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1. Introduction and Abstract 
 

Virtual reality has taken the world by a storm, bringing technological capabilities that 

open virtual worlds in the grasp of our hands, enabling us experiences that once we 

could only dream of. We wished to join the VR revolution uniquely, enabling a full 

virtual experience that transfers your mind into the virtual world. 

This is when the BlackjackVR idea was born. With our love for the 250 years old 

game, we wanted to bring it into the virtual world, with a unique experience that 

was never done before. We took the Oculus Rift virtual reality headset and the Leap 

Motion Controller for bringing the game from the casino right onto your living room 

desk. So, BlackjackVR at its core is the same good old card game that is common in 

every casino, but it is not just about the game, it is about the experience you can live 

from the comfort of your home. 

With time, we truly understand we have something unique in our hands as sitting in 

a casino became a rare luxury these days. The coronavirus pandemic hit us in every 

aspect of our lives. People could not meet with their families, businesses were shut 

down, and many of our free time activities were forbidden as well. Restaurants, 

movie theaters, and casinos were all closed, and we think virtual reality became an 

opportunity to fill the void. 

We built BlackjackVR with gameplay and user experience to be both the highest 

priority in our minds. As such, we made sure the player's hand movements were 

smoothly recognized and we designed the casino room as close to reality as we 

could. With meshes of casino tables, chairs, and roulettes we have enriched the 

player's experience so once he put on the Oculus Rift and connects the Leap Motion 

Controller, the atmosphere of a casino will be truly vivid in his mind. 

The game itself was written in C# and implemented in Unity. We used both Oculus 

Rift and Leap Motion unity packages to interact with the devices. 

Our hand movement recognition algorithm was first researched in C++ and was built 

one step at a time until we got the satisfying results we will later show. It is a 

numeric algorithm, recognizing movements using recordings matrices with L2 

distance and DTW. Once we got the final algorithm, we implemented it into the 

game in Unity. 

The final product lived up to our standards and expectations, and we think it can 

easily be developed into a multiplayer game so one can maximize the casino 

experience from the comfort of his home. 

We believe the hand recognition can be upgraded to a deep learning neural network 

so perhaps it can be more generic and less prone to the leap motion controller usage 

limitations we will discuss in this report.  
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2. System Description 

In short, BlackjackVR is a PC game written in C# and implemented 

in Unity, our chosen graphic engine. It is using an Oculus Rift 

headset for the virtual reality aspect of the game and a Leap 

Motion Controller to elevate the gameplay experience with hand 

movement recognition. We will further explain here about these 

components. 

2.1. Unity 
 

Unity is a cross-platform graphics engine developed by Unity Technologies and used 

to develop video games for computers, consoles, smartphones, and websites. 

Unity uses C# as the programming language of the application programming 

interface. 

We used Unity as the engine and soul of our game. The main reason was due to both 

the Oculus Rift headset and the Leap Motion camera have unity-supported packages. 

Moreover, Unity's large community and creators provide a variety of tutorials we 

used to learn the software and meshes to download from the asset store. 

The real-time 3D objects and scripts were simple to create and write while enabling 

rich performance and experience to us both as developers and as players. 

 
2.1.1. Unity Logo 
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2.2. Oculus Rift Headset 
 

Oculus Rift is a line of virtual reality headsets developed and manufactured by 

Oculus VR. With its highly respected market impact, oculus rift became a name in the 

industry regarding everything VR-related.  

We gladly received Oculus Rift from the lab and with the Unity supported SDK we 

implemented it into the BlackjackVR game. With it, we achieved the virtual world 

filling – being inside a virtual casino. 

 
2.2.1. Oculus Rift Headset 

 

2.3. Leap Motion Controller 
 

Leap Motion Controller is a computer hardware sensor device that supports hand 

and finger motions as input, analogous to a mouse, but requires no hand contact or 

touching. It is developed by Ultraleap (Ultraleap acquired Leap Motion in 2019). 

