Data Augmentation Using GANs

Project 236754, Dima Birenbaum

Supervisors: Yaron Honen, Gary Mataev

Main Goal

Our main goal is to generate faces with specific emotions. This generated data will serve as an external data source that helps improve a classifier.

Part A

Synthetic Data Generation by emotion transition using Generative Adversarial Networks

The Data

For middle stage, FER2013 dataset was chosen.

This dataset contains images of size 48x48 pixels and 7 emotion expressions: Angry, Disgust, Fear, Happy, Sad, Surprise, Neutral.

Data Distribution

The data distribution in FER2013 dataset is:

Emotion	Amount
Angry	4593
*Disgust	547
Fear	5121
Нарру	8989
Sad	6077
Surprise	4002
Neutral	6198

* - we will discuss further

The Cycle GAN Model

The project uses CycleGAN architecture, as a method, for imageto-image style transfer.

CycleGAN - is a two way GAN, that consists of 2 *Discriminators* and 2 *Generators*.

The idea is to transfer an input from one domain to another back and forth.

Theory Background

Domains A, B, mapping functions: $G:A \rightarrow B$, $F:B \rightarrow A$, associated adversarial discriminators D_A , D_B D_B encourages G to translate A into outputs indistinguishable from domain B, and vice versa, for D_A and F.

To further regularize the mappings, used *two-cycle consistency loss*. The main intuition, that when translating from one domain to another and back again, the model should arrive at where it started. Two-cycle consistency loss consists of:

(a) Forward cycle-consistency: $a \rightarrow G(a) \rightarrow F(G(a)) \approx a$

(b) Backward cycle-consistency: $b \rightarrow F(b) \rightarrow G(F(b)) \approx b$

Target and loss functions

• Adversarial loss:

$$\mathcal{L}_{GAN}(G, D_A, A, B) = \mathbb{E}_{a \sim p_{data}(a)} \left[(D_A(a) - 1)^2 \right] + \mathbb{E}_{b \sim p_{data}(b)} \left[\left(D_A(G(b)) \right)^2 \right]$$

• Cycle consistency loss:

$$\mathcal{L}_{cyc}(G,F) = \mathbb{E}_{a \sim p_{data}(a)} \left[\left\| F(G(a)) - a \right\|_{1} \right] + \mathbb{E}_{b \sim p_{data}(b)} \left[\left\| G(F(b)) - b \right\|_{1} \right]$$

• Full objective:

$$\mathcal{L}(G, F, D_A, D_B) = \mathcal{L}_{GAN}(G, D_B, A, B) + \mathcal{L}_{GAN}(F, D_A, A, B) + \lambda \mathcal{L}_{CYC}(G, F)$$

• Target function:

$$\widehat{G}, \widehat{F} = \arg\min_{G,F} \max_{D_A,D_B} \mathcal{L}(G,F,D_A,D_B)$$

The Model: Forward Cycle A2B

The Model: Backward Cycle B2A

The Architecture

Anatomy of Cycle GAN Generator and Discriminator

The Networks: *Generator*

The Generator consists of 3 parts:

- Decode (downsampling)
- Transferring (6 residual blocks)
- Encode (upsampling).

The Networks: *Discriminator*

The Discriminator - a simple CNN network, that determinates if the image is fake or real.

Discriminator Network

First results

Neutral -> Happy transition

south 148

Problems

- "Dirty" dataset, unbalanced classes, mislabeled data
- Similarity between classes (for example: fear-angry, sad-neutral)
- Lack of data (Disgust Class 550 images)
- Discriminator learns faster than the Generator.
- Vanishing gradient
- Quality and artifacts of output images

Solution – Weighted Cycle Loss

- Data augmentation, transform on training
- Different learning rates for generator and discriminator: 0.0002, 0.0001
- Learning rate decay
- Soft labels for discriminator: Real target is 0.9 instead of 1
- Improving quality by changing cycle loss to:

$$\mathcal{L}_{cyc}(G, F, D_A, A, \gamma) = \mathbb{E}_{a \sim p_{data}(a)} \left[D_A(a) \cdot \left[\gamma \cdot \left\| f_{D_A}\left(F(G(a)) \right) - f_{D_A}(a) \right\|_1 + (1 - \gamma) \cdot \left\| F(G(a)) - a \right\|_1 \right] \right]$$

Where: $\gamma \in [0, 1]$ – linearly increase with epochs, to $1, f_{D_{(\cdot)}}$ - is the future extractor using last layer of $D_{(\cdot)}$

• So final objective updated to:

 $\mathcal{L}(G, F, D_A, D_B) = \mathcal{L}_{GAN}(G, D_B, A, B) + \mathcal{L}_{GAN}(F, D_A, A, B) + \lambda \mathcal{L}_{cyc}(G, F, D_A, A, \gamma) + \lambda \mathcal{L}_{cyc}(G, F, D_B, B, \gamma)$

Results of improved model

Ó

Real Neutral

Fake Surprise

epoch 67 -----

20 .

