated as part of it, but the cucumber in the middle of the picture is 

separated by a stem. Moreover it is worth noticing that COCO dataset is consistent 

regarding the occlusion matter. See figure 2 - The man’s hands are hiding the surfboard but 

are not marked as part of it.  

Multiple polygons for single object  

The second anomaly is annotations of different parts of the same object as different objects. 

See the middle pink cucumber in figure 2, the yellow color indicates that it is annotated as a 

new fruit. In this case as well the COCO annotation style permits multiple polygons for a 

single object. See figure 2 - The car in the background is made of two separate polygons, or 

the three parts of the surfboard that are annotated as the same object.  

  

  

  



 

  

  

 Figure 2 - Annotation of occluded objects.   

Left image shows the typical anomalies found in the original dataset. Middle 

Image is the desired annotation for such image.  
The Right image is an example from MS-COCO (image id 246120).   

 Under supervised datasets   

The third inconsistency type is low percentage of annotated objects per image in our dataset. 

Like previously said, the network assumes full supervision over the objects, therefore having 

relevant but unannotated objects, is a serious pitfall in using the picture as ground truth. Let’s 

assume we wish to detect all mature foreground leaves. In figure 3, you can see only one 

leaf is annotated out of many leaves that are clearly visible, compared to a non perfect but 

yet significantly better annotated image on the right (figure 4), where 13 apples out of 16 are 

annotated.  

  

    

Figure 3 - Annotation of frequent objects images. Left 

annotated image from our dataset compared   

Figure 4 - Image from MS-COCO (image id 239565)  

Towards data enhancement  

First steps  

The direction we were thrown at, regarding the dataset issue, was synthetic data creation. 

Based on the work previously made by the lab, we were about to train the model with 

pictures of randomly dispersed objects on neutral backgrounds, generated at training time (

figure 5 and figure 6). This technique seemed promising and we were intrigued by the 

question whether this approach would yield results as good as real, fully annotated datasets. 

This question lead to some work we discuss later on.   



 

  

  

    

Figure 5 - Synthetic image  Figure 6 - Inference after synthetic training  

Repairing the dataset  

Looking at the final goal that was at stake, we were determined in any way possible to make 

the best out of what we got. We knew we’re going to want to play around with the data, 

change resolutions, augment the pictures, maybe even fix some of the pitfalls in the dataset. 

For this reason we searched for an open source tool that could help us visualize and 

manipulate the dataset. The best option we found was called COCO-annotator2, it was 

intuitive, easy enough to configure and bring up locally. This tool gave us the ability to 

manipulate, add annotations and preview the dataset immediately, but we needed some 

additional features we later developed:  

1. Merger Tool - This tool was intended to connect few polygons that the original 

dataset was considering multiple objects. See figure 2  

2. Stylus and Ipad related features - In order to get the most out of the tool, we thought 

adapting it to a stylus enabled touch device would make the experience of annotating 

and correcting a bad dataset much easier. The obvious additions were:  

a. Zoom in out  

b. Move around  

c. Mouse events changed touch compatible events  

3. Performance improvement - The original repository had a background task draining 

all the resources of the server and never saving the work done, we fixed this issue as 

well.   

  

                                                
2 Original COCO-annotator by jsbroks - https://github.com/jsbroks/coco-annotator  

Altered version for our project - https://github.com/simonlousky/cucu-annotator  

https://github.com/jsbroks/coco-annotator
https://github.com/jsbroks/coco-annotator
https://github.com/simonlousky/cucu-annotator
https://github.com/simonlousky/cucu-annotator


 

  

  

  

Figure 7- Our altered version of COCO Annotator  

  

Having the final goal in mind, we used the newly improved coco-annotator and did some 

work on the original dataset.  

One additional thing to note is that in any step we took regarding manipulation of the dataset, 

including data augmentation we later talk about, we insisted on having a way back to the 

original format of the data set. That is - A simple directory with a bunch of picture and a 

single .json file with all the annotations.   