The controller we were provided by the lab was designed for hand tracking in virtual 

reality, a perfect fit for our BlackjackVR game. We used the Leap Motion Controller 

for researching and developing our hand movements tracking algorithm and of 

course, for the gameplay of BlackjackVR. 

 
2.3.1. Leap Motion Controller 
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3. Description of Execution 

We will describe our development journey step by step, dividing it 

into three major categories. First will be researching and 

developing our hand movement recognition algorithm. Secondly, 

we will discuss the implementation and development of the game 

in Unity. And Lastly, the connection of the Leap Motion Controller, 

the algorithm, and the Oculus Rift headset to the game. 

3.1. Researching the Hand Movement Recognition 

Algorithm 
 

3.1.1. The Algorithm Base 
The algorithm's basic idea is straightforward, and we will demonstrate our thought 

process thinking of it. 

We wished to recognize hand movements and we knew we had the coordinates of 

the hand in the world as part of the Leap Motion SDK. We thought of a movement as 

a series of coordinates values changing in time – frames captured by the Leap 

Motion Controller. So, the first idea that came into our minds and the base of this 

entire algorithm is to compare the coordinates values captured in real-time to a 

pattern we know the movement should look like – later will be called the movement 

matrix. 

Let us think of the hand as a simple one-dimension point. If this point from its 

current location was to move right, we know that for each frame we capture the 

point's value should increase (assuming right is the plus side of the axis) and if it 

would have moved left, the values would decrease. In the example below we can see 

in each frame that our hand is moving right, holds for a little, and goes back to the 

left where it came from: 

 
3.1.1.1. Simplification of a movement tracking 
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If we were to recognize this movement, we would have compared a group of 

captured live stream values from the leap motion camera to this pattern of values. 

This pattern is our movement vector, a vector where each element is the point value 

at a certain frame.  

To recognize the movement, we need to measure how close the movement that was 

captured in the live stream to our movement vector. We calculate the distance of 

each point in the stream to the corresponding point in the movement vector at a 

specific frame. We used a simple L2 metric (without calculating the root for making 

the calculation faster) and some threshold value for this assessment. If the 

movement captured is close enough to the movement vector, we assume the 

movement is recognized.  

Now, let us go back to reality, our hand is not a single point but a set of points that 

are being tracked by the Leap Motion Controller. Each point in the hand is 

represented as a 3D vector for their respected axis values (𝑥, 𝑦, 𝑧). The available 

points of the hand object being tracked by the Leap Motion Controller are split by 

the bones structure of the human hand: 

 
3.1.1.2. Leap Motion Controller Hand Structure 

 

Between each bone, there is a point being tracked alongside the wrist and palm: 

 
3.1.1.3. Leap Motion Controller Hand Hierarchy 
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We will declare two sets: 

• 𝐹𝑖𝑛𝑔𝑒𝑟𝑠 set: Thumb (𝑇), Index (𝐼), Middle (𝑀), Ring (𝑅) and Pinky (𝑃).   

• 𝐵𝑜𝑛𝑒𝑠 set: Distal (𝐷), Intermediate (𝐼), Proximal (𝑃) and Metacarpal (𝑀).  

For our movements, we track the Palm (𝑃𝑚) and all the fingers in all their bone's 

points (𝐹𝑖𝑛𝑔𝑒𝑟𝑠 × 𝐵𝑜𝑛𝑒𝑠). Overall, we track in our recognition algorithm 20 points, 

each point is a vector of 3: 

(

  
 

(

 
 

5⏟
|{𝑇,𝐼,𝑀,𝑅,𝑃}|⏟      
𝐹𝑖𝑛𝑔𝑒𝑟𝑠

⋅ 4⏟
|{𝐷,𝐼,𝑃,𝑀}|⏟    
𝐵𝑜𝑛𝑒𝑠 )

 
 
+ 1⏟
|{𝑃𝑎𝑙𝑚}|

)

  
 

⏟                      
𝑇𝑟𝑎𝑐𝑘𝑒𝑑 𝑃𝑜𝑖𝑛𝑡𝑠

⋅ 3⏟
|(𝑥,𝑦,𝑧)|⏟  
3𝐷 𝑆𝑎𝑝𝑐𝑒

= 63 

So, 63 values in total are being recorded for each frame. 

