Geometric lmage
Processing Lab

YOG

By: Noa Wengrowicz & Barr Assenheimer

Supervisor: Ron Slossberg




S

PROB

2
I

LEM STATEMENT

YOGA MATSER is a platform for yoga
practicing anywhere you want. With the
Jetson Nano you can take the yoga
teacher to the park, to the beach, or just
stay at home. Although the teacher is not
near you can still get the feedback you
need to Improve your poses.

Geometric lmage
Processing Lab




T SCOPE

BACKGROUND

= NVIDIA® Jetson Nano™ Developer Kit is a small, powerful
computer that lets you run multiple neural networks in
parallel for applications like image classification, object
detection, segmentation, and speech processing.

= TensorFlow Is an open-source library for numerical
computation and large-scale machine- learning.

= TensorFlow Posenet is a real-time pose estimation model.

= TensorFlow Object Detection API is an open-source
framework built on top of TensorFlow for constructing,
training and deploying object detection models.




PROJECT SCOPE

BACKGROUND

-




MOTIVATION

=|n the last few years there is an increasing
Interest in fitness apps and at home training.
The main downside of these apps is the lack of
real time feedback.

= This need was emphasized in the last few
months, during the COVID-19 outbreak,
forcing people to find alternatives for live
fitness classes.




PROJECT SCOPE

HYPOTHESIS

= The real-time yoga poses detection on top of
the posenet skeleton tracker can give the
trainers the feedback they need to practice
from home and improve their yoga poses.




PROJECT OBJECTIVES

= YOGA MASTER will detect yoga poses in real-
time.

=YOGA MASTER will display the pose
detection frames with the skeleton on top of
the live video stream.

= YOGA MASTER will let the user know whether
he did the pose correctly.

= YOGA MASTER will keep track of the poses
the user did correctly.




YOGA MASTER
USES DOUBLE INFERENCE

< A sim neural networa
/—T " / ] /Inferenceil'mut plehd(:en :inlt;)Jt
C Inference | trl]<el ; layer  layer

the image | skeleton |

image via

Input: il e SSDLite |

T to get the

to get the oge ;’

skeleton | P g

| detection

| SHE \ - & frames \\

P

Display the
pose
detection
frames on top
of the
skeleton

Output:

- ) .




SCLUTION PROCEDURE




SOLUTION PROCEDUR

= The Jetson Nano environment is challenging.
Setting up the required packages for the
project took longer than we anticipated.

Sﬁg{&,‘;‘e Collect Label the
Nano data data
Bti;:gg\Ae & instructions Train the
MASTER and score network
/ board ‘ |




Setup the
Jetson
Nano

Become a
YOGA
MASTER

A g

Collect
data

instructions

and score

board

A g

Label the
data

Train the
network




SOLUTION PROCEDURE

=We collected 130 images for each of the 4
pOSes.

=We tried to create a variety of images:
= Different people (different body shapes)
= Different locations in the image
= Different angles

Sit:gotrr]\e Collect Label the
RS data data
Bi;:&r;nAe % instructions Train the
MASTER and score network
) board ) -




SOCLUTION

=We used ‘labellmg’
to label all the
Images

‘‘‘‘‘‘‘‘

lﬂmmo.n-uqﬁd

Sgteligotr?e Collect Label the
it data data
Be\:;:génAe % instructions Train the
MASTER and score network
‘ board ) )




SCLUTION PROCEDURE

=We discovered the training process Is too slow
on the Jetson Nano, so we needed to find an
alternative.

=We decided to do training using the Google
Colab GPU. It was much faster, but not so easy
to work with.

Sit:gotrr]\e Collect Label the
N data data
Bi;:génAe % instructions Train the
MASTER and score network

) board )




SCLUTION PROCEDURE

TRAINING PROCESS




ssdlite_mobilenet_v3_large_320x320_coco.config

'tree’

'warrior’

'triangle’

"mountain|

mountain01.xml

annotation>
<folder>images</folder>

w0

<filename>mountain@l. jpg</filename>
<path>/home/dlinano/Desktop/images/
mountain®1l. jpg</path=>
<source>
<database>Unknown</database>
</source>
<size>
<width>640</width>
<height>480</height>
<depth=>3</depth>
<[size>
<segmented=0</segmented>
<object=>
<name>mountain</name=
<pose=Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>246</xmin>
<ymin>36</ymin>
<xmax>410</xmax>
<ymax>410</ymax>
</bndbox>
<fobject>
<fannotation>