Synthetic datasets  

The first step in image generation was singling out objects out of the pictures, using the 

segmentation coordinates found in the .json file. This was done using a semi-smart script 

that could find any object, cut around its edges, normalize its size, and apply transparency to 

its background. In order to get minimal manual work on the resulting object bank, the script 

Iterates over all the segmentations in the annotations file, filtered out objects with irrelevant 

size or bad width/height ratio, resized all of them and saved them in a new directory, one for 

each class.   

Object filtering  

As stated before, objects were filtered using simple logic. One parameter was the size of the 

object compared to the picture, we fixed a minimum size of 10% of the pictures’s height. The 

Second parameter was the minimal height:width aspect ratio of an object. Fruits ratio was 

fixed at 3:1, leaves at 1:1, stems at 4:1. Another matter to address was occluded objects 

which could yield partial objects. For this we only singled out objects made of one polygon. 

Using this simple filtering algorithm reduced the manual work by an order of magnitude. 



 

  

  

Although you could arguably use the direct output of this script to train the network and get 

good results, we decided to manually filter the data even more carefully.  

  

  

Figure 8 - Sample of cut and filtered objects  

Enhanced blending  

One might argue that incorporated objects in a synthetic pictures can become easy targets for 

a deep neural network. The sharp edges of the cut object definitely break the pattern of any 

background and therefore the network might focus on this feature. In an attempt to imitate real 

life images, we blurred the mask contour to make the edges of the RGB picture blend with the 

background more realistically (See figure 9 ) . This theory is later put to the test.  

  

  

  

  

Figure 9- Blurred mask makes the RGB 

content fade to the background RGB 

content, without blurring the RGB content  

itself.  

Figure 10- on the left a sharp edge, on the right a leaf edge with 

enhanced blending applied  

Object scenery  

One other aspect of generating an image is the composition of the pictures. How many 

leaves are there, how are they dispersed, how big they are etc…  

These hyper parameters are all concentrated in a configuration file and the tests were 

performed with the following ones:  

● MIN_SCALE_OBJ = 0.1: The minimum size of an object is 10% of the picture’s 

height or width.  



 

  

  

● RPN_ANCHOR_SCALES: The maximum size of an object is 30% of the picture’s 

height or width.  

● MIN_GENERATED_OBJECT = 5: The minimum number of objects in picture is 5.  

● MAX_GENERATED_OBJECT = 20: The maximum number of objects in picture is  

20.  

● OBJECT_IOU_THRESHOLD = 0.05: The maximum intersection between object is  

5% of the picture’s size  

  

  

  
Final image  

 
cucumber masks  

  
Leaf masks  

  
Flower masks  

 Figure 11 - Sample image from a mixed synthetic dataset   

  

Real datasets  

In spite that the original work was about training the network using the generated pictures 

technique, we found ourselves interested in comparing the results with a fully supervised 

training set of original pictures. This dataset would also need to be augmented in the DNN 

fashion way. Here we describe the treatments made offline (not in during training time) to 

improve the dataset.   

We decided to enlarge our dataset by using a stochastic augmentation method, that can 

sample altered pictures from any dataset, applying directional flips, skews, brightness and 

contrast shifts by some degree of randomness. To do so, we used the Python module 

Augmentor3.  In this process we tried to preserve the quality of the dataset by erasing 

nonsense annotations that rather looked like artifacts on the altered pictures. Objects smaller 

than 150 pixels in a 1536 x 1024 image and annotations of objects with extreme aspect 

ratios were removed. Pictures left with no annotations were removed as well.  

  

                                                
3 Original library - https://github.com/mdbloice/Augmentor  

Altered version for our purposes - https://github.com/simonlousky/alteredAugmentor  

https://github.com/mdbloice/Augmentor
https://github.com/simonlousky/alteredAugmentor


 

  

  

 

Figure 12 - Example of new augmented images generated from the same original image (IMG_2718.jpg) in the center.  

