
Geometrical Image Processing 

Laboratory 

Computer Science Faculty 

Technion 

 
 

 

 

 

YOGA MASTER 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Barr Assenheimer and Noa Wengrowicz 

Supervised by Ron Slossberg  

Spring 2020 

  



Abstract: 

YOGA MASTER is a platform for yoga practicing anywhere you want. With the 

Jetson Nano you can take the yoga teacher to the park, to the beach, or just stay at 

home. Although the teacher is not near you can still get the feedback you need to 

improve your poses. 

 

 

 

Background and motivation: 

In the last few years there is an increasing interest in fitness apps and at home 

training. The main downside of these apps is the lack of real time feedback. 

This need was emphasized in the last few months, during the COVID-19 outbreak, 

forcing people to find alternatives for live fitness classes. 

The real-time yoga poses detection on top of the TensorFlow Posenet skeleton tracker 

can give the trainers the feedback they need to practice from home and improve their 

yoga poses. 

  



System: 

Yoga Master uses the power of AI to make yoga practice from home easier and more 

efficient. It uses the skeleton created from TensorFlow Posenet and runs it through 

object detection methods to detect and classify the yoga poses . 

The power of the Jetson Nano is reflected exactly in these tasks. 

 

Hardware: 

NVIDIA® Jetson Nano™ Developer Kit: a small powerful computer that 

lets you run multiple neural networks in parallel for applications like 

image classification, object detection, segmentation, and speech 

processing . 

 

 

Logitech C160 usb webcam 

 

 

 

 Software: 

 

TensorFlow: an open-source library for numerical computation and large-

scale machine- learning.  

 

 

TensorFlow Posenet: a real-time pose estimation model. 

 

 

 

  

 TensorFlow Object Detection API: an open-source framework built on top of 

TensorFlow for constructing, training and deploying object detection models. 

 

 

  



Project's workflow: 

 

 

 

 

 

Setup the Jetson Nano: 

Setting up the Jetson Nano environment was very challenging and took longer than we 

expected. 

We installed a wide range of packages: 

Tensorflow, scipy, pyyaml,opencv, libhdf5-serial-dev, hdf5-tools, libhdf5-dev, 

zlib1g-dev, zip, libjpeg8-dev, numpy, future, mock, h5py, keras_preprocessing, 

keras_applications, gast, enum34, futures, protobuf, pillow, lxml, Cython, contextlib2, 

jupyter, matplotlib, pandas, pycocotools, absl-py. 

TensorFlow download instructions for Jetson Nano: 

https://forums.developer.nvidia.com/t/official-tensorflow-for-jetson-nano/71770 

To solve the installations issues we used a virtual environment. Virtual environment 

allows isolated installs of different Python packages. When you use them, you can have 

one version of a Python library in one environment and another version in a separate, 

sequestered environment. 

Tip: if you have problems to install packages inside the virtualenv (eg. Permission 

denied) you can try to install this specific package outside and then create a symbolic 

link as suggested here- https://stackoverflow.com/questions/56224015/how-to-import-

cv2-on-jetson-nano-under-a-virtualenv. 

We had this issue while trying to install opencv and the symbolic link fixed it. 

   

Setup the 
Jetson 
Nano

Collect 
data 

Label the 
data

Train the 
network

Add 
instructions 

and score 
board

Become a 
YOGA 

MASTER

https://forums.developer.nvidia.com/t/official-tensorflow-for-jetson-nano/71770
https://stackoverflow.com/questions/56224015/how-to-import-cv2-on-jetson-nano-under-a-virtualenv
https://stackoverflow.com/questions/56224015/how-to-import-cv2-on-jetson-nano-under-a-virtualenv


Collect data: 

We took 130 pictures for each one of the 4 poses. 

We created a variety of images: different people (with different body shapes), different 

positions in the frame and different angles. 

 

 

 

 

 

 

 

 

 

 

 

 

Label the data: 
 

We used LabelImg(https://github.com/tzutalin/labelImg) which is a graphical image 

annotation tool. Annotations are saved as XML files in PASCAL VOC format. 

 

 

 

 

 

 

 

 

 

Then we converted the xml files into csv files (separate for train and test) with the 

script xml_to_csv.py. 

 

  

https://github.com/tzutalin/labelImg


Train the network: 

We used SSDLite which is a single-Shot multibox Detection (SSD) network intended 

to perform object detection. This model has an architecture that allows for faster 

detection but with less accuracy. YOGA MASTER is detecting the poses in real time, 

so the fast detection is more important than the accuracy. 