As such, our movement vector from the last example is now a movement matrix, 

with 63 columns for every value we track. The rows will be the recorded frames: 

  Tracked Points 

  Thumb Distal 
Thump 

Intermediate 
Thumb Proximal Thumb Metacarpal … Palm 

  𝑇𝐷𝑥 𝑇𝐷𝑦 𝑇𝐷𝑧 𝑇𝐼𝑥 𝑇𝐼𝑦 𝑇𝐼𝑧 𝑇𝑃𝑥 𝑇𝑃𝑦 𝑇𝑃𝑧 𝑇𝑀𝑥 𝑇𝑀𝑦 𝑇𝑀𝑧 … … … 𝑃𝑚𝑥 𝑃𝑚𝑦 𝑃𝑚𝑧 

Fram
e 

1 … … … … … … … … … … … … … … … … … … 
2 … … … … … … … … … … … … … … … … … … 
3 … … … … … … … … … … … … … … … … … … 

 

3.1.1.4. A Movement Matrix 
 

We should mention that for each of the cameras we used (will soon be discussed) 

the available points and hand object in general were different. We chose the cover 

the Leap Motion Controller Hand object as this is what we used eventually. With this 

said, we can say although the pointes were different, the idea was the always same. 

 

3.1.2. Intel RealSense D435  
With the algorithm's idea in mind, we wanted to test it out using the camera we got 

from the lab – the Intel RealSense D435 depth camera. 

We downloaded the camera's SDK and with Visual Studio we tried to open some of 

the examples to run. It was easy to interface with the camera and visual studio, but 

we discovered the Hand Tracking Module is not included in the free SDK, and for that 

reason, we returned the camera to get a new one. 

 
3.1.2.1. Intel RealSense D435 
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3.1.3. Intel RealSense SR300 
The camera we got was a test unit of the Intel RealSense SR300. Before everything 

else, we checked that this camera's SDK includes the Hand Tracking Module, and it 

did. 

Interfacing with this camera was challenging, taking us a lot of attempts but 

eventually, we successfully interacted with the camera in visual studio and C++. 

We wrote the algorithm we planned and wanted to test it out. To test the algorithm 

performance, we wrote an entire system with the following modes:  

• Recording – for recording movements into movements matrices. 

• Optimizing – Implement optimizations on the movement matrices we recorded. 

Will be discussed later. 

• Testing – A live test mode to see the accuracy of our algorithm in action. 

 

3.1.4. Origin Setup 
After recording some basic movements to test like moving to the right, we noticed a 

big problem: each time we turn on the camera, its place in the world was changed 

and with it the values of the coordinates for every movement matrix being captured. 

Moreover, we noticed that if we were to move the hand to the right, but from a 

different starting place, the values although representing the same movement, will 

be far away L2 metric-wise, something we do not wish to consider when recognizing 

movements. 

The solution for both problems was simple, for every movement matrix, we treated 

the first frame vector of points as a relativity vector. We subtract all the frames by 

the relative vector values so that he will become the origin point of the movement – 

a vector of zeros (0,0, … ,0), and all the next frames start the movement from it. 

This way, no matter the place of the camera in the world, or the position from which 

we start to perform the movement, it will all be relative to the first frame. 

Let us demonstrate using a simple example, tracking only the palm point. We will 

take the same movement from section 3.1.1 – moving the hand to the right, hold for 

a little and go back to the left. After recording the movement, the movement matrix 

will look something like this: 

 
3.1.3.1. Intel RealSense SR300 
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3.1.4.1. Recorded Movement Matrix 

 

The camera's location in the world is unknown (can be located anywhere by the 

player for all we know) and the wrist point first frame location was at (5,12,−20).  