    

Mask R-CNN Train and Implementation aspects  

Mask R-CNN on Tensorboard  

We invested some effort to redesign the original matterport/Mask_RCNN implementation to 

take advantage of Tensorboard’s visual power, since the original code wasn’t written with 

this design in head.  

That way we, and others following us, will be able to analyze the net structure with 

confidence.  

  



 

  

  

 

Figure 13 - Graph generated by Tensorboard after editing the model.  

Full size png can be found in project repository on GitHub.  

  

  

Figure 14 - A very small part of the default generated graph which make the net impossible to track and debug when  
needed  

  

  

  

Mask R-CNN flowchart  

During the first steps and last steps of our project we realized that fully understanding the 

architecture of Mask R-CNN is helping us focus on hyperparameters better. Unfortunately no 

satisfactory documentation was found, and TensorFlow showed way too much graphic 

“noise” that clouded the big picture. So with patience and full correspondence to the 

implementation we leaned on, and formulated a flowChart (figure 16) to help us and others in 

the future.  



 

  

  

  

Figure 15  

  

  

Figure 16  

Monitoring through callbacks  

The implementation we worked with, used embedded TensorFlow callbacks, this way we 

could graphically monitor each Loss function. (Figure 17)  

  



 

  

  

    

    

Figure 17  

  

The graphs were taken from small experimental training procedures, in which we just tested 

an innovative training technique on generated data. Every few epochs we generated totally 

new data, gradually incrementing the number and scale of generated objects. We were 

guided by the intuition that a good practice to avoid overfit is generating more complicated 

dataset every few epochs. In other words, each time the model is performing well on the 

dataset we challenge it harder.  

In our research process, during first training phazes, we noticed that many times our training 

session reached a plateau in terms of minimizing the Loss.  

We put efforts to support more TensorFlow Callbacks allowing visualization of weight 

distribution in each layer during training.   

Unfortunately, results can only be shown with the initialization weights, and their evolution 

over time could not be monitored.  

We eventually found out that due to poor implementation design pursuing this thread would 

be too time consuming.  

Hyper-Parameters Analysis  

We believe it’s vital to elaborate on optional configurations that affect this network. This 

section expresses the vast domain of possible twicks and fine-tunings.  



 

  

  

RPN architecture  

● RPN_ANCHOR_SCALES: We put some thoughts in the size we want our anchors to 

be, since a better set of anchor sizes, one that statistically fits most of the objects, 

should lead to a slightly better convergence of rpn_bbox_loss.  

● RPN_ANCHOR_RATIOS: Ratios are sometimes also a consideration to improve 

bbox_loss, for example, training on stems should require high and thin anchors. For 

some implementational reasons, adding ratios instead of replacing them leads to 

dimension mismatches. Pursuing this thread could be interesting since thin objects 

and thin parts in general seem challenging according to our experience and to some 

related topics on the internet.  

● RPN_NMS_THRESHOLD: Intersection percent over which two ROIs are considered 

one single object and only one is kept. We can’t determine exactly what is better: 

Values closer to 1 filter out best matches, therefore converge faster at the beginning, 

or smaller values that slow down convergence at the beginning but might produce 

better results since the learning curve is slower.  

● RPN_TRAIN_ANCHORS_PER_IMAGE: The final number of ROIs to consider on a 

single forward pass. The ROIs are randomly selected from the result of the RPN. It’s 

important to realize that this HyperParameter is coupled with RPN_NMS_THRESHOLD 

since, the higher the threshold, the more diverse ROI proposal is. High NMS will be 

more likely to choose dispersed anchors to train on. This should represent better the 

underlying distribution of objects in the scene.  

Masking network  

● USE_MINI_MASK: This boolean is for faster performance at the cost of masks 

accuracy.  

Empirically we can state that turning on this variable had a significantly bad effect on 

our masks quality. We always prefered to turn it off.  