The input of the network was a skeleton frame we got from Posenet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At first, we tried to train the network on the Jetson Nano itself. since in an embedded 

device it took a very long time, we decided to train the network on Google Colab, 

which allows to write and execute Python in the browser with free access to GPUs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



We tried a few different partitions of the train and test data. In addition, we tried different 

batch sizes. The best results were obtained when we used 80% of the data for training, and the 

other 20% for testing, and the batch size was 8. 

Training duration- 

We used TensorBoard to visualize and monitor the training process (model_main.py) and to 

find the best time to stop the training to avoid overfitting. We ended the training is when the 

‘DetectionBoxes_Precision mAP’ was very close to 1. 

 

 

 

 

 

 

 

 

 

 

 

 

  



Add instructions and score board: 

We used tkinter, the standard Python interface to make the YOGA MASTER GUI. 

The scoreboard is a visual histogram that counts how many times the user did each of 

the poses with accuracy ≥ 80%. The accuracy's percentage is changeable and you can 

increase it to get harder practice. 

The board updates when the user succeeds to do a new pose, different than the one 

before (it doesn't count the same pose over and over if the user stays in the same pose 

for a few seconds), that is to make the training more diverse. 

 

 

 

 

 

 

 

 

 

 

 

  



Quantitative analysis and results: 

We evaluated the model by IoU - Intersection over Union which is an evaluation 

metric used to measure the accuracy of an object detector on a particular dataset, by 

measuring the overlap between two bounding boxes: 

1. The ground-truth bounding boxes: the hand labeled bounding boxes we 

created using labelImg. The coordinates if the boxes are stored in xml files 
which was the output of labelImg tool. 

 

 

2. The predicted bounding boxes from our model  

 

 

 

 

 

 

 

The IoU results are in the next couple of pages 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Image name 
Pose 

