
E�cient Restoration by Compression

Nevo Agmon, Danny Priymak, Yuval Shildan

Under the supervision of Yehuda Dar

Geometric Image Processing Laboratory, Faculty of Computer Science

Technion - Israel Institute of Technology

Abstract

When dealing with signal compression, most compression algorithms optimize the reconstructed

output with respect to the acquired input signal. A more general approach would be optimizing the

compression algorithm with respect to the signal prior to the acquisition phase as the e�ective input,

such that the �nal decompressed output is optimal. Ideally, this approach could utilize knowledge about

speci�c acquisition devices to further optimize the compression, i.e. given a known degradation model,

the presented approach could yield a highly optimized compressed result, which can be either used to

transmit a signal of higher quality over the same infrastructure or alternatively, deliver the same quality

using fewer resources.

Dar et al. [1] proposed an algorithm for joint restoration and compression of images, on which we

rely in this work. This algorithm was implemented in MATLAB, which, due to MATLAB's overhead,

opened up the possibility of signi�cant e�ciency improvements. For this reason, we chose to focus our

e�orts into optimizing the implementation runtime demands, while considering software engineering

and object-oriented design as top priorities.

1

Contents

1 Proposed Method 2

2 Project Goals 4

2.1 Observations . 5

2.2 Suggested Improvements . 5

3 Design Overview 5

3.1 Software Design . 5

3.2 Third-party Sources . 6

4 Implementation Challenges 6

5 Results 7

5.1 Runtime comparison . 7

5.2 Visual and quantitative results . 8

6 Conclusion and Future Work 10

1 Proposed Method

Dar et al.'s mathematical formulation of this problem [1] has led to the conclusion that the presented technique for joint
restoration and compression can be implemented as an iterative process of existing compression methods, with the addition
of an optimization term.

What follows is a mathematical description of the problem settings, divided into phases, which will ultimately describe
the thought process that has led to the translation of the problem to an iterative process of existing compression methods.
A visual illustration of the entire imaging system can be seen in �gure 1.

Figure 1: Imaging system visualization

Acquisition Phase. Consider a real and continuous source signal x ∈ RM degraded via the acquisition degradation
model

w = Ax+ n w ∈ RM

where A is an M ×N matrix, in our case here representing some blurring operator, and n is a white Gaussian noise vector
of size M .

Compression Phase. Consider a compression operator C : RM −→ B where B is a discrete set of binary compressed
representations. We denote the compressed form of the degraded signal w by b := C (w).

2

Decompression Phase. Consider a decompression operator F : B −→ S where S ⊂ RM is a discrete set of decom-
pressed signals. The set S is discrete since the domain of F domain B is discrete, and F is a real mapping. We denote
the decompressed form of the signal b by v := F (b).

Lastly, we denote R (v) as the binary length of b = F−1 (v).

Using these three phases, we can mathematically describe our entire model as

y = F (C (Ax+ n)) y ∈ RN

where y is the perceived output signal. The compression goal can be described as minimizing the bit-cost R(v), while
satisfying a demand on the maximal error allowed in the reconstructed signal with respect to the original one. A metric
for evaluating the output signal y must consider the degraded signal w since x is unknown. A initial motivating distortion
metric to consider could be

ds (w, y) :=
1

M
‖w −Ay‖22

which, given an ideal output yideal = x, yields

ds (w, yideal) =
1

M
‖n‖22 ≈ σ

2
n

The following equations involve the image y using its decompressed form, which we've denoted by v. As stated earlier, the
compressor's goal is to minimize the bit cost while retaining the signal quality. Minimizing the bit cost under the system
distortion constraint can be described formally as

v̂ = argmin
v∈S

R (v)

D0 ≤
1

M
‖w −Av‖22 ≤ D0 +D

for some minimal distortion level D0 (de�ned in [1]) and a maximal level of allowed distortion D. Using the unconstrained
Lagrangian optimization yields

v̂ = argmin
v∈S

R (v) + λ
1

M
‖w −Av‖22

where λ is a Lagrange multiplier corresponding to some distortion level Dλ.

