
RESTORATION BY
COMPRESSION

WINTER 2019

TABLE OF CONTENT

▸ Overview

▸ Algorithm Description

▸ Design Review

▸ Implementation Challenges

▸ Result Comparison

▸ Conclusion

OVERVIEW

RESTORATION BY COMPRESSION - MOTIVATION

▸ The algorithm is intended to optimally restore an image
that has been degraded during the acquisition phase, with
respect to an output platform.

▸ This is done by introducing a novel compressor that uses
existing, off-the-shelf compression methods.

▸ Our project focuses on optimising the restoration of the
input image with respect to the acquisition, assuming
perfect output.

OVERVIEW

PROJECT OBJECTIVES

▸ Familiarise ourselves with the “Complexity-Regularised Restoration”
algorithm (version 1) presented in “Restoration by Compression” by
Y. Dar, M. Elad and A. M. Bruckstein published on November 2018.

▸ Understanding the MATLAB implementation provided with the
paper.

▸ Implement the algorithm in C++ to gain an improvement in runtime
performance.

▸ Implement the algorithm in a modular and decoupled way to better
allow for portability, thus taking a step towards making the algorithm
production-ready.

ALGORITHM DESCRIPTION

ALGORITHM

ALGORITHM DESCRIPTION

ALGORITHM DESCRIPTION

▸ Assumption:

▸ The input image y is the degraded image x via a blurring operator, denoted
by H, and additive zero-mean Gaussian noise with standard deviation of 1,
denoted by n.

▸ The degradation model is where x, y and n are a real M
dimensional vector and H is an M x N matrix.

▸ Inputs:

▸ y - the degraded image.

▸ beta - optimisation parameter.

▸ theta - compression parameter.

y = Hx + n

ALGORITHM DESCRIPTION

ALGORITHM DESCRIPTION

▸ The algorithm is composed of iterative improvement of
the degraded image using standard compression and
decompression methods (in our case H265).

▸ In each iteration we take the resulting image from the
previous iteration and optimise it according to a
predetermined metric. We then reiterate the compression
and decompression phase to improve the image further.

ALGORITHM DESCRIPTION

IMAGING SYSTEM VISUALISATION

ACQUISITION COMPRESSION

STORAGE

DECOMPRESSIONDISPLAY

ALGORITHM DESCRIPTION

ALGORITHM DESCRIPTION

Σ
STANDARD
COMPRESS

STANDARD
COMPRESS

L2 -CONSTRAINED
DECONVOLUTION

ACCUMULATE
DIFFERENCES

Σ

Output

Input

DESIGN

IMPLEMENTED CLASSES

▸ ImageWrapper - This class is used for holding the image as an
OpenCV matrix and supplying the API to interact with it. It also
helps with analysis and evaluation of the program’s behaviour.

▸ InputImageSimulator - This class generates a degraded image
based on the previously described assumptions. The result is
the image the algorithm tries to restore.

▸ RestorationByCompression - This class handles the actual
implementation of the algorithm by utilising a sequence of
functions.

DESIGN

NOTABLE DESIGN ASPECTS

▸ The described design allowed us to create a decoupled
program that is modular and can be easily modified and
adapted for future use cases, while still being very
efficient.

▸ While writing the implementation of this design we
utilised object oriented design concepts to keep the
program as decoupled as possible.

IMPLEMENTATION CHALLENGES

REPLACING MATLAB WITH A C++ FRAMEWORK

▸ In order to implement the algorithm we had to find a
framework that was suitable for DSP usage, that is rich
enough to provide the functionality that MATLAB provides
and flexible enough to fit our needs.

▸ In the beginning we considered using Boost.GIL as our
framework, though OpenCV has proven to be more
flexible and widespread.

IMPLEMENTATION CHALLENGES

MULTI DIMENSIONAL LINEAR SOLVER

▸ To solve the optimisation problem, the MATLAB implementation
used the BiCG (Bi-Conjugate Gradient descent) built-in
function.

▸ OpenCV doesn’t provide this function out of the box.

▸ We’ve considered several possible solutions:

▸ Eigen.

▸ IML++.

▸ OpenCV’s stochastic gradient descent.

IMPLEMENTATION CHALLENGES

IMPLEMENTING BICG USING IML++

▸ IML++ provided us with an efficient implementation of BiCG, but it
was not compatible with OpenCV.

▸ We modified the given IML++ code to support OpenCV’s matrices.

▸ This required us to gain a deep understanding of the BiCG
algorithm.

▸ In addition, due to the fact that the operator H{*} is extremely large,
the Matlab code represents it using its convolution kernel.

▸ This added an additional challenge to our implementation, since
both IML++ and OpenCV don’t support this kind of representation.

IMPLEMENTATION CHALLENGES

IMAGE RUNTIME REPRESENTATION DIFFERENCE

▸ We have noticed a significant difference in pixel runtime
representations between the MATLAB and C++
implementations.

▸ This has led to different results in the numerical calculations
performed in our implementation.

▸ As a result, the stopping criteria set by the MATLAB
implementation were not met.

▸ We therefore modified the stopping criteria accordingly to stop
after four iterations (to match MATLAB’s iteration number).

RESULT COMPARISON

ALGORITHM RESULTS

PSNR: 25.32 dB PSNR: 33.21 dB

RESULT COMPARISON

ALGORITHM RESULTS

PSNR: 30.09 dB PSNR: 35.75 dB

RESULT COMPARISON

ALGORITHM RESULTS

PSNR: 30.99 dB PSNR: 32.72 dB

RESULT COMPARISON

EFFICIENCY COMPARISON

BICG

COMPRESS-  
DECOMPRESS

ITERATION TIME

1 10 100 1,000 10,000

Matlab 3,231ms

Matlab 561ms

Matlab 2,211ms

C++ 1,704ms

C++ 26ms

C++ 1,665ms
24.7%

95.4%

47.3%

CONCLUSION

CONCLUSION - ALGORITHM STOPING CRITERIA

▸ We believe the difference in pixel representations is due to
the PNG library bundled with openCV versus the one
provided by MATLAB.

▸ Because of these differences, our implementation did not
meet the stopping criteria set by the MATLAB
implementation, and tweaks had to be done a posteriori.

▸ It is left for further work to decipher whether the original
mathematical operations still hold with these new pixel
value representations.

CONCLUSION

CONCLUSIONS - PERFORMANCE

▸ The C++ implementation improves over the MATLAB
implementation for a single iteration cycle.

▸ This results in total runtime improvement when the same
number of iterations is carried out in both
implementations.

▸ Due to C++’s lower overhead, the Compress-Decompress
runtime improves drastically.

CONCLUSION

CONCLUSIONS - EVALUATION METHOD

▸ Evaluation and comparison of our results with respect to
PSNR values has its faults, due to the differences in pixel
representations.

▸ Future work should either utilise an identical
representation, or adjust the mathematical operations the
OpenCV’s variant.

▸ Either way, integrating the changes should be a minor
task, due to the modular design.