detected 
ground truth bounding 

box 
predicted bouning box IoU Average 

mountain01.jpg mountain [36, 246, 410, 410] [45, 268, 409, 400] 0.781109 

0.824819 

mountain02.jpg mountain [1, 121, 458, 282] [14, 136, 448, 281] 0.852662 

mountain03.jpg mountain [1, 392, 444, 565] [16, 411, 448, 558] 0.813865 

mountain04.jpg mountain [2, 434, 445, 596] [1, 439, 445, 593] 0.950517 

mountain05.jpg mountain [36, 430, 413, 590] [56, 451, 411, 577] 0.745232 

mountain06.jpg mountain [57, 525, 372, 640] [66, 532, 375, 640] 0.894001 

mountain07.jpg mountain [31, 528, 401, 640] [39, 541, 422, 640] 0.822231 

mountain08.jpg mountain [33, 24, 411, 177] [42, 44, 414, 177] 0.833815 

mountain09.jpg mountain [69, 44, 378, 170] [81, 62, 380, 173] 0.795010 

mountain10.jpg mountain [87, 46, 362, 175] [93, 66, 360, 173] 0.803535 

mountain11.jpg mountain [3, 39, 467, 210] [5, 49, 472, 202] 0.877787 

mountain12.jpg mountain [31, 138, 425, 293] [42, 154, 419, 293] 0.852843 

mountain13.jpg mountain [26, 153, 426, 308] [30, 179, 440, 310] 0.787383 

mountain14.jpg mountain [25, 240, 431, 413] [36, 271, 428, 408] 0.766095 

mountain15.jpg mountain [3, 324, 464, 489] [6, 339, 478, 487] 0.868670 

mountain16.jpg mountain [28, 322, 429, 488] [39, 339, 425, 475] 0.791713 

mountain17.jpg mountain [2, 330, 464, 504] [8, 354, 466, 490] 0.766051 

mountain18.jpg mountain [3, 241, 454, 405] [12, 262, 461, 409] 0.815690 

mountain19.jpg mountain [44, 229, 414, 403] [52, 254, 408, 388] 0.743621 

mountain20.jpg mountain [58, 237, 396, 395] [64, 258, 400, 390] 0.814063 

mountain21.jpg mountain [17, 233, 429, 395] [19, 254, 428, 387] 0.814220 

mountain22.jpg mountain [34, 345, 413, 494] [46, 357, 408, 490] 0.848273 

mountain23.jpg mountain [23, 416, 424, 568] [38, 438, 416, 569] 0.792921 

mountain24.jpg mountain [3, 277, 443, 425] [16, 291, 438, 428] 0.849460 

mountain25.jpg mountain [56, 272, 389, 399] [65, 273, 389, 401] 0.939709 

tree02.jpg tree [1, 330, 345, 531] [7, 356, 346, 536] 0.828195 

0.850385 

tree03.jpg tree [3, 437, 294, 590] [9, 436, 291, 595] 0.934816 

tree04.jpg tree [2, 135, 357, 321] [19, 156, 364, 316] 0.805396 

tree05.jpg tree [12, 192, 331, 353] [46, 189, 334, 356] 0.852965 

tree07.jpg tree [46, 255, 308, 405] [67, 264, 308, 405] 0.857170 

tree08.jpg tree [4, 209, 351, 394] [13, 236, 357, 382] 0.760911 

tree09.jpg tree [1, 106, 349, 291] [12, 107, 364, 287] 0.901464 

tree10.jpg tree [1, 89, 350, 281] [9, 100, 345, 280] 0.903877 

tree11.jpg tree [41, 200, 298, 361] [58, 205, 313, 371] 0.801161 

tree12.jpg tree [1, 211, 364, 446] [8, 229, 372, 437] 0.849111 

tree13.jpg tree [2, 214, 364, 433] [6, 234, 353, 433] 0.867814 

tree14.jpg tree [1, 317, 341, 538] [7, 345, 346, 534] 0.827500 

tree16.jpg tree [18, 388, 283, 563] [35, 413, 294, 563] 0.762148 

tree17.jpg tree [19, 438, 323, 566] [37, 436, 326, 564] 0.907295 

tree18.jpg tree [1, 128, 355, 342] [3, 152, 357, 343] 0.867233 

tree19.jpg tree [1, 226, 342, 423] [12, 246, 354, 418] 0.812964 

tree20.jpg tree [3, 228, 356, 427] [16, 247, 364, 417] 0.804739 

tree21.jpg tree [31, 281, 386, 426] [54, 303, 386, 425] 0.781668 

tree22.jpg tree [55, 265, 359, 400] [58, 251, 361, 394] 0.856991 

tree23.jpg tree [17, 322, 347, 497] [46, 327, 345, 498] 0.874234 

tree24.jpg tree [1, 300, 433, 537] [1, 306, 440, 539] 0.944941 

tree25.jpg tree [1, 345, 431, 603] [3, 358, 429, 613] 0.905879 

triangle01.jpg triangle [149, 219, 382, 467] [113, 225, 396, 461] 0.790159 0.864016 