Now, let us try to recognize the movement. We performed the movement and got 

this matrix from the live stream (for the example we performed the movement with 

extreme precision so the L2 distance from the matrix to the recorded movement 

matrix should be 0): 

 
3.1.4.2. Captured Movement from the Live Stream 

 

Let us look what we got: even if the 𝑥 axis was the same, still the 𝑦 axis and 𝑧 axis 

values that do not even participate in the movement would inflate our L2 distance 

value. It is easy to see the matrices are not close.  

 

 

 

 

 

 

  Palm 

  𝑃𝑚𝑥 𝑃𝑚𝑦 𝑃𝑚𝑧 

Fram
e 

1 5 12 −20 

2 5.5 12 −20 

3 6 12 −20 

4 6.5 12 −20 

5 7 12 −20 

6 7 12 −20 

7 6.5 12 −20 

8 6 12 −20 

9 5.5 12 −20 

10 5 12 −20 

 

  Palm 
  𝑃𝑚𝑥 𝑃𝑚𝑦 𝑃𝑚𝑧 

Fram
e 

1 20 3 14 

2 20.5 3 14 

3 21 3 14 

4 21.5 3 14 

5 22 3 14 

6 22 3 14 

7 21.5 3 14 

8 21 3 14 

9 20.5 3 14 

10 20 3 14 
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Now, let us apply our Origin Setup solution, the relativity vector of our matrix is the 

first frame: (5,12,−20): 

 
3.1.4.3. Applying Origin Setup to the Recorded Movement Matrix 

 

Let us use the same matrix from the live stream as before, we apply for it the Origin 

Setup solution as well and then we will calculate the L2 distance: 

 
3.1.4.4. Applying Origin Setup to the Captured Movement from the Live Stream 

 

Now, we can see that the L2 distance is 0 as both matrices are the same – the 

movement is recognized! 

Of course, in real life situations getting 0 distance (meaning performing the exact 

movement) is hard, for this we have our threshold value. 

 

3.1.5. Optimizations 
When testing, we noticed that even by trying to do the same movement repeatedly, 

we got random and unstable distances. We took a close look and found out our 

RealSense SR300 camera is having a lot of noise in its hand's points recognition. The 

noise was even worse when trying to record small and delicate movements like 

splitting in Blackjack.  

We did not want to give up, so we performed some optimizations to try and 

overcome the noisiness of the camera: 

  Palm 

  𝑃𝑚𝑥 𝑃𝑚𝑦 𝑃𝑚𝑧 

Fram
e 

1 0 0 0 

2 0.5 0 0 

3 1 0 0 

4 1.5 0 0 

5 2 0 0 

6 2 0 0 

7 1.5 0 0 

8 1 0 0 

9 0.5 0 0 

10 0 0 0 

  Wrist 

  Palm 

  𝑃𝑚𝑥 𝑃𝑚𝑦 𝑃𝑚𝑧 

Fram
e 

1 5 12 −20 

2 5.5 12 −20 

3 6 12 −20 

4 6.5 12 −20 

5 7 12 −20 

6 7 12 −20 

7 6.5 12 −20 

8 6 12 −20 

9 5.5 12 −20 

10 5 12 −20 

 
  Palm 

  𝑃𝑚𝑥 𝑃𝑚𝑦 𝑃𝑚𝑧 

Fram
e 

1 0 0 0 

2 0.5 0 0 

3 1 0 0 

4 1.5 0 0 

5 2 0 0 

6 2 0 0 

7 1.5 0 0 

8 1 0 0 

9 0.5 0 0 

10 0 0 0 

  Wrist 

  Palm 

  𝑃𝑚𝑥 𝑃𝑚𝑦 𝑃𝑚𝑧 

Fram
e 

1 20 3 14 

2 20.5 3 14 

3 21 3 14 

4 21.5 3 14 

5 22 3 14 

6 22 3 14 

7 21.5 3 14 

8 21 3 14 

9 20.5 3 14 

10 20 3 14 

 

−(5,12,−20) 

−(20,3,14) 
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• First, we tried averaging the movement matrix. We recorded the same 

movement several times (5-10), hence producing multiple movement matrices. 