General  

● LEARNING_RATE: We explored few approaches:   

 ○ Extra small learning rate (micro scale)  

 ○ A big learning rate(~0.1)   

○ Incremental approach where in each epoch we reduce learning rate. We’ve 

found out that high learning rates lead to poor train results. Extra small learning rate 

had no significant benefit over a decaying learning rate that starts from  

0.001. Therefore, we decided to move on with our incremental approach.  

    



 

  

  

Workflow  
Here we describe the flow of actions from getting a problematic dataset to training and 

testing the model.  

Data Viability  

1. Quickly inspect the json to check it is formatted correctly. In our case some of the 

files had the wrong order of segmentation values. We used a python script4 to correct 

the data.  

2. Visually check the sanity of the data by opening it in our COCO-Annotator5.  

3. Correct the data if needed. If your dataset is small, and you find a significant pitfall, 

the right tools will get you through it very fast, and save you time later trying to 

bypass those.  

Data Organization  
1. Split the dataset to train and validation sets, we made a script for this as well.  

2. Resize the dataset pictures if needed. We could not train on our 4000x6000 original 

pictures therefore we resized all of them to 1536x1024 and 768x512 using the altered 

Augmentor6.  

3. Extract the single objects for synthetic image generation. Keep track of object created 

from the training set and those created from the validation set. This step as well is 

assisted by a script. This step is followed by an optional manual filtering step.  

4. Keep the dataset organized in a practical fashion. We used the layout you can see in 

figure 18 to organize the datasets. Take in consideration that the data generating 

class we created assumes this layout in order to properly work.  

Data Augmentation  

1. For real supervised dataset, use the altered augmentor to sample a dataset big 

enough. We sampled 2000 pictures from every original dataset.  

2. For generated dataset, tune the object scenery parameters according to your 

understanding. The parameters are depicted in the chapter about synthetic datasets.  

  

                                                
4 The script is available in the altered COCO-Annotator repository  
5 Instructions on how to do that is found in the repository  
6 Instructions on how to use the Augmentor scripts can be found in the repository  



 

  

  

 

Figure 18 - Generated layout has no resolution

  layer since all objects and backgrounds are 

compatible with every synthetic image resolution.  

Training  

1. Read the repository readme and just start your training!   

2. Have fun!  

    

Experiments and Results  

Metrics  

IoU  

Intersection over union, a method to quantify the percent overlap between target mask and 

prediction output.  

Plot overlap matrix  

Show number of predictions vs actual instances.  

Show prediction confidence.  

Show IoU for each prediction .  

Precision recall graph  

sorted Precision* as function of recall  

Precision - Number of true positives over total classifications True PoTsirtiuvee  P+ oFsiatlivsee Positive  

Recall - Number of true positives over total true instances True PosTitrivuee  +P Fosaitlisvee Negative  

    



 

  

  

Fruit only - real vs synthetic  

Definition of class - foreground mature fruits, occlusion omitted.  

  

  Mean AP - IoU=50     

Type  Resolution  Train set  Original   4000   Mean  

Synthetic   

512  Fruit only  0.38  0.07  

0.36  0.06  1024  Fruit only  0.42  0.09  

1024  Mixed  0.38  0.42  

Real  

512  Fruit only (2000)  0.53  0.51  

0.65  0.59  1024  Fruit only (2000)  0.70  0.56  

1024  Fruit only (10,000)  0.71  0.70  

  

  Mean AP - IoU=20     

Type  Resolution  Train set  Original   4000   Mean  

Synthetic   
1024  Fruit only  0.44  0.09  

0.37  0.06  
1024  Mixed  0.38  0.44  

Real  
1024  Fruit only (2000)  0.73  0.56  

0.725  0.63  
1024  Fruit only (10,000)  0.72  0.70  

    

Side note about synthetic data and high resolution testing: Earlier models trained with much 

bigger object sizes reacted very much better on the high resolution pictures. Nevertheless 

the real dataset training set makes the model much more robust to resolution change.  

