
Realtime Breathing

Realtime Breathing

Breath Pattern Detection With Intel 3D Camera

Nili Furman

Maayan Ehrenberg

Supervised by

Alon Zvirin

Yaron Honen

Technion | Israel Institute of Technology

May 06, 2020

REALTIME BREATHING 2

Abstract 3

Realtime Breathing - Breath Rate and Chest Motion Analyzer 4

Behind the Scenes 4

Human Breath 4

Tools and Developing Environment 4

Intel Realsense Depth Camera D435 4

Microsoft Visual Studio 2017 4

Algorithm 6

Frame processing 6

BPM measurement 8

Correctness 9

Solution Overview 10

RealtimeBreathing – Root Directory 10

src – Our Source Code 11

include – Our Headers 11

dependencies 12

Data Structures 12

Additional Information 13

The Windows App 14

Before We Start 14

Intel RealSense 3D Camera 14

Libraries (lib) and Dynamic Link Libraries (dll) 14

Config File 14

Stickers 15

Background and Lighting 15

Inside the App - Overview 16

Config File 16

User Interface 23

Log File 25

Results and Discussion 27

A Few Personal Words 31

References 32

REALTIME BREATHING 3

Abstract

Chest motion abnormalities and sporadic breathing rate are often associated with thorax

diseases hidden under the human eye radar. Those can range from light and passing conditions to

fatal and lifestyle affecting illnesses, which in many cases stay unnoticeable or falsely diagnosed.

Current medical methods of chest motion abnormalities detection often rely on human

medic eye observation which might be less accurate and comprehensive as computer vision, and

also often lead to mistreatment of patients who are unable to be physically present at the

examination location due to various reasons: handicap, privacy or mostly - availability.

Our work in the GIP Lab in the Technion Institute strives to provide an innovative, precise

and accessible-to-all tool to detect chest motion and breathing abnormalities as seeked by

medical doctors and provide the findings as fast as possible, using a 3D camera.

REALTIME BREATHING 4

Realtime Breathing - Breath Rate and Chest Motion Analyzer

Behind the Scenes

Human Breath

Human breath varies between children and adults, healthy and ill and many other characteristics,

thus inspection must be adjusted. For example, a child’s breath rate is notably faster than adult’s

one, and healthy breath patterns are different from abnormal, distinguishable by chest movement,

volume, breath rate and even rhythm.

Tools and Developing Environment

Let us present the tools and environments used to develop the app. The following are the

physical and virtual tools used, along with the relevant coding libraries and toolkits.

Intel Realsense Depth Camera D435

We used the Intel Realsense Depth Camera D435 as our 3D camera. It is a simple and not

expensive tool that can be installed and used easily by all. This version of depth camera was

introduced by Intel in January 2018, and provides best-in-class depth resolution, quality RGB,

and high frame rate. For our purposes, it provides a steady frame rate of about 25 fps at

1280x720 pixel resolution in real-time, more than enough to detect subtle chest movements.

Intel Realsense SDK 2.0

The software development kit is open-source C++ code and available on Intel Realsense

GitHub. It provides a convenient way to access the camera streams (depth and color),

visualize them and configure the camera settings. Most of these features are provided in the

librealsense2 library (which is open source, as stated) and in the set of examples published

by Intel Realsense.

Microsoft Visual Studio 2017

Microsoft Visual Studio is an IDE developed by Microsoft. It uses Microsoft software

development platforms, has a code editor and an integrated debugger that serves both for source-

level and machine-level. It also has Git support and provides various toolkits based on

programming language and development purposes.

We used Visual Studio 2017 due to compatibility issues with the Realsense toolkit.

REALTIME BREATHING 5

CMake

CMake is a cross-platform free and open-source software tool for managing the build

process of software using a compiler-independent method. It supports directory hierarchies

and applications that depend on multiple libraries. It is used in conjunction with native build

environments such as Make, Qt Creator, Ninja, Apple's Xcode, and Microsoft Visual Studio.

It has minimal dependencies, requiring only a C++ compiler on its own build system.

(Wikipedia)

We used CMake in order to create a solution containing the open-source code of Intel

Realsense, which provided us with a set of examples.

C++17

As mentioned above, the programming language used for coding is C++. Few changes were

made to the C++ Standard Template Library, although some algorithms in the <algorithm>

header were given support for explicit parallelization and some syntactic enhancements

were made. (Wikipedia)

Visual Studio 2017 supports almost all of C++17.

Dear Imgui

Dear ImGui is a bloat-free graphical user interface library for C++. It is fast, portable,

renderer agnostic and self-contained (no external dependencies).

Dear ImGui is designed to enable fast iterations and to empower programmers to create

content creation tools and visualization / debug tools (as opposed to UI for the average end-

user). It favors simplicity and productivity toward this goal, and lacks certain features

normally found in more high-level libraries. (Dear Imgui GitHub)

Thus, it is very suitable for real-time 3D applications, and it is indeed the library used by

Intel Realsense itself in the Realsense Viewer and many of the examples provided by Intel.

OpenCV 4.2.0

OpenCV is an open-source library of programming functions mainly aimed at real-time

computer vision, originally developed by Intel. It is written in C++ and its primary

interfaces are with C++, but there are bindings to other languages as well.

