
Data Augmentation Using
GANs
Project 236754, Dima Birenbaum

Supervisors:
Yaron Honen, Gary Mataev

Main Goal

Our main goal is to generate faces with specific

emotions. This generated data will serve as an external

data source that helps improve a classifier.

Part A

Synthetic Data Generation by

emotion transition using Generative

Adversarial Networks

The
Data For middle stage, FER2013

dataset was chosen.

This dataset contains images of

size 48x48 pixels and 7 emotion

expressions: Angry, Disgust, Fear,

Happy, Sad, Surprise, Neutral.

FER2013

Data Distribution
The data distribution in FER2013 dataset is:

* - we will discuss further

Emotion Amount

Angry 4593

*Disgust 547

Fear 5121

Happy 8989

Sad 6077

Surprise 4002

Neutral 6198

The Cycle GAN
Model

The project uses CycleGAN

architecture, as a method, for image-

to-image style transfer.

CycleGAN - is a two way GAN,

that consists of 2 Discriminators and 2

Generators.

The idea is to transfer an input

from one domain to another back and

forth.

Theory Background
Domains A, B, mapping functions: 𝐺:𝐴→𝐵, 𝐹:𝐵→𝐴, associated adversarial discriminators 𝐷𝐴, 𝐷𝐵
𝐷𝐵 encourages 𝐺 to translate 𝐴 into outputs indistinguishable from domain 𝐵, and vice versa, for

𝐷𝐴 and 𝐹.

To further regularize the mappings, used two-cycle consistency loss. The main intuition, that

when translating from one domain to another and back again, the model should arrive at where

it started. Two-cycle consistency loss consists of:

(a) Forward cycle-consistency: 𝑎→𝐺(𝑎)→𝐹(𝐺(𝑎))≈𝑎

(b) Backward cycle-consistency: 𝑏→𝐹(𝑏)→𝐺(𝐹(𝑏))≈𝑏

𝑎 𝐵 ො𝑎

𝐷𝐵𝐺

𝐹
(𝑎)

𝑏 መ𝐴 𝑏

𝐷𝐴𝐹

𝐺
(𝑏)

𝐶𝑦𝑐𝑙𝑒 − 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦
𝑙𝑜𝑠𝑠

𝐴 𝐵
𝐶𝑦𝑐𝑙𝑒 − 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

𝑙𝑜𝑠𝑠

𝐴 𝐵

Target and loss functions
● Adversarial loss:

𝓛𝐺𝐴𝑁 𝐺,𝐷𝐴 , 𝐴, 𝐵 = 𝔼𝑎~𝑝𝑑𝑎𝑡𝑎 𝑎 𝐷𝐴 𝑎 − 1 2 + 𝔼𝑏~𝑝𝑑𝑎𝑡𝑎 𝑏 𝐷𝐴 𝐺(𝑏)
2

● Cycle consistency loss:

𝓛𝑐𝑦𝑐 𝐺, 𝐹 = 𝔼𝑎~𝑝𝑑𝑎𝑡𝑎 𝑎 𝐹 𝐺 𝑎 − 𝑎
1
+ 𝔼𝑏~𝑝𝑑𝑎𝑡𝑎 𝑏 𝐺 𝐹 𝑏 − 𝑏

1

● Full objective:

𝓛 𝐺, 𝐹, 𝐷𝐴, 𝐷𝐵 = 𝓛𝐺𝐴𝑁 𝐺,𝐷𝐵 , 𝐴, 𝐵 + 𝓛𝐺𝐴𝑁 𝐹,𝐷𝐴, 𝐴, 𝐵 + 𝜆𝓛𝑐𝑦𝑐(𝐺, 𝐹)

● Target function:

𝐺, 𝐹 = argmin
𝐺,𝐹

max
𝐷𝐴,𝐷𝐵

𝓛(𝐺, 𝐹, 𝐷𝐴, 𝐷𝐵)

The Model: Forward Cycle A2B

Discriminator B

Generator A2BDiscriminator A

Decision [0, 0.9]

Generator B2A

Decision [0, 0.9]

Input A

Generated B

Reconstructed A

Start

The Model: Backward Cycle B2A

Discriminator A

Generator A2B

Discriminator B

Decision [0, 0.9]

Generator B2A

Decision [0, 0.9]

Input B

Generated A

Reconstructed B

Start

Generator A2B

Generator B2A

Discriminator B

Generator A2B

Discriminator ADecision [0, 0.9]

Generator B2A

Decision [0, 0.9]

Real Image (A)

Fake Image (B)

Reconstructed (A)

Cycle A

Reconstructed (B)

Cycle B

Both cycles together

Fake Image (A)

Real Image (B)

The
Architecture

Anatomy of Cycle GAN

Generator and Discriminator

The Networks:
Generator

The Generator consists of 3 parts:

● Decode (downsampling)

● Transferring (6 residual blocks)

● Encode (upsampling).