Then, we went frame by frame and calculated the average of all the matrices into 

a single movement matrix. This way we thought we will cover errors captured 

falsely by the camera that may be repeating. It did improve the recognition, but 

it was far from being usable. 

• Secondly, we thought of limiting the noise influence by applying weights to the 

calculation of the distance. If we go back to the simple example of moving the 

hand on the 𝑥 axis, both 𝑦 and 𝑧 axes can be completely ignored. So, we could 

multiply the matrices by (1,0,0). So, if the movement matrix is 𝐴, the currently 

captured frames are 𝐵 and the weights vector is 𝑊, the distance would be 

calculated as an L2 distance from each row 𝑎𝑖 ∈ 𝐴 to the corresponding 𝑏𝑖 ∈ 𝐵 

multiplied element-wise by 𝑊: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =∑(𝑎𝑖 − 𝑏𝑖) ⋅ 𝑊

𝑛

𝑖

 

This optimization also made an improvement, but ever so slightly and was still 

not in our standards. 

As the noise and instability of the SR300 were too much, we decided we should 

schedule a meeting with Yaron to show him our results so far. We showed the demo 

and the poor hand recognition by the camera, both visually and metrically. It is 

important to add that we showed the visualizing demo included in the SDK for the 

hand recognition of the SR300, and even when we held our hand still in a well-

lighted room with contrasting background, the hand visualization would jump and 

twist all over, further proving the noises of this camera. We all agreed that we 

should replace the camera again. 

 

3.1.6. Leap Motion Controller 
The replaced camera was the Leap Motion Controller. Again, we needed to interface 

with a new device. The Leap Motion SDK was challenging to install, with many 

versions and updates, it took us time to land on the desired version that fits our 

game the best. 

After successfully interfacing with the Leap Motion Controller, we checked the 

quality of the hand recognition. We were happy to see it was performing 

extraordinary well. The numbers were stable and far better than the previous SR300 

performance. When visualizing the difference in quality was even more noticeable, 

the hands were moving much smoother and there were almost no jumps at all 

between frames. 

We wrote our recording and testing system again for the Leap Motion Camera to 

continue developing and testing our algorithm. 
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3.1.7. Dynamic Time Warping 
We ran the basic tests – trying to recognize big movements, and the results with the 

Leap Motion Controller were very impressive. We did not need the optimizations we 

added for it to recognize the basic big movements like for example wave from the 

right to the left. 

Happy and excited we went on to record and test the blackjack movements: 

• Stand – Move the hand from left to right. 

 

 

 

 
3.1.7.1. Fold Movement 

 

• Hit – With close hand, knock on the table twice. 

 

 

 

 
3.1.7.2. Hit Movement 

 

 

 

 

 

 

 

Move the hand from left 

to right. 

 

Knock on the table. 

x2 
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• Split – With close hand and both the index and middle fingers pointing forward 

and close to each other, open both and slide the hand forward at the same time. 

 

 

 

 
3.1.7.3. Split Movement 

 

• Double down – With close hand, point the index finger forward and hold still for 

a moment. 

 

 

 

 

3.1.7.4. Double Down Movement 
 

These are the movements of the Blackjack game and so these are the movements 

we want to be in our game. 

Now, although the movements were being able to be recognized, when testing out 

some of our attempts were missed by the algorithm. We sure can accept small errors 

but it was too much for our standard of gameplay. After debugging the performance, 

we noticed that If we were to repeat the movement at the same pace, it was 

recognized better, but if we were to do the movement faster or slower in an 

acceptable percentage, it was missed. 

After researching the internet, we found the solution to our problem: DTW – 

Dynamic Time Warping. DTW is an algorithm for measuring similarity between two 

temporal sequences, which may vary in speed. It is commonly used for automatic 

speech recognition, to cope with different speaking speeds. 