If the library finds Intel's Integrated Performance Primitives on the system, it will use these

proprietary optimized routines to accelerate itself. (Wikipedia)

REALTIME BREATHING 6

We use OpenCV for frame processing: Color detection, thresholding and connected

components algorithm, to find the stickers in the frame.

CvPlot by Profactor GmbH

OpenCV plotting library, used for graph plotting. It allows us to conveniently plot clean,

good-looking graphs of the desired data while providing a simple set of tools to move and

enlarge the plotted graph.

Algorithm

The main goal of the app is analysis of chest movement and extraction of the BPM (breaths per

minute) rate during realtime video streaming, or from a pre-recorded file.

Breath pattern detection is achieved by applying image processing methods on sequences of

color and depth frames. When the application starts, an array of 256 slots is initialized. This

array, hereinafter referred to as the frames array, stores the data extracted from frames processed

by the application.

The app’s main loop awaits a user’s request to run on a certain stream (either from an existing

file or from the camera). After such a request is received, depth and color frames are polled using

the device’s wait mechanism in each iteration of the main loop. The frames are then aligned

(rs2::align_to_color). The two matched frames (a depth frame and a color frame) are then

processed and a BPM (breaths per minute) measurement is performed.

Frame processing

1. Color detection

Color detection is done using the OpenCV library. The color frame matrix is screened by

OpenCV’s inRange method, to only retain values in a preset range. The range used corresponds

to the color of stickers, as defined in the configuration file. The resulting matrix is then

transformed to grayscale, and sequentially to a binary matrix, using a preset threshold.

Color

Detection

Connected

Components

Euclidian

Distances
3D Coordinates

Extraction

Frame Data

Storing

REALTIME BREATHING 7

2. Connected components

Connected components in the binary matrix are recognized by OpenCV’s

connectedComponentsWithStats method, which detects the connected components and returns

their centroids. If areas in the background have colors similar to the stickers’ color, these areas

may appear white in the binary matrix and might be included in the set of connected components

returned by connectedComponentsWithStats. The connected components returned are screened by

an area threshold in order to mitigate this kind of noise. The threshold used is 50% of the area of

the connected component with maximal size. Therefore, if large areas in the background appear

in colors in the same range as the stickers, the application will not be able to screen them, and

will produce unreliable results.

If the number of valid connected components found in a frame is lower than the number of

stickers expected by the application, the frame will be discarded. Otherwise, each sticker is

attributed with the corresponding connected component according to the component’s center

coordinates (x, y) and the stickers assumed alignment. The location of a sticker is defined as the

center of the corresponding connected component.

3. 3D coordinates extraction

Using Intel’s depth_frame::get_distance method, we extract the depth of each sticker’s location

(a pixel with x and y coordinates). Then, the rs2_deproject_pixel_to_point1 method is used to

extract the stickers’ 3D coordinates in centimeters, based on their 2D pixel coordinates and their

depth.

At times, the depth information for a certain area of the frame is absent (may be caused by non-

optimal lighting or insufficient distance from the camera). In this case, the 3D coordinates

returned are invalid. When then dimension set in the configuration file is 3D, frames with invalid

1 The usage of the rs2_deproject_pixel_to_point method referenced from rs-measure example provided by

intel.

REALTIME BREATHING 8

3D coordinates are discarded. When then dimension is set to 2D, such frames are retained, since

in this setting, the 3D coordinates are not used in further analysis.

4. Euclidian distances

The 3D Euclidian distance between every pair of stickers is calculated in centimeters, and the 2D

Euclidian distance is calculated in units as defined in 2D measure units in the configuration file

(either pixels or cm). Additional frame metadata is extracted, such as color frame and depth

frame timestamps (provided by the device). In the last stage of the process, the frame is tested to

see if it is a duplicate of the previous frame: under 2D configuration, the test is based on the

color timestamp, whereas per 3D configuration, it is based on both the color and the depth

timestamps. If a frame has proven to be a duplicate, it is discarded.

5. Frame Data storing

After frame processing has finished, the frame data is stored in the next free cell of the frames

data array. If there are no free cells, the new frame data will replace the oldest frame data in the

array. This array storage method is cyclic, providing us efficiency in time and memory

economical access to the data for further purposes.

BPM measurement

1. Samples extraction

Samples are extracted from the frames data array – each frame produces one sample. The value

of a sample is the average distance as calculated in the frame processing stage. The field

extracted is either 2D average distance or 3D average distance, according to the dimension set in

the configuration file. The pairs of stickers taken into account in the average distance are as

defined in the distances section of the configuration file. The samples are given in the order of

arrival of the corresponding frames.

2. Samples normalization

The samples are normalized and shifted to [-1, 1] range. We observed that with the addition of

the normalization step, the application produces results significantly more reliable.

Samples

Extraction

Samples

Normalization

Frequency

Determination FFT

REALTIME BREATHING 9

3. FFT

The normalized samples are processed by the FFT algorithm, to produce the components of the

different frequencies which constitute the discrete signal.

The FFT implementation used is Alexander Thiemann's FFT Gist.

As this implementation requires the number of samples to be a power of 2, samples are padded

with zero values when needed.

4. Frequency determination

With the frequency components in hand, the frequency with the most dominant component is

chosen, using the following formula to determine a component’s size: sqrt(Real2 + Imaginary2).