Conv2D(64, 7x7, s=1)

ReflectionPad2D(3)

Batch Normalization

ReLU

Conv2D(128, 3x3, s=2, p=1)

Batch Normalization

ReLU

Generated Image (48x48)

Generator Network

Conv2D(128, 3x3, s=2, p=1)

Batch Normalization

ReLU

...Residual Blocks x 6

ConvTranspose2D(128, 3x3, s=2, p=1)

Batch Normalization

ReLU

ConvTranspose2D(128, 3x3, s=2, p=1)

Batch Normalization

ReLU

Conv2D(64, 7x7, s=1)

ReflectionPad2D(3)

Tanh()

Upsampling

Downsampling

The Networks:
Discriminator

The Discriminator - a simple CNN

network, that determinates if the

image is fake or real.

Conv2D(64, 4x4, s=2)

Input(48x48x1)

Batch Normalization

LeakyReLU(0.2)

Conv2D(128, 4x4, s=2)

Batch Normalization

LeakyReLU(0.2)

Conv2D(256, 4x4, s=2)

Batch Normalization

LeakyReLU(0.2)

Conv2D(512, 4x4, s=2)

Batch Normalization

LeakyReLU(0.2)

Linear(1)

Prediction: Real(0.9) or Generated(0)

Discriminator Network

Sigmoid()

First results
● Neutral -> Happy transition

Problems

● “Dirty” dataset, unbalanced classes, mislabeled data

● Similarity between classes (for example: fear-angry, sad-neutral)

● Lack of data (Disgust Class – 550 images)

● Discriminator learns faster than the Generator.

● Vanishing gradient

● Quality and artifacts of output images

Solution – Weighted Cycle Loss
● Data augmentation, transform on training

● Different learning rates for generator and discriminator: 0.0002, 0.0001

● Learning rate decay

● Soft labels for discriminator: Real target is 0.9 instead of 1

● Improving quality by changing cycle loss to:

𝓛𝑐𝑦𝑐 𝐺, 𝐹, 𝐷𝐴, 𝐴, 𝛾 = 𝔼𝑎~𝑝𝑑𝑎𝑡𝑎 𝑎 𝐷𝐴 𝑎 ∙ 𝛾 ∙ 𝑓𝐷𝐴 𝐹 𝐺 𝑎 − 𝑓𝐷𝐴 𝑎
1
+ 1 − 𝛾 ∙ 𝐹 𝐺 𝑎 − 𝑎

1

Where: 𝛾 ∈ [0, 1] – linearly increase with epochs, to 1,𝑓𝐷(∙)- is the future extractor using last layer of 𝐷 ∙

● So final objective updated to:
𝓛 𝐺, 𝐹, 𝐷𝐴, 𝐷𝐵 = 𝓛𝐺𝐴𝑁 𝐺,𝐷𝐵 , 𝐴, 𝐵 + 𝓛𝐺𝐴𝑁 𝐹, 𝐷𝐴, 𝐴, 𝐵 + 𝜆𝓛𝑐𝑦𝑐 𝐺, 𝐹, 𝐷𝐴, 𝐴, 𝛾 + 𝜆𝓛𝑐𝑦𝑐 𝐺, 𝐹, 𝐷𝐵 , 𝐵, 𝛾

Results of improved model

The Conclusion
So as we saw, we have a lot of problems, such as:

○ model instability;

○ vanishing gradient;

○ dirty or small dataset;

○ control over the training;

○ battle between generator and discriminator etc.

The Wasserstein
Cycle GAN

Model

So how can we improve stability

of training? The answer is - The

Wasserstein distance.

Wasserstein CycleGAN - is a two-

way Wasserstein GAN, that consists of

2 Critics and 2 Generators.

The idea is, for distribution of

mass 𝜇(𝑥) on a space 𝑋, we wish to

transport the mass in such a way that

it is transformed into the distribution

𝜈 𝑥 on the same space.

Theory Background - The Wasserstein distance
Our main goal and bottle-neck is to create data, that has same distribution as targeted domain,

one of the most suitable and available methods for this task is The Wasserstein distance.

The Wasserstein distance is the minimum cost of transporting mass in converting the data

distribution 𝒒 to the data distribution 𝒑. The Wasserstein distance for the real data

distribution𝑷𝒓 and the generated data distribution 𝑷𝒈 is mathematically defined as the

greatest lower bound (infimum) for any transport plan.

Theory Background - The Wasserstein distance
● The Wasserstein distance loss:

𝑊 ℙ𝑟 , ℙ𝑔 = inf
𝛾∈Π(ℙ𝑟,ℙ𝑔)

𝔼 𝑥,𝑦 ~𝛾 𝑥 − 𝑦

Where Π(ℙ𝑟 , ℙ𝑔) – denotes the set of all joint distributions 𝛾(𝑥, 𝑦), whose marginals are respectively 𝑃𝑟 and 𝑃𝑔.