Open the fingers and 

slide the hand forward. 
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DTW sounded perfect for our needs. We implemented it into our algorithm when 

comparing two-movement matrices and indeed, the performance was far better. In 

the results chapter section 4.2 we show the impact DTW had on the accuracy of our 

recognition algorithm. 

But, even with DTW we still had a problem. Our first vision of the algorithm was to 

recognize the movement globally, not in a specific time frame, meaning that when it 

is the player's turn, the algorithm will try to recognize each serial of frames in a 

chosen gap to all our movement matrices by our threshold value until some 

movement is recognized. This scenario happens to work only in good testing grounds 

as when debugging we found out we cannot rely on the threshold as our accuracy 

measurement. 

Although the recognition and values were better thanks to the Leap Motion 

Controller and DTW, still we faced a major issue with the threshold value. Because if 

the camera moved accidentally, or perhaps the player moved his chair so he is now 

further or closer to the camera, or maybe the angle of either the camera or the 

player has changed, the threshold value should change accordingly and dynamically, 

something we wanted to avoid. And, if the threshold was to be changed, how will we 

know when the user is not doing any movement? Perhaps he did a movement wrong 

so it should not be recognized. These scenarios are not farfetched and as the 

distance results may vary, we could not count on our threshold value to work live in-

game. We have further dry tested this and came to the same conclusion (the results 

are showcased in the results section 4.3). So, we took another approach on when 

and how to run the algorithm. 

 

3.1.8. Correctness Factor 
The new approach was that when it is the player's turn, he will have a time window 

to perform his move, and when it is done, we assume he did a movement and so the 

closest movement would be chosen. This way we did not have to face a problem 

when the player is not performing any movement and thus the threshold value was 

not needed anymore. 

 
3.1.7.5. Dynamic Time Warping Demonstration 

 



 

17 
 

Now, with the algorithm working in our hands, we lastly thought on edge cases 

regarding errors that might still occur. The issue that came to our minds was a 

situation of misrecognizing a movement, causing the game to perform a false move 

the player did not want to. In our tests, we saw that if we did a movement of the 4 

above, the algorithm recognized it without any problems whatsoever. The issue was 

that if a player performed a hand movement wrong, for example, stopping mid-way, 

it could be recognized as two movements and the wrong one could be chosen. 

To fix the issue, we implemented something we called the Correctness Factor. Each 

player when starting up the game is recording each of the four movements several 

times. All of the recordings will be located in the movements directory so later in-

game the algorithm will calculate the L2DTW distance from all of them. 

The Correctness Factor is now fully replacing the threshold and the top closest 

L2DTW value. The algorithm will consider the top 3 smallest distances – meaning a 

Correctness Factor of 3. If the majority of the 3 are of the same movement (2/3 or 

3/3), we can be sure this is the movement the player did. If each one of the top 3 is 

of different movements, we can be sure the player did the movement wrong, and he 

should repeat it. 

This solution played well in-game and was fast and easy to implement. It overcame 

the issue in what we think is an elegant way. And, more importantly, it made the 

recognition within the time window works very, very good! 

 

3.2. Developing the Game 
 

3.2.1. 3D Graphics 
The first thing we did coming to develop the game was to design and create the 

game environment. It was very important for us to give the player an out-of-the-

ordinary experience and the realism aspect of our virtual casino is a major 

component to make the atmosphere vivid and alive. We will cover the major 3D 

components and their implementation in the game. 

• Static Objects: The static objects as their name suggests are for the scene and 

looks. We took aspiration from looking at different casino photos and so we filled 

our scene with different objects we found capturing the casino atmosphere. We 

of course used a Blackjack table, but also, we added a Roulette table, a Slot 

machine, wall and ceiling patterns, lights, and a casino-style rug to elevate the 

casino vibe. We first used free assets from the Unity Asset Store and end up with 

the following scene: 
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Later the development process, after the interim meeting, the GIP lab was kind 

enough to supply us with high-resolution assets bought from the Unity Asset 

Store and the result is now: 

• Playing Cards: The playing cards have a preset location close to the center of the 

Blackjack table to be at the dealer's location. During the game, the script 

'CardHandler.cs' (we will talk later in this chapter) will create the cards in their 

pre-set location and with each player's orientation will deal the cards. The scripts 

are the only ones who control the cards from this point on. 