In order to screen low frequencies (which tend to hold large values), all frequencies

corresponding to a BPM value lower than 5, are filtered out, taking under consideration that the

breath rate of human beings is greater than 5.

The BPM value returned at each iteration is 60 * frequency.

Correctness

The above described algorithmics (average distance extraction per frame ⇢ samples

normalization ⇢ FFT ⇢ dominant frequency and BPM determination) was tested in two

different implementations, one in C++ and the other in MATLAB. The resulting locations and

distances as well as frequency and BPM values were roughly identical. In both cases the results

were compared with manual measurements. Testing has proven the algorithmics to give reliable

results with an average error (that is, the ration between manual and computer measurements) of

less than 7%.

https://gist.github.com/agrafix/aa49c17cd32c8ba63b6a7cb8dce8b0bd

REALTIME BREATHING 10

Solution Overview

The code package is a standalone and contains all required resources for further development.

RealtimeBreathing – Root Directory

The complete code package is located inside the RealtimeBreathing folder. The root directory

contains:

• RealtimeBreathing.sln – Visual Studio 2017 solution file containing the project.

• RealtimeBreathing.vcxproj – Visual Studio project file.

• RealtimeBreathing.vcxproj.filters – Visual Studio project filters file of the project.

• realsense2.dll – Dynamic link library of the RealSense2 functionalities the project uses.

• config.txt – The config file the app parses (explained in the app’s Overview section).

• src – Folder containing our source code.

• include – Folder containing our headers and Intel’s provided header example.hpp.

• dependencies – Folder containing all libraries, sources, and headers our code uses.

RealtimeBreathing

dependencies

librealsense cv-plot-1.2

realsense2.lib

realsense2-gl.dll glfw3.lib

realsense2-gl.lib uvc_fw.lib

opencv_word420.dll

include

rb_aux.h

utilities.h

example.hpp

src

rb_gui.cpp

rb_aux.cpp

RealtimeBreathing.sln

RealtimeBreathing.vcxproj

realsense2.dll

config.txt

RealtimeBreathing.vcxproj.filters

REALTIME BREATHING 11

src – Our Source Code

rb_gui.cpp

contains the main code.

Outline and main attributes:

Window and Rendering

1. Initialization of the app’s window, ImGui library and rendering helpers.

Camera Related Initializations
__

2. Creation of a pipeline and a configuration file of the camera and align objects.

Our Data Structures Initializations

3. Initialization of Config, FrameManager and GraphPlot.

Definitions of variables.

Definition of the frameset variable.
__

Main Loop

4. The main loop. Runs while the app is alive.

Initialization of rendering flags, frames, and checkboxes.

5. Treatment of user’s choice of streaming, log file opening and closing, record, pause

and continue buttons.

Starting the pipeline, enabling streaming if needed, and disabling it when needed.

Waiting for frameset.

6. Aligning the depth frame to the color frame in the frameset.

7. Getting color and depth frames from the frameset.

8. FrameManager processes the frames.

9. Frames rendering.

10. Graph plotting.
__

rb_aux.cpp

contains auxiliary functions and all implementations of the functions in our headers.

include – Our Headers

rb_aux.h

Definitions and declarations of primary data structures used for processing and plotting.

utilities.h

Definitions and declarations of helper data structures and functions.

REALTIME BREATHING 12

dependencies

Contains all relevant libraries required for the project, CvPlot entire code (both headers and

sources), and all Intel RealSense (librealsense) relevant headers in their original hierarchy. It also

includes a ready OpenCV 4.2.0 DLL in case you need it for the app package.

Data Structures

FrameManager

Created and initialized once in the main code,

and responsible for all frame managing: frame

processing, frame storing, cleanup. In addition,

it fetches relevant data for graph plotting.

BreathingFrameData

Stores all data extracted from the frame:

centroids of the stickers in pixels (‘circles’),

coordinates in centimeters of all stickers, 2D

and 3D calculated distances as well as the

average of the configured distances in the

config file, timestamps of the frame and time

of the system clock by the frame arrival and

frame index. This class is responsible for the

update and calculation in practice, by its public

methods, of the stickers’ locations, 2D and 3D

distances and averages – when called by

FrameManager in process_frame().

In addition, this class maintains a stickers map

matching to each considered sticker the corresponding coordinates

vector, and both 2D and 3D distances maps, matching to each considered

distance the corresponding distance. These maps serve as indicators to

which stickers and distances should be taken into account in

calculations, according to the configuration of the config file.

FrameManager

• process_frame(…)

• cleanup()
• add_frame_data(…)

• BreathingFrameData** _frame_data_arr;

BreathingFrameData

• circles (vector of coordinates)
• left/right/mid1-3_cm (vectors of

coordinates)

• stickers map
• 2D, 3D distances

• 2D, 3D average distance
• 2D, 3D distances maps

• color/depth/system timestamps

• frame/color/depth indexes
• UpdateStickersLoactions()

• CalculateDistances2D()

• CalculateDistances3D()

stickers enum

• left

• mid1

• mid2
• mid3

• right

• sdummy

distances enum

• left_mid1

• left_mid2

• left_mid3
• left_right

• right_mid1
• right_mid2

• right_mid3
• mid1_mid2

• mid1_mid3

• mid2_mid3

• ddummy

REALTIME BREATHING 13

Config

Class storing the data parsed from the config file.