The last optimization is discrete, requiring the evaluation of the cost for all the candidates in S, leading to impractical
computational requirements for its direct treatment for high-dimensional signals (such as images) where S is typically a
huge set. Therefore, a variable splitting technique can be used, which yields the optimization problem

(v̂, ẑ) = argmin
v∈S,z∈RM

R (v) +
λ

M
‖w −Az‖22 subject to v = z

To solve this optimization problem, we can use the Augmented Lagrangian Method of Multipliers (ADMM) which, applied
to our setting, yields (

v̂(t), ẑ(t)
)
= argmin
v∈S,z∈RM

R (v) +
λ

M
‖w −Az‖22 +

β

2

∥∥∥v − z + u(t)
∥∥∥2
2

u(t+1) = u(t) +
(
v̂(t) − ẑ(t)

)
where u(t) ∈ RM is the scaled dual variable, and β is a parameter of the augmented Lagrangian. This is an iterative
re�nement method that optimizes the split variable.

We can then minimize each variable alternatively. This results in

v̂(t) = argmin
v∈S

R (v) +
β

2

∥∥∥v − z̃(t)∥∥∥2
2

(1)

ẑ(t) = argmin
z∈RM

λ

M
‖w −Az‖22 +

β

2

∥∥∥z − ṽ(t)∥∥∥2
2

(2)

u(t+1) = u(t) +
(
v̂(t) − ẑ(t)

)
(3)

3

where

z̃(t) = ẑ(t−1) − u(t)

ṽ(t) = v̂(t) + u(t)

It can be observed that parts of the iterative model described above can be translated to the use of standard compression
and decompression algorithms. Equation (1) is basically a compression optimization process that uses a standard squared
error. Therefore, (1) can be replaced by an application of a standard compression algorithm of the form

b(t) = StandardCompress
(
z̃(t), ρ

)
v̂(t) = StandardDecompress

(
b(t)
)

In addition, equation (2) is an `2-constrained deconvolution optimization of simple quadratic terms.

To summarize, the described method is an iterative procedure comprised of three simpler procedures:compression, decom-
pression (using standard compression and decompression methods), and deconvolution. Formally, the method is given
by

b(t) = StandardCompress
(
z̃(t), ρ

)
v̂(t) = StandardDecompress

(
b(t)
)

ẑ(t) = argmin
z∈RM

λ

M
‖w −Az‖22 +

β

2

∥∥∥z − ṽ(t)∥∥∥2
2

u(t+1) = u(t) +
(
v̂(t) − ẑ(t)

)
where

z̃(t) = ẑ(t−1) − u(t)

ṽ(t) = v̂(t) + u(t)

A visualization of this method can be seen in �gure 2.

Figure 2: Algorithm visualization

2 Project Goals

Given the mathematical problem description above, we would like to have a working code implementation to test the
theory in real life. Luckily, Dar et al. have provided a MATLAB implementation of the proposed algorithm as a proof of
concept. As a result, there is room to provide a new implementation that greatly improves the current one, based on the
following observations.

4

2.1 Observations

Runtime Performance. Seeing as the current implementation is written in MATLAB, execution time will inevitably be
sub-optimal. This is mainly due to MATLAB's JRE (Java Runtime Environment) backend and the way it performs garbage
collection. Due to this reason, common MATLAB implementations tend to disregard runtime e�ciency optimization as a
major concern.

Code Coupling. The code is implemented as a collection of MATLAB scripts, which in turn makes it very coupled.
In addition, tweaking of inputs and parameters for testing and development purposes requires hard-coded changes to be
made. Finally, as a proof of concept, the code is not intended to provide modularity, which poses di�culty when applying
modi�cations during development and testing.

2.2 Suggested Improvements

Runtime Optimization

To facilitate runtime optimization, we �rst suggest using C++ as the implementation language, as C++ provides both
low-level control and high-level architectural capabilities. A second suggestion is to provide a design that puts signi�cant
emphasis on runtime optimization.

Decoupling and Modularity

Production-ready software should ideally be distributed as a �black box�, providing APIs for tweaking and adjustments.
Such an application should ideally employ object oriented design, which decouples logical dependencies and allows for
modularity.

3 Design Overview

The following sections describe our design and how it implements the suggestions presented above. The �nal algorithm
we implemented is Algorithm 1, proposed by Dar et al [1], and presented below.