triangle02.jpg triangle [143, 266, 392, 503] [155, 294, 394, 490] 0.780651 

triangle03.jpg triangle [47, 211, 452, 525] [36, 228, 436, 493] 0.795505 

triangle04.jpg triangle [52, 209, 448, 489] [42, 226, 436, 488] 0.892314 

triangle05.jpg triangle [51, 113, 433, 386] [51, 147, 432, 392] 0.853098 

triangle06.jpg triangle [115, 41, 477, 340] [132, 49, 480, 338] 0.912352 

triangle07.jpg triangle [58, 184, 402, 426] [54, 170, 389, 417] 0.873949 

triangle08.jpg triangle [67, 147, 402, 385] [87, 148, 389, 395] 0.862737 

triangle09.jpg triangle [72, 308, 395, 567] [67, 334, 393, 567] 0.884435 

triangle10.jpg triangle [130, 326, 415, 592] [123, 355, 402, 570] 0.761364 

triangle11.jpg triangle [37, 277, 462, 584] [36, 286, 468, 586] 0.946158 

triangle12.jpg triangle [4, 133, 478, 474] [0, 154, 480, 467] 0.905900 

triangle13.jpg triangle [41, 130, 423, 384] [35, 143, 424, 386] 0.920830 

triangle14.jpg triangle [45, 133, 404, 396] [45, 143, 397, 389] 0.918172 

triangle15.jpg triangle [60, 181, 376, 374] [74, 185, 382, 378] 0.895578 

triangle16.jpg triangle [84, 74, 417, 287] [90, 74, 404, 297] 0.898570 

triangle17.jpg triangle [52, 57, 411, 278] [48, 79, 407, 279] 0.873587 

triangle18.jpg triangle [52, 53, 435, 285] [65, 47, 442, 306] 0.849886 

triangle19.jpg triangle [9, 36, 480, 328] [33, 0, 476, 329] 0.840592 

triangle21.jpg triangle [3, 296, 437, 548] [4, 308, 433, 560] 0.895284 

triangle22.jpg triangle [21, 304, 441, 561] [13, 272, 425, 591] 0.769013 

triangle23.jpg triangle [24, 309, 420, 556] [2, 306, 417, 562] 0.909528 

triangle24.jpg triangle [89, 316, 392, 523] [96, 345, 390, 518] 0.813976 

triangle25.jpg triangle [74, 376, 379, 581] [72, 360, 387, 579] 0.892754 

warrior01.jpg warrior [20, 190, 353, 487] [34, 233, 367, 487] 0.788213 

0.851272 

warrior02.jpg warrior [27, 185, 356, 510] [31, 216, 353, 495] 0.840566 

warrior03.jpg warrior [18, 167, 364, 526] [18, 201, 361, 502] 0.831171 

warrior04.jpg warrior [22, 211, 359, 563] [32, 247, 357, 554] 0.842306 

warrior05.jpg warrior [4, 219, 381, 601] [7, 254, 392, 581] 0.826129 

warrior06.jpg warrior [1, 83, 392, 444] [2, 94, 399, 442] 0.941017 

warrior07.jpg warrior [4, 220, 400, 578] [12, 236, 396, 574] 0.917601 

warrior08.jpg warrior [27, 99, 370, 444] [35, 131, 367, 425] 0.827368 

warrior09.jpg warrior [42, 126, 371, 455] [43, 144, 370, 436] 0.884023 

warrior10.jpg warrior [75, 139, 351, 402] [88, 152, 350, 397] 0.884804 

warrior11.jpg warrior [69, 127, 347, 432] [72, 144, 344, 417] 0.873912 

warrior12.jpg warrior [73, 230, 341, 504] [93, 280, 341, 495] 0.722566 

warrior13.jpg warrior [87, 244, 352, 491] [88, 276, 350, 481] 0.820775 

warrior14.jpg warrior [68, 211, 350, 497] [85, 235, 351, 480] 0.803119 

warrior15.jpg warrior [2, 312, 376, 627] [23, 337, 385, 631] 0.833746 

warrior16.jpg warrior [11, 328, 375, 623] [34, 356, 375, 624] 0.840885 

warrior17.jpg warrior [2, 358, 400, 640] [3, 378, 401, 632] 0.894800 

warrior18.jpg warrior [43, 328, 350, 587] [53, 335, 338, 594] 0.880559 

warrior19.jpg warrior [44, 286, 351, 585] [59, 323, 339, 573] 0.759129 

warrior20.jpg warrior [1, 31, 390, 398] [14, 56, 390, 391] 0.877324 

warrior21.jpg warrior [78, 126, 382, 359] [74, 143, 371, 356] 0.875144 

warrior22.jpg warrior [81, 100, 382, 353] [85, 118, 390, 330] 0.810584 

warrior23.jpg warrior [60, 52, 433, 396] [57, 61, 426, 397] 0.945232 

warrior24.jpg warrior [44, 42, 455, 363] [46, 60, 444, 362] 0.912111 

warrior25.jpg warrior [89, 137, 381, 328] [94, 147, 366, 321] 0.848707 

0.847366 



Results: 

Average IoU of the total test set is 84.73% 

Average IoU of the 'Tree' pose test image set is 85.03% 

Average IoU of the 'Triangle' pose test image set is 86.4% 

Average IoU of the 'Mountain' pose test image set is 82.48%  

Average IoU of the 'Warrior' pose test image set is 85.12% 

 

Conclusions: 

• The video streaming gives better result when running YOGA MATER directly 

on the Jetson Nano and not via SSH  . 

• The Jetson Nano environment is challenging and setting it up takes long time. 

• Virtual environments are very effective and easy to use. 

• USB camera worked better for us. 

• Training the model on the Jetson Nano is too slow. It is better to use a 

powerful GPU . 

• Best training results were obtained when  : 

o The batch size was 8 . 

o We ended the training is when the ‘DetectionBoxes_Precision mAP’ is 

very close to 1 . 

o We used 80% of the data for training, and the other 20% for testing. 

 

Future work: 

• Add more yoga poses. 

• Add different fitness activities. 

• Augment existing images. 

• Improve the network by adding coordinates vector to the data set. 

 

Sources: 

• https://www.hackster.io/mixpose/mixpose-722df5#toc-step3--tensorflow-and-

training-pose-data-5  

• https://github.com/MixPose/MixPose-Jetson-Nano  

• https://github.com/tensorflow/models/tree/master/research/object_detection  

https://www.hackster.io/mixpose/mixpose-722df5#toc-step3--tensorflow-and-training-pose-data-5
https://www.hackster.io/mixpose/mixpose-722df5#toc-step3--tensorflow-and-training-pose-data-5
https://github.com/MixPose/MixPose-Jetson-Nano
https://github.com/tensorflow/models/tree/master/research/object_detection

