
Procedural
Map
Generator

Ilana Ben Avraham GIP Technion Supervisor:Yaron Honen

Imagine yourself as a

character in a video game exploring

and traveling through a vast virtual

world.. when suddenly, you reach the

end of this world, a cliff, if you take

one more step you will fall to infinity

never reaching the ground.

Procedural Map generation comes to

solve this issue and allow you to

explore the world without it ever

ending around you.

My project allows the player to explore a building which is built in a

procedural manner around the player online as it moves. The building is

built from basic building blocks that were built in a specialized program.

These basic blocks are connected according to a set of rules which was

written beforehand.

How does it work?

1 The world is divided by a grid of cubes,

every cube is the size of 1X1X1.

At run time two such grids are saved and

updated, one is for the computational result of

the algorithm as for what model (basic block)

fits in what rotation at any location in the world

(“calculated grid”) and the second is for a

pointer of the graphical representation of the

model in every world position (“visible grid”).

2 At the game settings the player can choose

the size of grid being visible around him, let’s

assume the default value is chosen and its 7, as the

game starts the player is placed at location (0, 0, 0)

of the world while the graphical representation seen

to him is 7/2 cubes in every direction (up, down, left,

right, front and back).

As the player moves, let’s say in

direction front, a new layer of the world grid is

calculated and presented to the player while the

farthest layer of the world in the players back is

destroyed.

The calculation for which models are supposed to

appear at the destroyed layer are saved in the

“calculated grid” so when the player returns to the

same place he will see the same world. The actual

graphical representation is saved in the “visible grid”

and the pointers there are actually destroyed but are

reinstalled when the player retrace its steps

according to the information saved in the “calculated

grid”.

There are two purposes for saving two

grids:

One:

To make every calculation once (reducing

calculations made online) so the world

calculated will be permanent.

Second:

To reduce graphical calculations, the

number of models presented at any given

time is constant.

Handmade
Building
stone

Every model has an

option of traversing

rotation when placed

by the procedural

algorithm, meaning

front connection (0

deg rotation) of a

model can serve as

right (90 deg

rotation), back (180

deg rotation) and left

(270 deg rotation).

Building Rules

Every place in the world is represented by a basic cube of

the size 1X1X1, while this cube has 6 facets.

I created a set of rules which indicate for every basic

model its connection name to every facet, for

example:

This set of rules also contain possible connections:

Meaning model Stairs at its back facet has connection stairsPath,

connection stairsPath-path exists so every model which has path

connection at its either front, back, right or left facet can connect to the

back of the stairs model.

Such set of rules needs to be complete, consistent and sound so there

will be a logical connection for every cube on every its facet.

Of course, there are situations when a certain cube’s facet has a number

of possible connections, in such case the algorithm randomly picks one of

them.
Floor Front Stairs Back

Pseudo code of the algorithm

Create a new layer in the direction of the player’s

movement

Observe – recalculate every grid position entropy

and collapse* the one with the lowest one.

Propagate – update all new layer’s grid positions

according to the last collapse

Exit loop if all the new layer’s grid positions were collapsed

Loop:

*collapse = choose model randomly out of all optional, accordingly to the set

of rules, models for the current grid position.

Trail – as the user explores the
world a bright trail is left after

him so if he wants to return back
to all the places he visited he will

know which way to go.

Ariadne’s thread – Greek mythologyCool features to increase the user’s experience no 1

Paint ball shooting – the player can shoot
paint balls on the building’s walls up to 50
meters from him such that whenever he visits
those spots again the color stains will still be
there. This way he can leave its own mark in
the virtual world around him. There are 3
optional paint balls – green, purple and black
(every fire the color is chosen randomly).

Cool features to increase the user’s experience no 2

Application user guide

Main menu, to start exploring the world

when its default value is 7X7X7 press “Play”.

To exit the application press “Exit”.

To Adjust the world’s size press the “Adjust World

Size” button and you will pass to the

“Adjust World Size” menu.

To apply the axis size press “Apply” and to return to

the main menu press “Back”.

While exploring press Esc to get to this menu:

To get to the main menu press “Start

Over”.

To resume exploring exactly from the

same state press “Resume”.

To exit the application press “Exit”.

Shooting paint balls:

To activate and deactivate the

crosshair for better aiming

press right/left Alt.

To shoot up to 50 meters press ESCAPE.

Once you are positioned in the world you have two available

cameras:

*Press TAB to switch between them.

FPS Camera:

Movement is controlled by:

W = forward, S = backward, D = right, A = left.

Curser = controls the player’s head movement.

Scene Camera:

Movement is controlled by:

W = forward, S = backward, D = right, A = left.

Mouse:

Right button = controls cameras yaw and pitch

Mouse wheel = zoom in/out.

Link to project’s demo on YouTube:

https://youtu.be/e7jrCKjlNk8