Created and initialized once in the main code and

used in various cases by other classes when data

parsed from the config file needs to be accessed.

GraphPlot

Manages graph plotting of the app.

Creates a new window for the graph upon stream

start and updates it every iteration of frame

processing (if values are valid). It gets its

parameters from the Config class upon

initialization, and from FrameManager for

plotting. This class’s plotting methods are based

on CvPlot library, so it is recommended to view

the documentation of the library in order to

understand those methods.

Additional Information

1. Make sure your OpenCV environment variable is the same as used in the

project: OPEN_CV. Change it either in your system or in the project if it

is different.

2. Please compile the project only in release mode. For debug mode, a few properties must be

set, according to the missing libraries. We chose not to support debug mode because running

the app in debug mode often does not reflect its behavior in practice (for example, too long

waiting time and too few processed frames for the calculations). However, it is possible to

configure the debug mode, by setting the correct paths to the required libraries.

Config

• dimension

• Graph mode

• stickers included boolean map
• distances included boolean map

• sticker_color

GraphPlot

• CvPlot::Window* window
• CvPlot::Axes axes

• Beginning time
• graph_mode

• dimension

• First plot Boolean
• Private plotting methods for all

modes
• GraphPlot(…) constructor

• reset(…)

• plot(…)

sticker_color enum

• YELLOW

• BLUE

• GREEN

• RED

dimension enum

• D2

• D3

graph_mode enum

• DISTANCES

• LOCATION

• FOURIER

• NOGRAPH

REALTIME BREATHING 14

The Windows App

Before We Start

To enable proper usage of the app features, there are a few things that must be set up before

launching the app.

Intel RealSense 3D Camera

Intel RealSense D435 Depth Camera driver must be installed. Most concurrent computers that

run an updated operating system might manage to find the driver online and install it on its own,

but it is recommended to download it from Intel's download center (leads straight to the relevant

page).

Libraries (lib) and Dynamic Link Libraries (dll)

The app requires a set of libraries to run appropriately. Please make sure all required libraries are

installed and located in the same path as the RealtimeBreathing.exe file:

realsense2.dll

 opencv_world420.dll

Please note that it is possible that your system is missing a few more Microsoft DLLs, such as:

MSVCP140.dll

CONCRT140.dll

VCRUNTIME140.dll

You will be notified about them when starting the app, and in this case, you should install

Microsoft Visual C++ 2015 Redistributable2.

Config File

The app requires a config.txt file to run. This is a file containing configurations to use when

running the app, written in a certain template to allow the app an intact parsing of the

configurations chosen. The structure and usage of this file will be discussed widely in the app

overview section.

2 Download and follow the instructions here.

https://downloadcenter.intel.com/product/128255/Intel-RealSense-Depth-Camera-D435
https://www.microsoft.com/en-us/download/details.aspx?id=52685

REALTIME BREATHING 15

Stickers

The app detects stickers of a color chosen amongst yellow, blue, and green. For best performance

it is recommended to use yellow stickers (as explained in the config and results sections).

The tones of the colors chosen can vary, but it is recommended to use sufficiently saturated and

vibrant variations of the color chosen.

For your assistance, the following are (roughly) the ranges of colors that can be detected. Note

that changes in screen colors projection may affect the perceived colors by the eye:

Yellow range gradient

Blue range gradient

Green range gradient

Background and Lighting

As mentioned, the app uses color detection to detect the stickers. Thus, it is very important to

place the camera facing a background as uniform as possible, containing as few colors as

possible and having a completely different hue from the stickers’ color, preferably negating it. In

addition, the stickers’ detection might be affected by lighting conditions. Poorly lit scenes or

concentrated light directly facing the stickers might affect their perception by the camera lens

and cause misdetection leading to faulty results. Therefore, it is recommended to use well-lit

spaces (preferably by white neutral light), sufficiently illuminating the patient and stickers while

keeping the lighting low enough to preserve vision of color.

REALTIME BREATHING 16

Inside the App - Overview

Config File

The app allows choosing different configurations, as defined in the config.txt file. This file must

be present in the same folder as the app’s .exe file for the application to run properly. If the

config file is not in the proper format, the behavior will be undefined.

Configuration may be changed by the user by opening the file (double-click) and changing the

required fields. Following is an example of a properly defined config file:

#dimension: 2 for 2D or 3 for 3D. recommended: 2

2

#mode: D for distances, L for location, F for fourier, N for no graph

D

#distances: set to y to include a certain distance. set to n otherwise.

recommended: left-mid3, right-mid3, mid2-mid3

left-mid1 n

left-mid2 n

left-mid3 y

left-right n

right-mid1 n

right-mid2 n

right-mid3 y

mid1-mid2 n

mid1-mid3 n

mid2-mid3 y

#location: set to y to track the location of a certain sticker.

left n

mid1 n

mid2 y

mid3 y

right n

#number of stickers: 4 or 5

5

#color of stickers: Y (yellow), B (blue) or G (green). recommended: Y

Y

#2D measure units: cm or pixel. recommended: pixel

pixel

Only text highlighted in green in the above example should be changed by the user.

The effect of each field in the configuration file is as follows:

REALTIME BREATHING 17

● Dimension

#dimension: 2 for 2D or 3 for 3D. recommended: 2

2

When measuring the distance between two stickers, the application may be set to measure

the distance using 2 dimensions (data received only from color video), or 3 dimensions

(taking depth in account as well). For the purpose of BPM measuring, 2D is

recommended for better accuracy. In the example above the dimension is set to 2.