  
 Real 1024  Synthetic 1024  Ground truth  

 



 

  

  

 

     



 

  

  

Leaves only - real vs synthetic  

Definition of class - foreground mature leaves, occlusion omitted.   

The original dataset is only partially supervised making training on a real dataset 

problematic. We could just ignore the fact that it is partially supervised but the problem would 

then be testing the results. Testing is tricky because the test set have to be be fully 

supervised in order to give a correct precision and recall grades.  

For this purpose we used the COCO-annotator to supervise a very small dataset (8 training 

pictures, and 2 validation pictures).   

  

  Mean AP - IoU=50     

Type  Resolution  Train set  Original   4000   Mean  

Synthetic   

512  Leaf only   1.0  0.0 

 0.33  0.0 1024  Leaf only   0.0 0.0  

1024  Mixed   1.0 0.0  

Real  
512  Leaf only (2000)   1.0  0.0 

 1.0 0.38  
1024  Leaf only (2000)  1.0   0.77 

  

  Mean AP - IoU=20     

Type  Resolution  Train set  Original   4000   Mean  

Synthetic   
1024  Leaf only   0.48 0.0  

0.74  0.07  
1024  Mixed   1.0 0.14  

Real  1024  Leaf only (2000)  1.0   0.77 1.0  0.77  

   

 Synthetic 1024  Real 1024  Ground truth  

 

The results are not very informative because of the small size of the validation set. Anyway the bias in 

favor of real datasets stays the same.    

Stems only - real vs synthetic  

Definition of class - Foreground main stem, occluded location included.  



 

  

  

  

  Mean AP - IoU=50     

Type  Resolution  Train set  Original   4000   Mean  

Synthetic   

512  Stem only  0.0  0.01  

0.01  0.01  1024  Stem only  0.03  0.01  

1024  Mixed  0.0  0.0  

Real  
512  Stem only (2000)  0.05  0.01  

0.08  0.045  
1024  Stem only (2000)  0.11  0.08  

  

  Mean AP - IoU=20    

Type  Resolution  Train set  Original   4000  

  
Synthetic   

1024  Stem only  0.24  0.22  

1024  Mixed   0.01  0.002  

Real  1024  Stem only (2000)  0.62  0.54  

  
 Real 1024  Ground truth  

 



 

  

  

 

The model trained on the real dataset is not particularly wrong with its decisions, but the limited aspect 

ratio seems to be responsible for splitting the stems. Split detections are not counted as true positives 

thus the very small precision.  

On the other hand the model trained on synthetic data does not perform well at all on stems.  

     



 

  

  

Flowers only - real vs synthetic  

Definition of class - Foreground main stem, occluded location included.  

  

  Mean AP - IoU=50     

Type  Resolution  Train set  Original   4000   Mean  

Synthetic   

512  Flower only  0.22  0.06  

0.17  0.05  1024  Flower only  0.20  0.07  

1024  Mixed  0.09  0.04  

Real  
512  Flower only (2000)  0.43  0.30  

0.45  0.29  
1024  Flower only (2000)  0.47  0.28  

  

  Mean AP - IoU=20     

Type  Resolution  Train set  Original   4000   Mean  

Synthetic   
1024  Flower only  0.30  0.12  

0.23  0.14  
1024  Mixed   0.16  0.15  

Real  1024  Flower only (2000)  0.64  0.56  0.64  0.56  

    

 Synthetic 1024  Real 1024  Ground truth  

 

    



 

  

  

Enhanced blending vs sharp blending  
  Mean AP - IoU=50    

  Cucumber only  Stem only  Mixed on flower  Mixed on cucumber  Mean  

Erode and Blur  0.42  0.03  0.07  0.29  0.2025  

No blending  0.41  0.001  0.01  0.22  0.16025  

  

  Mean AP - IoU=20    

  Cucumber only  Stem only  Mixed on flower  Mixed on cucumber  Mean  

Erode and Blur  0.45  0.24  0.14  0.30  0.2825  

No blending  0.43  0.12  0.02  0.23  0.2  

  

Blur and erosion properties clearly influence the result, and should be optimized.  