Ó

Real Neutral

ò

Recovered Neutral

Recovered Neutral

Real Neutral

Fake Happy

Recovered Neutral

The Conclusion

So as we saw, we have a lot of problems, such as:

- model instability;
- vanishing gradient;
- dirty or small dataset;
- control over the training;
- battle between generator and discriminator etc.

The Wasserstein Cycle GAN Model

So how can we improve stability of training? The answer is - The Wasserstein distance.

Wasserstein CycleGAN - is a twoway Wasserstein GAN, that consists of 2 *Critics* and 2 *Generators*.

The idea is, for distribution of mass $\mu(x)$ on a space X, we wish to transport the mass in such a way that it is transformed into the distribution $\nu(x)$ on the <u>same</u> space.

Theory Background - The Wasserstein distance

Our main goal and bottle-neck is to create data, that has same distribution as targeted domain, one of the most suitable and available methods for this task is *The Wasserstein distance*.

<u>The Wasserstein distance</u> is the minimum cost of transporting mass in converting the data distribution **q** to the data distribution **p**. The Wasserstein distance for the real data distribution **Pr** and the generated data distribution **Pg** is mathematically defined as the greatest lower bound (infimum) for any transport plan.

Theory Background - The Wasserstein distance

• The Wasserstein distance loss:

 $W(\mathbb{P}_r, \mathbb{P}_g) = \inf_{\gamma \in \Pi(\mathbb{P}_r, \mathbb{P}_g)} \mathbb{E}_{(x, y) \sim \gamma}[\|x - y\|]$

Where $\Pi(\mathbb{P}_r, \mathbb{P}_g)$ – denotes the set of all joint distributions $\gamma(x, y)$, whose marginals are respectively Pr and Pg.

• However, the equation for the Wasserstein distance is highly intractable. Using the *Kantorovich-Rubinstein duality*, we can simplify the calculation to:

 $W(\mathbb{P}_r, \mathbb{P}_{\theta}) = \sup_{\|f\|_{L} \leq 1} \mathbb{E}_{x \sim \mathbb{P}_r}[f(x)] - \mathbb{E}_{x \sim \mathbb{P}_{\theta}}[f(x)]$ Where *sup* is the least upper bound and *f* is a 1 – *Lipschitz function* following this constraint: $|f(x_1) - f(x_2)| \leq 1 \cdot |x_1 - x_2|$

Theory Background - *The Wasserstein distance*

So to calculate *the Wasserstein distance*, we just need to find a *1-Lipschitz function*. We build a deep network to learn it. This network is very similar to the discriminator **D**, just without the sigmoid function and outputs a scalar score* rather than a probability.

* - This score can be interpreted as how real the input images are.

The Networks: *Generator*

The Generator same as in Cycle GAN:

- Decode (downsampling)
- Transferring (6 residual blocks)
- Encode (upsampling).

The Networks: *Critic*

Same as Discriminator, but without Sigmoid activation at the end.

Results of Wasserstein Cycle Gan

The Results

Let`s see visual results of the work.

Other results : Teenager

Other results: Women

Other results: Men

Fake Sad

Other results: Old

Other results: Asian

Other results: Noisy

Other results: Noisy - Watermarks

Results on transformed data

Other results: Children #1

Other results: Children #2

Part B

Classifiers on FER2013 Dataset
Fake Neutral Images Generator
Using DCGAN

The Classifier

FER2013

Classification task on "dirt" dataset , maybe challenging.

Results were checked on two different classifiers:

- Simple (~65%)
- Current State of the art (73%)

Surreal (Paper) Classifier - Architecture

Layer Type	Configuration
Input image	48*48*1
Convolution&ReLU	[3, 3, 1, 64] = 1
Max-Pooling&Norm	[1, 3, 3, 1] s=2
Convolution&ReLU	[3, 3, 64, 128] s=1
Max-Pooling&Norm	[1, 3, 3, 1] s=2
FC*2	256
Softmax	[256, 7]
Output logits	[7]