Permitted values: 2, 3.

● Mode

#mode: D for distances, L for location, F for fourier, N for no graph

D

The app can be configured to 4 different modes, each displaying different output.

L – location mode: While in location mode, the application does not output a BPM

value. When streaming from a live stream or from a file, a graph is generated, tracking

the depth coordinate of different stickers in each frame. The stickers to be displayed in

the graph are configured in the location field (follows below).

 Example graph generated in L mode. In this example, all 5 stickers were configured to y

in the location field. The depth of each sticker, related to the camera location, in each
frame, is displayed against the according timestamp.

REALTIME BREATHING 18

In D, F and N modes the application measures BPM by tracking the change in the

average distance between stickers, using the same method, and presented to the user in

real time. However, in each mode, a different graph is generated alongside the BPM

value.

D – distances mode: When streaming from a live stream or from a file, a graph is

generated, tracking the average distance between different stickers in each frame. The

distances to be displayed in the graph (as well as taken in account for BPM

measurements) are configured in the distances field (follows below).

F – fourier mode: When streaming from a live stream or from a file, a graph is

generated, displaying the values received by fft for each frequency, using the formula Re2

+ Im2 for each frequency (Re and Im stand for the real part and the Imaginary part in

accordance). Each iteration, the fft algorithm is applied to the last 256 samples collected,

each sample containing the average distance measured in a frame. The distances taken in

account in the samples are configured in the distances field (follows below).

Example graph generated in D mode. The average distance in each frame is displayed
against the according timestamp.

REALTIME BREATHING 19

N – No graph mode: In N mode, frequency and BPM are displayed and no additional

data is presented.

Permitted values: L, D, F and N.

Example graph generated in F mode. The value of each frequency is displayed in each
iteration.

Example output generated in N mode. Most dominant frequency and BPM values are
displayed.

REALTIME BREATHING 20

● Distances

#distances: set to y to include a certain distance. set to n

otherwise. recommended: left-mid3, right-mid3, mid2-mid3

left-mid1 n

left-mid2 n

left-mid3 y

left-right n

right-mid1 n

right-mid2 n

right-mid3 y

mid1-mid2 n

mid1-mid3 n

mid2-mid3 y

In the distances field, each line represents a distance between two stickers.

The stickers are labeled by name, as described in the following scheme:

The distance between two stickers is marked by the names of the stickers, separated by a

hyphen (-) character. Next to each distance, following a whitespace, appears a letter. By

writing y next to a certain distance, the user instructs the application to take this distance

into account when calculating the average distance in each iteration. The average distance

is plotted in the distances graph generated in D mode and used for the frequency and

BPM measurement as well (in modes D, F and N). In L mode, this field is disregarded.

In the config file example above, the application considers only 3 distances: left-mid3,

right-mid3 and mid2-mid3 and ignores the rest.

Permitted values: y, n.

REALTIME BREATHING 21

● Location

#location: set to y to track the location of a certain sticker.

left n

mid1 n

mid2 y

mid3 y

right n

In the location field, each line represents a sticker. The stickers are labeled by name, as

described in the distances field section.

Next to each sticker`s name, following a whitespace, appears a letter. By writing y next to

a certain sticker name, the user instructs the application to include this sticker when

generating a location graph. In L mode, the graph generated will display the depth of

every sticker marked with y in this field and ignore the rest. In modes D, F and N, this

field is disregarded.

In the config file example above, the application disregards this field since mode is set to

D. If changed to L mode, stickers mid2 and mid3 would be displayed in the location

graph generated.

Permitted values: y, n.

● Number of stickers

#number of stickers: 4 or 5

5

The application can analyze 2 different stickers layouts, with 4 stickers or 5:

 The number in this field should be set according to the layout in use.

Permitted values: 4, 5.

 Five stickers layout Four stickers layout

REALTIME BREATHING 22

● Color of stickers

#color of stickers: Y (yellow), B (blue) or G (green). recommended: Y

Y

The application can detect stickers having 3 different colors: Y for yellow, B for blue and

G for green. However, we recommend the use of yellow stickers due to higher accuracy

in detection. While the tool was tested with different colors in the environment of private

households, it was only tested on patients' videos (provided by the generous staff of

Ichilov) with yellow stickers. Therefore, the hospital environment and lighting were not

tested with other colors.

Permitted values: Y, B, G.

● 2D measure units

#2D measure units: cm or pixel. recommended: pixel

pixel

When the dimension is set to 2, the average distance can be measured either by

centimeters (cm) or by pixels. When the dimension is set to 3, only cm can be used (the

field will be disregarded in that case, except from 2D distances appearing in the log file).

For the purpose of frequency and BPM measurement, pixel units are recommended for

higher accuracy.

Permitted values: pixel, cm.

REALTIME BREATHING 23

User Interface

The app’s opening screen contains two buttons: Choose existing file

and Show camera. Whenever both buttons are checked, as well as

when none of them are checked, the application receives no stream.

Show Camera

When checking this button, the application expects a live feed from the camera. The camera

must be already plugged in to the computer via a suitable port before clicking the button.