     



 

  

  

Final results - Team real and team synthetic on a test set  

To produce these final results on the real data team we inferenced a validation set through 

the best model of each class, and then combined the results to a single picture, colorized by 

class.  

  

 Mean AP - IoU=50   

Type  Resolution  Train set  Original   

Synthetic   1024  Mixed  0.29  

Real   1024  Single models combined  0.42  

  

 Mean AP - IoU=20   

Type  Resolution  Train set  Original   

Synthetic   1024  Mixed  0.33  

Real   1024  Single models combined  0.55  

  

 Synthetic 1024  Real 1024  Ground truth  

 

It is clearly notable that the models react very well to singled out objects, and has a hard time 

with crowds. Moreover leaves are more easily recognized when shot from above, as they 

appear in the training set.   

Overall the models seem to mostly do their job.  

Notes on the Results  

● Due to hardware limitations, inference on 6000x4000 pictures need to apply 

cropping. Mask-RCNN has to apply an image patching approach, that causes big 



 

  

  

objects to partially appear in each patch, thus reducing IoU. This causes Mean-AP to 

decrease, since many maskings don’t cross the 50% IoU threshold.  

● The results suggest that mixed-object models perform worse than single-object 

models. By analyzing our research containers and observing generated dataset for 

the model, we understood that our generator generates up to 20 objects, no matter 

what they are. Thus the richer the object distribution got, the less actual objects from 

each type appeared.  

● The only viable results are the results on the fruits and the stems.  

Leaves - Only a tiny test set is fully supervised therefore do not represent real life

  results.  

Flowers - Real dataset is trained on the box style flowers and performs perfectly, but 

the synthetic models use 3 manually cut flowers therefore this is not a fair fight.  

● Objects scenery may have a big influence on the results. The results just point out 

that this may be a difficult task.  

Conclusions  
● Mask R-CNN is very well fitted for fruit and flower detection. Detecting leaves and 

stems in a dense or crowded environment of a lot of the same makes the detections 

very challenging. Moreover it is much more difficult to clearly define the objects we 

are trying to segment and the ones we are not (as explained in the dataset section).  

● Training on generated data does not make sense when you have the tools to fully 

supervise a small training set. The real dataset used to train the leaf model in the 

final results is made of only 8 pictures (traditionally augmented to 2000 picture). It 

could be interesting to try to beat the real datasets with synthetic data, by changing 

the blending properties, the object scenery and maybe add additional tricks. 

Nevertheless the results are clear on this point - You are better off fully annotating

  a dozen of pictures than spending hours in creating the perfect synthetic 

data.  

Further Work and Suggestions  
● Smart synthetic plants - spreading leaves and cucumbers around a stem.  

● Transfer learning of masks between classes (e.g for flowers masking).  

● Real time inference - run real time inferences while keeping track of object 

indexation. Keep track of evolution for each leaf or cucumber as well.   

● LSTM or any RNN concept to improve object detection (flower turns to 

cucumber, stems grows up, etc).  

● Use a 3D engine platform to generate data. Create infinite angles, curvature 

and lighting of leaves, using a single leaf texture.  

● Background generative models. Generate backgrounds instead of using a finite 

bank of backgrounds. Possibly this would better mimic real supervised 

pictures.  



 

  

  

● Investigate the loss of the model for very thin objects and thin parts, and try to 

propose a better performing mask detector for them.  

● Further improve and adopt the COCO-annotator for easy, fast and cheap 

annotations. Put effort in tablet aspects and usage.  

● Further improve the altered Augmentor. Add HSV color alteration, maybe 

incorporate the png-to-json script inside for seamless augmentation.  

● Localize intersecting pictures in datasets and combine their annotations.  
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