Algorithm 1 Restoration By Compression

1: Inputs: y, β, θ
2: Initialize ẑ(0) = y.
3: t = 1 and u(1) = 0.
4: repeat

5: z̃(t) = ẑ(t−1) − u(t)
6: Solve the `2-constrained deconvolution:

x̂(t) = argminx ‖Ax− y‖
2
2 +

β
2

∥∥x− z̃(t)∥∥2
2

7: x̃(t) = x̂(t) + u(t)

8: ẑ(t) = CompressDecompressθ
(
x̃(t)
)

9: u(t+1) = u(t) +
(
x̂(t) − ẑ(t)

)
10: t←− t+ 1
11: until stopping criteria are satis�ed

3.1 Software Design

In designing the implementation we chose to use C++, while utilizing object oriented design. To replace MATLAB's DSP
functionality we used the OpenCV library.

The classes we chose to implement and their descriptions are as follows.

ImageWrapper. This class' main function is to hold an image as an OpenCV matrix and provide an API to interact
with it. Its second role is to help with the analysis and evaluation of the program's behavior.

5

InputImageSimulator. This class generates a degraded image based on the previously described degradation model.
The resulting degraded image is used as the algorithm's input, which it aspires to best restore. This is basically a simulation
of the acquisition phase described earlier.

RestorationByCompression. This class provides the API that handles the algorithm implementation. Speci�cally,
the restoreImage method that encapsulates the restoration.

3.2 Third-party Sources

DSP Library

MATLAB provides a set of built-in DSP algorithm implementations, which Dar et al.'s code utilized. Since we used C++,
which does not include built-in DSP libraries, we had to �nd a 3rd-party solution. We had to make sure that the chosen
library provides the same algorithms used in the MATLAB code. In addition, we would like the library's algorithms to
be implemented as e�ciently as possible. As any veteran C++ developer will agree, the go-to C++ library collection
is Boost [2]. Boost includes the Generic Image Library (GIL) module [3], which provides an e�cient image processing
framework. After additional research, the Open Source Computer Vision Library (OpenCV) [4] has proven to be a better
�t for our needs, due to its higher prevalence, better documentation, and superior abstractions. Finally, our application
must be able to interact with an image both as an image object and a matrix, interchangeably; A task easily achieved
using OpenCV's APIs.

Optimization Procedure

To perform the described `2-constrained deconvolution optimization, we need some numerical optimization procedure.
In their MATLAB implementation, Dar et al. used the Bi-Conjugate Gradient Descent (BiCG) method, whose imple-
mentation is provided as a built-in MATLAB function. To address this numerical optimization need in our work, we've
considered either a C++ BiCG implementation or some other numerical optimization algorithm. The bene�t of using
a C++ implementation is the ability to directly compare our implementation to MATLAB's implementation. Unfortu-
nately, OpenCV does not provide a built-in BiCG implementation. Hence, we tried utilizing other numerical optimization
methods that OpenCV does provide. After looking into the optimization algorithms provided by OpenCV, we came to
the conclusion that they don't �t our needs. Once we came to this realization, we embarked on a journey towards a C++
BiCG implementation that utilizes OpenCV's image matrix representation. We �nally concluded that implementing our
own version of the BiCG algorithm is necessary, as described in more detail below.

4 Implementation Challenges

E�cient BiCG implementation. As described above, we �rst tried using OpenCV's optimization algorithms. We
then came across the C++ Iterative Methods Library (IML++) [5], which provided a highly e�cient C++ BiCG imple-
mentation. Hence, we've decided to use this implementation. Implementing the BiCG algorithm involved prior theoretical
mathematical knowledge in numerical optimization. After initial mathematical study, we began to implement. The main
problems with IML++'s implementation were its use of C++ templates and its assumptions on the templated matrix
realizations. OpenCV's matrices do not behave as expected by IML++. As a result, we applied modi�cations that allowed
support for OpenCV matrices. After removing the template and modifying the operations to OpenCV's matrix operations,
we found the matrix operator's size was too large to �t in memory. To solve this problem, we used an approach presented
in Dar et al.'s MATLAB implementation. Its main idea is: given a circulant matrix, use a function to represent its kernel.
When applying matrix operations to the function, the function should behave as the matrix represented by this kernel
would. This approach is easily implemented in MATLAB, but in C++, it requires delicate usage of lambda functions and
operator overloading. This optimization has signi�cantly improved performance since high-demanding operations on large
matrices were avoided.