Consequentially, the live stream from the camera is shown on the app’s main screen (two

streams are shown: color stream and depth stream).

In addition, a separate window opens, presenting a graph according to the mode set in the

configuration file. This window displays BPM values as well (except for when mode is set to L)

and is constantly updated. During the first seconds (up to 15), the BPM value shown is zero,

since there is yet insufficient number of samples collected.

While Show camera is checked, a Record/Stop Record button appears in the main window.

Record

 Upon clicking this button, a window opens, allowing the user to choose a location for the

recording to be saved. The file will be saved in “.bag” format. After choosing the location,

the recording is started, and the Stop record button appears below.

 Stop record

Clicking this button ends the recording. The application continues as before, using the

camera’s feed. After a recording has ended, a new one can be started.

REALTIME BREATHING 24

Choose existing file

Upon clicking this button, a file choosing dialog is opened, allowing the user to choose a

previously recorded “.bag” file to be streamed. The file chosen must contain both streams used

by the application (color and depth). Consequentially, the two streams from the file are shown on

the app’s main screen. Equivalent to Show camera, a new window appears, presenting a graph

according to the mode set in the configuration file, as well as BPM values (except for when

mode is set to L). Just as in show camera, during the first seconds the BPM value shown is zero.

While Choose existing file is checked, a Pause/Continue button appears in the main window.

 Pause

Upon clicking this button, the stream is paused. The video shown

in the main screen remains still, and no additional data is added to

the graph.

Continue

Clicking this button resumes the stream from its pausing point.

The streams shown in the main screen, as well as the graph,

continue as before.

Graph Viewing

The new window opened upon every stream start is, as already mentioned, showing a graph of

the desired measurements according to the configurations in the config file. This graph has

plenty of viewing options:

- Using the mouse wheel or pressed right mouse button, the graph can be scaled up or down.

- Using pressed scroll button (wheel) of the mouse, the graph can be moved.

- Graph can be reset by double clicking the right mouse button.

REALTIME BREATHING 25

Log File

A separate log file is generated every time a stream is shown.

If Show camera is checked, a log file is created, and data is being written to the file until

unchecking Show camera. Using Record/Stop record does not affect the logging process, and the

log keeps updating. The generated log file appears in the application’s directory under the name

format live_camera_log_dd-mm-yyyy_hh-mm-ss.csv.

Upon checking Choose existing file and choosing a file to be streamed, a log file is created too

and data is being written to the file either until Choose existing file is unchecked, or until the

file’s stream had ended. Using Pause holds the arrival of new frames and therefore no new data

is written to the log file until Continue is clicked. Then, writing to the log file is resumed from

the point of pausing. The generated log file appears in the application’s directory under the name

format file_log_dd-mm-yyyy_hh-mm-ss.csv.

A single activation of the application may produce several log files, according to the number of

files that were streamed, and the number of times Show camera was used.

Contents

The log file is in “.csv” format. The first line always contains titles – the names of the fields

extracted every time a valid frame is received.

The following lines may contain one of the followings:

• An empty line – may indicate a frame was discarded since it is a duplication of the

previous frame, or since not all stickers were recognized.

• Warning: illegal 3D coordinates! frame was dumped. – this message indicates a frame

was discarded due to illegal 3D coordinates.

• frames array cleanup... – this message indicates all samples currently stored by the

application were removed. This may happen after several consecutive frames were

discarded, either for fault of illegal 3D coordinates, or for fault of frames duplication.

• A line containing values in all 44 fields – such a line is written for every received valid

frame.

The data extracted is as follows:

- Frame_index – a running index maintained by the application. Only valid frames, where all

stickers were recognized are taken in account.

REALTIME BREATHING 26

- Color idx, Depth idx – index of color frame and depth frame, correspondingly, supplied by

the device.

- Color timestamp, Depth timestamp – timestamp of color frame and depth frame,

correspondingly, supplied by the device. Time elapsed since the device was connected in

millisecond.

- System color timestamp – time elapsed since the first frame (depth or color) in seconds.

- System depth timestamp – time elapsed since the first frame (depth or color) in seconds.

- System timestamp – time elapsed since the application started in seconds.

- left (x y z) cm, right (x y z) cm, mid1 (x y z) cm, mid2 (x y z) cm, mid3 (x y z) cm – 3D

coordinates of the corresponding sticker, given in cm.

- left (x y) pixels, right (x y) pixels, mid1 (x y) pixels, mid2 (x y) pixels, mid3 (x y) pixels -

2D coordinates of the corresponding sticker, given in pixels.

- left - mid1 2D distance [units], … , mid2 - mid3 2D distance [units] – 2D Euclidian

distance between the centers of two stickers, given in [units] (units may be either cm or

pixels, according to 2D measure units set in the configuration file).

- left - mid1 3D distance (cm), … , mid2 - mid3 3D distance (cm) – 3D Euclidian distance

between the centers of two stickers, given in cm.

- 2D average distance – the average 2D distance of all distances included in distances in the

configuration file, given in either cm or pixels, according to 2D measure units set in the

configuration file.

- 3D average distance – the average 3D distance of all distances included in distances in the

configuration file, given in cm.

- FPS – the average frames rate (frames received per second). Last 256 frames are taken in

account.

- realSamplesNum – the number of samples (frames) currently stored by the application.