XML ~ Tabwidth:8 ~ Ln1, Col1 ~ INS

model {
ssd {
inplace_batchnorm_update: true
freeze_batchnorm: false
num_classes: 4
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}

matcher {
argmax_matcher {

matched_threshold: 0.5
unmatched_threshold: 8.5
ignore_thresholds: false
negatives_lower_than_unmatched:
force_match_for_each_row: true
use_matmul_gather: true

true

}

1

similarity_calculator {
iou_similarity {

}

encode_background_as_zeros: true
anchor_generator {
ssd_anchor_generator {
num_layers: 6
min_scale: 0.2
max_scale: 0.95
aspect_ratios: 1.0

Plain Text ~

1

=]
Lib

Al

-B-a- BelkoX A
erationsan:| v | (10 ~| B 7 U To-WH - =
| f. & = [filename -
B[ c|[ b [E[F[G][H] ]

filename __ Jwidth height class  xmin ymin xmax ymax
tree06.jpg 640  480ree 257 51 388 329
tree_61.jpg 640  480tree 17 51 220 480
tree_42.jpg 640 480 tree 126/ 115 294] 395
mountainl6.jpg 640 480 mountain 322 28 488 429
tree_102.jpg 640 480ree 220 27 240 467
tree_121.jpg 640  480tree 312 42 503 358
warrior_82.jpg 640 480 warrior 2400 111 392 331
mountain02.jpg 640 480 mountain 121 1 282 458
tree03.jpg 640 480ree 437 3 590 294
triangle_98.jpg 640 480 triangle 129 153 284 378
tree_90.jpg 640 480 tree 228 59 348 353
mountain_87.jpg 640 480 mountain 213 61 389 480
warrior21.jpg 640 480 warrior 126 78 350 382
tree_46.jpg 640  480tree 99 65 293 470
tree_44.jpg 640 480 tree 142 103 311 438
tree 75.jpg 640 480 /tree 74 40 218/ 338
warrior_47.jpg 640 480 warrior 166 81 473 455
warrior_81.jpg 640 480 warrior 226) 110 396 341
warriorl6.jpg 640 480 warrior 328 11 623 375
triangle 62.jpg 640 480 triangle 369 57 570 402
warrior_76.jpg 640 480 warrior 263 96 509 364
tree30.jpg 640  480tree 187 7 421 397
mountain_127.jpg 640 480 mountain 126 23 332 478
triangle 68.jpg 640 480 triangle 264 62 464 385
warrior_56.jpg 640 480 warrior 170, 100 452 393
tree_91.jpg 640  480tree 208 50 335 353
warriorll.jpg 640 480 warrior 127 69 432 347
mountain3a.jpg 640 480 mountain 222 109 329 344
triangle_83.jpg 640 480iangle 237 52 452 368
triangle25.jpg 640 480 triangle 376 74 581 379
warrior_122.jpg 640 480 warrior 305 71 640 480
warrior_45.jpg 640 480 warrior 3 78 358 480
mountain36.jpg 0 0\warrior 145 71 289 381
triangle_59.jpg 640 480 triangle 305 59 490 366
mountain32.jpg 640 480 mountain 218 1 382 451

Sheet

== | train_labels

| Default | English {UsA) |

10f1

[1.]

| Average: ; Sum: 0

O HA




= We used TensorBoard to visualize the training process
(model_main.py).

= To get the best results we tried several options of:
= Batch Sizes

= Partitions of the train and test data.
= Training duration.

Becomea : ; ! :
YOGA instructions Train the

and score network
board )

Setup the Collect Label the
Jetson data data
Nano | ‘ .

MASTER



SOLUTION PROCEDURE

7 = INSTRUCTIONS
Try to do one of these YOGA poses:
WARRIOR

TRIANGLE
MOUNTAIN

G 0 ' " © SCORE BOARD
B

TREE WARRIOR TRIANGLE MOUNTAIN

0 0 2 0

Sgteligotrr: i Collect Label the

Nano data data

: e

Y fi U U s
B%ng]: & instructions Train the
MASTER and score network




SOL

Setup the
Jetson
Nano

Become a
YOGA

MASTER

CF

m

el BT I

Collect
data

instructions
and score
board

tson-nano: ~/project/my-project-envifitstream-jetsan-nanc

Label the
data

Train the
network

URE




CONCLUSION

= The video streaming gives better result when running YOGA
MASTER directly on the Jeston Nano and not via SSH.

= The Jetson Nano environment is challenging and setting it up
takes long time.

= Training the model on the Jetson Nano is too slow. It is better
to use a powerful GPU.

= Best training results were obtained when:
= The batch size was 8.

= We ended the training is when the
‘DetectionBoxes_Precision mAP’ is very close to 1.

= We used 80% of the data for training, and the other 20%
for testing.




FUTURE WORK

= Add more poses.
= Add different fithess activities.
= Augment exciting images.




THANK YOU

Them: The Al takeover is incoming.
The Al