Image representation di�erences. When comparing our algorithm implementation with Dar et al.'s, we've noticed
major di�erences in runtime. Our implementation, even though written in C++, was signi�cantly slower. Upon further
inspection, we've discovered that our implementation did not meet Dar et al.'s algorithm stopping criteria, which is
the tolerance of di�erence between v and z. While investigating the cause, we noticed signi�cant pixel value di�erences

6

between the same images in both implementations. After con�rming that our implementation was indeed logically correct,
we decided to investigate OpenCV as the cause for the di�erences. Examining raw pixel values during runtime has led us
to realize that MATLAB's runtime image representation is di�erent from OpenCV's representation. We tried solving the
problem in multiple ways: MATLAB Coder [6], which we tried to use to convert MATLAB's image reading and writing
functions to C++ code, or MATLAB Compiler [7], to compile these functions directly into C++ executables, that can be
run from within our C++ code. Unfortunately, the built-in MATLAB functions we needed were not supported by both the
MATLAB Coder nor MATLAB Compiler. A second solution we've tried was to use the MATLAB Engine API for C++
[8], which creates a MATLAB runtime daemon and enables communication via C++ code. Due to library dependency
mismatch, we could not use this option either. Our �nal attempt was to export the raw runtime pixel values to text
�les from both implementations and compare the values manually, in order to �nd some correlation or pattern to help
us programatically solve the problem. The attempt was unsuccessful as no conclusive mapping between the values was
found. Needless to say the di�erent runtime pixel values yielded di�erent numerical calculation results during runtime,
which in turn did not meet the stopping criteria that were set.

5 Results

5.1 Runtime comparison

As expected, our implementation performed better, time-wise, than Dar et al.'s MATLAB one. A runtime comparison
in milliseconds is presented in �gure 3. We measured the runtime in several resolutions in order to try and pinpoint the
parts of the code with the greatest in�uence on performance.

Time improvements can be measured both relatively (e.g. using percentiles) and absolutely. While a relative comparison
may �rst seem more important, the de facto, perceived improvement is the absolute di�erence in milliseconds. Hence,
what follows is an in-depth comparison of both relative and absolute di�erences, in percentage and milliseconds, respec-
tively. This comparison ultimately enabled us to better analyze the runtime improvements we've achieved. The time
measurements, taken as the averages over 10 di�erent runs, are presented in table 1, followed by our analysis.

BiCG
Compress-

Decompress

Single

iteration

Dar et al. 2211 561 3231
Ours 1665 26 1704

Absolute

improvement
546 535 1527

Relative

improvement
24.7% 95.4% 47.3%

Table 1: 10-run runtime averages comparison [milliseconds]

As can be seen in table 1, the Compress-Decompress phase's improvement of 95.4% in milliseconds is quantitatively
about the same as the BiCG's 24.7% improvement, both of which constitute the total iteration time improvement of
47.3%. This has led us to conclude that both of these improvements are equally important. Therefore, even though
BiCG's improvement provided a mere 24.7% boost in speed, the great amount of work we've put into researching and
implementing the C++ algorithm was worthwhile.

Originally, the algorithm's total runtime was 14, 435 ms. Our implementation took 25, 672 ms, which is 11, 237 ms slower.
Relatively, this results in a 77.8% slowdown. This may seem like an invalidation of our work. Actually, this is due to the
fact that our algorithm did not meet the stopping criteria which the original implementation did meet after 4 iterations.
Ours was limited to a maximum of 15 iterations, which it reached. Upon further investigation, following the �rst 4 iteration
of our implementation, the PSNR value plateaued. As a result, we could safely modify the stopping criteria to better
�t our image runtime representation, which yielded a correct 4-iteration run, whose total time was 7, 156 ms, a 50.4%
improvement in total to the original implementation.

7

Figure 3: 10-run runtime averages visualization [milliseconds] (shown on a logarithmic scale)

5.2 Visual and quantitative results

Our implementation has reached lower PSNR values than the ones achieved in the original MATLAB implementation in
some test images, and surpassed the original results in others. A numerical PSNR value comparison of six test images
is presented in table 2. A visual representation of these test images with the corresponding PSNR values is presented in
�gure 4.