BPM values are calculated based on these samples. The application may hold up to 256

samples at a time. When the number of real samples stored is significantly lower than 256,

BPM values are unreliable and therefore not shown.

- Frequency – the frequency of the breath rate, as measured after the corresponding frame was

processed.

- BPM – the Breath Per Minute value, as measured after the corresponding frame was

processed. BPM is calculated as 60 * frequency.

REALTIME BREATHING 27

Results and Discussion

Testing environment

While the application can be run with different configurations, we found that the following

setting gives the most reliable BPM values:

Dimension: 2

Distances: left-mid2, right-mid3, mid2-mid3

D2 units: pixel

Color of stickers: Y (yellow)

Number of stickers: 5

These are also the default values set in the config file.

The results given below were all measured using this recommended configuration.

As previously discussed, since the algorithm is based on color detection, objects in the

background, which appear in the same color range as the stickers, may cause faulty results.

Therefore, the results below were all measured using recordings or live streams with no

significant noise in the background.

Additionally, for the application to give reliable BPM values, a certain number of samples must

be collected first. It may take up to 15 seconds of streaming before this number is reached. For

this reason, when comparing the application's values to the expected values, the first 10-15

seconds of each stream (an existing recording or a live stream) were disregarded.

The application outputs a BPM value in real time and updates the value several time per second.

the graph below depicts the BPM values given by the application throughout the streaming of a

one-minute file:

REALTIME BREATHING 28

Breathing patterns of humans result in a BPM value that is not constant in time. In the absence of

means to evaluate true BPM values for every point in time, the method we use to measure the

application’s error is as follows:

For each stream (either a recorded file or a live stream), the average true BPM value is evaluated,

and compared with the average BPM value given by the application throughout the run.

Streaming from an existing file

All files used in these tests were provided by Ichilov and were recorded in the hospital's

environment.

We tested several files and received an average deviation of 1.85 BPM. On average, 6.24% error

(percentage of the true BPM).

Streaming live

The testing of a live stream performance was done in a private house environment. Currently, we

are unable to perform live tests in a hospital's environment.

We tested live streaming in several different breathing rates and received an average deviation of

1.01 BPM. On average, 3.49% error (percentage of the true BPM).

Methods Discarded

Using Intel’s RealSense Viewer Source Code

At the very beginning of our work, our intention was to use as many available resources as

possible and focus on algorithmics and real time processing improvement, namely using the

existing code of Intel RealSense Viewer, and modifying it for our uses. Unfortunately, soon

enough we encountered technical difficulties in modifying the existing code of the RealSense

Viewer, as it is a very wide project poorly documented for these purposes.

As a result, we ended up paying efforts in constructing a very basic GUI for our app (with very

little knowledge about it), as it was not the main goal of our application.

However, we did use the same GUI library as Intel (as we mentioned in the Tools and

Developing Environment section) and were inspired by the viewer’s and the examples’ code,

which allowed us faster and more stable work.

REALTIME BREATHING 29

Hough Circles (vs. Color Detection and Connected Components)

We use color detection and connected components algorithm in order to detect the stickers

properly, and even though noises are inevitable. At the stage of the algorithm planning and the

implementation outline, we encountered the Hough Circles algorithm that is used to find circles

in a picture and their centroids. During the development, we found that Hough Circles is not

robust enough and is very prone to noises, not mentioning the fact that it is not color sensitive

and quite expensive in time. Moreover, in order to detect the stickers properly with it, it is

required to run the Hough Circles algorithm multiple times (roughly tens or hundreds of

iterations3, depends on the radius size) while its complexity is O(N3)4 – Not so efficient for real

time processing.

Therefore, we decided to use more conventional tools to detect the stickers: simple color

detection and Connected Components algorithm right afterwards. It is worth mentioning that

both steps are carried out only once, what is more, their complexity is linear5, and both steps are

robust enough to complete the detection after handling the noises.

RGB (vs. HSV) Ranges Color Detection and Color Formats

In the beginning, we tried simple color detection with RGB common values to detect the yellow

color of the stickers. At first, basic sticker detection did not work properly (or even at all), and

that is where we began questioning the color ranges used in the inRange function of OpenCV.

Through further lookup through the net (references provided at the Refences section) we came

into conclusion that HSV color ranges are more convenient to use due to their continuity in hues

and values separately. (It is possible to generate a gradient from one color to another of desired

intensities and all in between, as seen in the Before We Start – Stickers section)

In addition, it is important to note that not all color formats are supported either in librealsense

applications or in OpenCV. We had gone through some trouble finding the appropriate formats

that will allow us the interfacing between the camera’s frames and OpenCV’s functionalities.

Eventually, we found that streaming the color frame in RGB8 format (RS2_FORMAT_RGB8) will

provide us the easiest and fastest way to convert the color frame ‘data’ – an matrix over RGB 8-

3 https://stackoverflow.com/questions/38048265/houghcircles-cant-detect-circles-on-this-image
4 https://www.cs.bgu.ac.il/~ben-shahar/Teaching/Computational-Vision/StudentProjects/ICBV052/ICBV-2005-2-

BenYosef-Guy/circle_detection_using_folding_method.pdf
5 http://graphstream-project.org/doc/Algorithms/Connected-Components/

https://stackoverflow.com/questions/38048265/houghcircles-cant-detect-circles-on-this-image
https://www.cs.bgu.ac.il/~ben-shahar/Teaching/Computational-Vision/StudentProjects/ICBV052/ICBV-2005-2-BenYosef-Guy/circle_detection_using_folding_method.pdf
https://www.cs.bgu.ac.il/~ben-shahar/Teaching/Computational-Vision/StudentProjects/ICBV052/ICBV-2005-2-BenYosef-Guy/circle_detection_using_folding_method.pdf
http://graphstream-project.org/doc/Algorithms/Connected-Components/

REALTIME BREATHING 30

bit – to OpenCV friendly format, that is, RGB 8-bit matrix as well that is later converted to a

matrix over HSV color channels (also 8-bit).