● However, the equation for the Wasserstein distance is highly intractable. Using the

Kantorovich-Rubinstein duality, we can simplify the calculation to:

𝑊 ℙ𝑟 , ℙ𝜃 = sup
𝑓 𝐿≤1

𝔼𝑥~ℙ𝑟 𝑓(𝑥) − 𝔼𝑥~ℙ𝜃 𝑓(𝑥)

Where 𝑠𝑢𝑝 is the least upper bound and 𝑓 is a 1 − 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 following this constraint:
𝑓 𝑥1 − 𝑓(𝑥2) ≤ 1 ∙ 𝑥1 − 𝑥2

Theory Background - The Wasserstein distance
So to calculate the Wasserstein distance, we just need to find a 1-Lipschitz function.

We build a deep network to learn it. This network is very similar to the

discriminator 𝑫, just without the sigmoid function and outputs a scalar score* rather

than a probability.

* - This score can be interpreted as how real the input images are.

The Networks:
Generator

The Generator same as in Cycle GAN:

● Decode (downsampling)

● Transferring (6 residual blocks)

● Encode (upsampling).

Conv2D(64, 7x7, s=1)

ReflectionPad2D(3)

Batch Normalization

ReLU

Conv2D(128, 3x3, s=2, p=1)

Batch Normalization

ReLU

Generated Image (48x48)

Generator Network

Conv2D(128, 3x3, s=2, p=1)

Batch Normalization

ReLU

...Residual Blocks x 6

ConvTranspose2D(128, 3x3, s=2, p=1)

Batch Normalization

ReLU

ConvTranspose2D(128, 3x3, s=2, p=1)

Batch Normalization

ReLU

Conv2D(64, 7x7, s=1)

ReflectionPad2D(3)

Tanh()

Upsampling

Downsampling

The Networks:
Critic

Same as Discriminator, but without

Sigmoid activation at the end.

Conv2D(64, 4x4, s=2)

Input(48x48x1)

Batch Normalization

LeakyReLU(0.2)

Conv2D(128, 4x4, s=2)

Batch Normalization

LeakyReLU(0.2)

Conv2D(256, 4x4, s=2)

Batch Normalization

LeakyReLU(0.2)

Conv2D(512, 4x4, s=2)

Batch Normalization

LeakyReLU(0.2)

Linear(1)

Scalar

Critic Network

Results of Wasserstein Cycle Gan

The Results
Let`s see visual results of the

work.

Other results : Teenager

Other results: Women

Other results: Men

Other results: Old

Other results: Asian

Other results: Noisy

Other results: Noisy - Watermarks

Results on transformed data

Other results: Children #1

Other results: Children #2

Part B
- Classifiers on FER2013 Dataset

- Fake Neutral Images Generator

Using DCGAN

The
Classifier Classification task on “dirt”

dataset , maybe challenging.

Results were checked on two

different classifiers:

- Simple (~65%)

- Current State of the art (73%)

FER2013

Surreal (Paper) Classifier - Architecture

Surreal (Paper) Classifier - Architecture

Doesn`t work

Simple Classifier - Architecture

Simple Classifier - Results

Baseline: Baseline + Synthetic Data:

*- As you can see, we diminish Neutral Class, so what can we do?

Generate Neutral Class, more in future works section.

+4%

+5%

+5%

+2%

+1%

~0%

-6%(*)

SOTA Classifier (VGG19) - Results

Baseline: Baseline + Synthetic Data:

Can we achieve state of the art?!

The
Fake GAN

So how can we supply more data,

with the same distribution? The

answer is, we will create it.

Fake GAN using DCGAN, WGAN-

GP

Generator - Architecture

Discriminator - Architecture

The generator, is designed to map the latent space vector (𝑍) to data-space.

Since data are images, converting 𝑍 to data-space means ultimately creating an

image with the same size as the training images (i.e. 1x48x48).

In practice, this is accomplished through a series of strided two dimensional

convolutional transpose layers, each paired with a 2d batch norm layer and a ReLU

activation.

Discriminator - Architecture

Discriminator - is a binary classification network that takes an image as input and

outputs a scalar probability that the input image is real (as opposed to fake).

Discriminator takes a 1x48x48 input image, processes it through a series of Conv2d,

BatchNorm2d, and LeakyReLU layers, and outputs the final probability through a

Sigmoid activation function.

Overview

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟

𝐹𝑎𝑘𝑒

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝐹𝑎𝑐𝑒𝑠

𝑅𝑒𝑎𝑙 𝐹𝑎𝑐𝑒𝑠

𝑅𝑎𝑛𝑑𝑜𝑚 𝑁𝑜𝑖𝑠𝑒
𝔃~𝓝(0,1)

𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟

𝑅𝑒𝑎𝑙

Overview

OpenCV Face Detector
Pre-Trained

Classifier Threshold

Generate Image From Noise Find Faces Filter Neutral Faces

Sad

Surprised

Happy

Angry

Fear

Future work

● Further work with generated data:

○ Analyze distribution

○ Analyze similarity of generate and original images, by using ssim()

● Can we improve state of the art results

● Generation of Neutral Class for FER2013, using Fake GAN

● Improvement Fake GAN by using WGAN-GP

● Put all together:

○ Use Fake Gan as part of Cycle GAN architecture

○ Analyze difference between Cycle GAN, Improved Cycle Gan and Wasserstein GAN

● Testing performance on generated data while training on original and vice versa

The END