Surreal (Paper) Classifier - Architecture

Simple Classifier - Architecture

Layer (type)	Output	Shaj	pe		Param #
conv2d_1 (Conv2D)	(None,	46,	46,	64)	640
conv2d_2 (Conv2D)	(None,	46,	46,	64)	36928
batch_normalization_1 (Batch	(None,	46,	46,	64)	256
	(None,	23,	23,	64)	θ
dropout_1 (Dropout)	(None,	23,	23,	64)	θ
conv2d_3 (Conv2D)	(None,	23,	23,	128)	73856
batch_normalization_2 (Batch	(None,	23,	23,	128)	512
conv2d_4 (Conv2D)	(None,	23,	23,	128)	147584
batch_normalization_3 (Batch	(None,	23,	23,	128)	512
max_pooling2d_2 (MaxPooling2	(None,	11,	11,	128)	0
dropout_2 (Dropout)	(None,	11,	11,	128)	0
conv2d_5 (Conv2D)	(None,	11,	11,	256)	295168
batch_normalization_4 (Batch	(None,	11,	11,	256)	1024
conv2d_6 (Conv2D)	(None,	11,	11,	256)	598888
batch_normalization_5 (Batch	(None,	11,	11,	256)	1024

max_pooling2d_3 (MaxPooling2	(None,	5, 5, 256)	9
dropout_3 (Dropout)	(None,	5, 5, 256)	0
conv2d_7 (Conv2D)	(None,	5, 5, 512)	1189169
batch_normalization_6 (Batch	(None,	5, 5, 512)	2948
conv2d_8 (Conv2D)	(None,	5, 5, 512)	2359808
batch_normalization_7 (Batch	(None,	5, 5, 512)	2048
max_pooling2d_4 (MaxPooling2	(None,	2, 2, 512)	0
dropout_4 (Dropout)	(None,	2, 2, 512)	0
flatten_1 (Flatten)	(None,	2048)	9
dense_1 (Dense)	(None,	512)	1049088
dropout_5 (Dropout)	(None,	512)	Ð
dense_2 (Dense)	(None,	256)	131328
dropout_6 (Dropout)	(None,	256)	0
dense_3 (Dense)	(None,	128)	32896
dropout_7 (Dropout)	(None,	128)	θ
dense_4 (Dense)	(None,	7)	983
Total parans: 5,905,863 Trainable parans: 5,902,151 Non-trainable parans: 3,712	******		**********

Simple Classifier - Results

Baseline:	Baseline + Synthetic Data:
Accuracy of the network on the 3589 test images: 65.09 %	Accuracy of the network on the 3589 test images: 66.26 %
Accuracy of Angry : 53 % of 262 / 491 total Accuracy of Disgust : 60 % of 33 / 55 total Accuracy of Fear : 46 % of 244 / 528 total Accuracy of Happy : 85 % of 750 / 879 total Accuracy of Sad : 44 % of 262 / 594 total Accuracy of Surprise : 78 % of 327 / 416 total Accuracy of Neutral : 73 % of 458 / 626 total	Accuracy of Angry : 57 % of 282 / 491 total +4% Accuracy of Disgust : 65 % of 36 / 55 total +5% Accuracy of Fear : 51 % of 271 / 528 total +5% Accuracy of Happy : 87 % of 767 / 879 total +2% Accuracy of Sad : 45 % of 271 / 594 total +1% Accuracy of Surprise : 78 % of 328 / 416 total ~0% Accuracy of Neutral : 67 % of 423 / 626 total -6%(*)

*- As you can see, we diminish Neutral Class, so what can we do? Generate Neutral Class, more in future works section.

SOTA Classifier (VGG19) - Results

Baseline:

Can we achieve state of the art?!

Baseline + Synthetic Data:

0.8

66

04

0.2

6.6

The Fake GAN

So how can we supply more data, with the same distribution? The answer is, we will create it. Fake GAN using DCGAN, WGAN-GP

Generator - Architecture

Discriminator - Architecture

The generator, is designed to map the latent space vector (*Z*) to data-space. Since data are images, converting *Z* to data-space means ultimately creating an image with the same size as the training images (i.e. 1x48x48). In practice, this is accomplished through a series of strided two dimensional convolutional transpose layers, each paired with a 2d batch norm layer and a ReLU activation.

Discriminator - Architecture

Discriminator - is a binary classification network that takes an image as input and outputs a scalar probability that the input image is real (as opposed to fake).

Discriminator takes a 1x48x48 input image, processes it through a series of Conv2d, BatchNorm2d, and LeakyReLU layers, and outputs the final probability through a Sigmoid activation function.

Overview

Overview

Future work

- Further work with generated data:
 - Analyze distribution
 - Analyze similarity of generate and original images, by using ssim()
- Can we improve state of the art results
- Generation of Neutral Class for FER2013, using Fake GAN
- Improvement Fake GAN by using WGAN-GP
- Put all together:
 - Use Fake Gan as part of Cycle GAN architecture
 - Analyze difference between Cycle GAN, Improved Cycle Gan and Wasserstein GAN
- Testing performance on generated data while training on original and vice versa

The END