Multithreading

The demand on real time performance requires sacrifice of frame rate even on the strongest

CPUs and GPUs. However, this can be overcome by manual support of multithreading. It had

come to our knowledge that OpenCV supports multithreading, but the rendering of the frames

and graphs are heavy operations that affect the frame rate while run on a single thread.

For comparison, the average real time frame rate (on a modern 8-core CPU and strong GPU) of

the application full processing without graph rendering is 25 fps, which drops significantly to 16

fps on average with graph rendering. Upon file read, which is lower a priori, it drops even to a

single-digit frame rate, which is unfavorable at least.

The solution to these might be (and actually is, based on running a testing and buggy

implementation) manual implementation of multithreading: creating separate threads for the

renderers, and the graph renderer in particular.

Nevertheless, we chose not to implement multithreading, since the acquired samples under the

current implementation (of a single thread) are enough to supply satisfactory results while

maintaining code simplicity.

Future work

Our project supplies a modular implementation of breath pattern analysis. Therefore, it is

possible to take our work to new extents.

To begin with, by calculating the difference in volume of the polyhedron defined by the stickers,

it might be possible to exploit variations in respiratory volume.

In addition, the depth dimension of the 3D camera might provide information about phasing

abnormalities in breathing, when looking at the locations of the stickers (which are already

provided by the app).

There is more that comes to mind regarding the expansion of the app’s domain, and we hope that

more research and development will realize any notion that may sharpen respiration research,

abnormalities detection, and treatment.

REALTIME BREATHING 31

A Few Personal Words

We want to thank our supervisors, Alon and Yaron, for their great patience towards us and our

questions and troubles, and for their great support in technical and logical issues we faced.

We started the project with little to no knowledge of almost all fields regarding the project and

grew wiser each day. We feel a real sense of contribution from this project, and we hope it will

satisfy those who will use it, and those who will follow us.

Special thanks,

 Nili and Maayan

REALTIME BREATHING 32

References

Intel RealSense GitHub

 Librealsense examples:

 Sample Code for Intel® RealSense™ cameras

 rs-imshow

 rs-dnn

Dear Imgui GitHub

 For GUI Implementation in the app, contains a set of examples and fine documentation.

 buttons and windows:

 demo window

 Quick GUI for MBED projects using Dear ImGui and Serial - jaeblog

OpenCV 4.2.0 GitHub

 Shape and color detection:

 Detect RGB color interval with OpenCV and C++

 Shape Detection & Tracking using Contours

 Color Detection & Object Tracking

 librealsense/cv-helpers.hpp at master · IntelRealSense/librealsense

Hough Circles Transformation:

 Hough Circle Transform

Color Ranges:

 Finding Lane Lines with Colour Thresholds - Joshua Owoyemi

 ColorHexa - for visualization of color ranges

 OpenCV better detection of red color? (Stackoverflow)

 Detecting Blue Color in this image - OpenCV Q&A Forum

 Detecting colors (Hsv Color Space) - Opencv with Python (Green color example)

 HSV Color Picker

cv-plot GitHub

https://github.com/IntelRealSense/librealsense
https://dev.intelrealsense.com/docs/code-samples
https://dev.intelrealsense.com/docs/rs-imshow
https://dev.intelrealsense.com/docs/rs-dnn
https://github.com/ocornut/imgui
https://eliasdaler.github.io/using-imgui-with-sfml-pt2/#imgui-demo-window
https://justanotherelectronicsblog.com/?p=179
https://github.com/opencv/opencv/tree/4.2.0
https://stackoverflow.com/questions/9018906/detect-rgb-color-interval-with-opencv-and-c
https://www.opencv-srf.com/2011/09/object-detection-tracking-using-contours.html
https://www.opencv-srf.com/2010/09/object-detection-using-color-seperation.html
https://github.com/IntelRealSense/librealsense/blob/master/wrappers/opencv/cv-helpers.hpp
https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/hough_circle/hough_circle.html
https://medium.com/@tjosh.owoyemi/finding-lane-lines-with-colour-thresholds-beb542e0d839
https://www.colorhexa.com/
https://stackoverflow.com/questions/32522989/opencv-better-detection-of-red-color
https://answers.opencv.org/question/90047/detecting-blue-color-in-this-image/
https://pysource.com/2019/02/15/detecting-colors-hsv-color-space-opencv-with-python/
https://alloyui.com/examples/color-picker/hsv.html
https://github.com/Profactor/cv-plot

REALTIME BREATHING 33

Cpp-text-table GitHub

Intel Realsense Wikipedia

OpenCV Wikipedia

Visual Studio Wikipedia

https://github.com/haarcuba/cpp-text-table