Barbara Butter�y Almonds Cards Cameraman Table

Dar et al.
Input 25.22 30.02 26.65 23.18 25.87 27.30
Output 33.64 36.33 32.96 29.10 31.36 32.07

Ours
Input 25.32 30.09 26.94 23.47 26.00 27.65
Output 34.21 37.75 33.12 30.51 34.48 32.64

Table 2: Input and output PSNR value comparison [dB]

8

(a) Input, Dar et al., 25.22 dB (b) Output, Dar et al., 33.64 dB (c) Input, ours, 25.32 dB (d) Output, ours, 34.21 dB

(e) Input, Dar et al., 30.02 dB (f) Output, Dar et al., 36.33 dB (g) Input, ours, 30.09 dB (h) Output, ours, 37.75 dB

(i) Input, Dar et al., 26.65 dB (j) Output, Dar et al., 32.96 dB (k) Input, ours, 26.94 dB (l) Output, ours, 33.12 dB

(m) Input, Dar et al., 23.18 dB (n) Output, Dar et al., 29.10 dB (o) Input, ours, 23.47 dB (p) Output, ours, 30.51 dB

9

(q) Input, Dar et al., 25.87 dB (r) Output, Dar et al., 31.36 dB (s) Input, ours, 26.00 dB (t) Output, ours, 34.48 dB

(u) Input, Dar et al., 27.30 dB (v) Output, Dar et al., 32.07 dB (w) Input, ours, 27.65 dB (x) Output, ours, 32.64 dB

Figure 4: Visual and PSNR comparison of Dar et al.'s and our results over several test image

6 Conclusion and Future Work

Considering the obstacles we've faced during our work and the results reached, we believe a substantial improvement
has been made to Dar et al.'s original MATLAB implementation. As described above, the runtime improvement we've
achieved is signi�cant and the results closely match and sometimes even surpass Dar et al.'s results, while utilizing a
modular, object oriented design. Having said that, there are still a few issues that our work has yet to resolve. The
most major one is the image runtime representation di�erence described earlier, which makes comparing our quantitative
results to Dar et al.'s ones a bit inconclusive, even though a visual qualitative restoration can be clearly seen. Seeing
as image pixel values di�er in both implementations, applying mathematical operations to these values will result in
di�erent output values and thus di�erent restored output images. Once this problem is addressed and an identical image
representation is used in both implementations, a more precise quantitative comparison can be performed. Alternatively,
the current image representation may be used, as long as the mathematical operations have been tweaked to adhere to
the new representation. Either way, once a solution is found, integrating it into our existing code should be a minor task,
thanks to the modular design used in our implementation.

10

References

[1] Y. Dar, M. Elad, and A. M. Bruckstein, �Restoration by Compression,� IEEE Transactions on Signal Processing, vol.
66, no. 22, pp. 5833�5847, 2018.

[2] Boost C++ Libraries. boost.org

[3] Boost Generic Image Library (Boost.GIL). boost.org/doc/libs/1_69_0/libs/gil/doc/html/index.html

[4] Open Source Computer Vision Library (OpenCV). opencv.org

[5] Iterative Methods Library (IML++). math.nist.gov/iml++

[6] MathWorks MATLAB Coder. mathworks.com/products/matlab-coder.html

[7] MathWorks MATLAB Compiler. mathworks.com/products/compiler.html

[8] MATLAB Engine API for C++. mathworks.com/help/matlab/calling-matlab-engine-from-cpp-programs.html

11

https://www.boost.org/
https://www.boost.org/doc/libs/1_69_0/libs/gil/doc/html/index.html
https://opencv.org/
https://math.nist.gov/iml++/
https://www.mathworks.com/products/matlab-coder.html
https://www.mathworks.com/products/compiler.html
https://www.mathworks.com/help/matlab/calling-matlab-engine-from-cpp-programs.html

	Proposed Method
	Project Goals
	Observations
	Suggested Improvements

	Design Overview
	Software Design
	Third-party Sources

	Implementation Challenges
	Results
	Runtime comparison
	Visual and quantitative results

	Conclusion and Future Work