• Game's Camera: The game's camera is fixed to the player's direction of looking 

with the Oculus Rift. 

• Hands: The hands are being rendered by the Leap Motion Controller hands 

library. In favor of synchronization, we configured the origin point of the camera 

to be at the beginning of the Blackjack table so the hand's location will be in a 

convenient position during the game. 

• Lighting: To further enrich the feeling and sense of realism, we decided to add 

directional light that is adding shadow to the player's hand and cards. 

 
3.2.1.1. First Version of the Virtual Casino 

 

 
3.2.1.2. Final Version of the Virtual Casino  
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3.2.2. 2D Canvases 
After designing and creating our virtual casino we thought about how the game 

should be played from the user perspective. If we were to play, we thought how will 

it flow nicely, in a fun and interactive way? We decided to add 2D canvases for the 

user interface of our game. Scores, timers, and instructions are needed for the game 

to be more user-friendly and easier to play. The major 2D canvases are: 

• TextPro – A text box of Unity enabling communication with the player, navigating 

it through the game. 

• Scores: Texts for the player scores, how much money they earned or lost. 

• Move Timer: To make it clear for the user when it is his turn and when he should 

interact with the Leap Motion Controller, we added a timer to when he should 

perform his move. The timer is a circle that is filling up from 0% to 100%. 

 
3.2.1.3. Player's Hand Over His Cards with the Hand Shadow  

 

 
3.2.2.1. TextPro Example  

 

 
3.2.2.2. Player Scores Text  

 

 
3.2.2.3. Move Timer  
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• Leap Motion Controller Notifier: An image presented when the Leap Motion 

Controller is not recognized. It was highly needed as our Leap Motion Controller 

cable was unstable and kept disconnecting. 

• Betting Image: An image presenting the current height of the player's bet. We 

took a simple image with white background and used Flood Fill on the alpha 

channel of the image to remove its background. 

 

3.2.3. C# Scripts 
After finishing with the environment and the UI, we started developing the core 

code of our game. The game is written in its entirety in the following scripts: 

• GameManager.cs: Controls most of the game's logic. Within this script, the 

Coroutines of the game are running. These are the loops that run the game flow 

such as dealing cards, betting questions, player movements, and so on. The script 

is importing 'Leap.Unity' from which we were able to get the hand coordinates 

 
3.2.2.4. Leap Motion Controller Notifier Showing the Controller is Unplugged 

 

 
3.2.2.5. Betting Image 
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recognized by the Leap Motion Controller API – LeapServiceProvider. Other than 

that, it is initializing the Oculus Rift and updates the 2D canvases according to the 

game's current state, like instructions and scores. The connection of the Leap 

Motion Controller and Oculus Rift will both be discussed more in chapter 3.3. 

• Player.cs: Saves the cards, points, and bets of each player in every round. 

• CardsManager.cs: Draws a card randomly and sets its orientation according to 

the player's seat at the table. In case it is the dealer's second card, it also flips it. 

• Cards.cs: Controls the game object of every card on the table. The function 

'Update' in it is declared that all cards are advancing in a uniform direction 

(interpolation) from the dealer to the player until a threshold distance from the 

dealer is achieved. If "Split" was performed, the script also moves the card 

accordingly. 

• HandModelManager.cs: A script by Leap Motion that updates the hand 

coordinates in each frame. In it, we inserted our hand recognition algorithm. 

 

3.3. Connecting the Algorithm and Devices 
 

3.3.1. Connecting the Leap Motion Controller 
Coming to connect the devices and algorithm we first decided to connect the Leap 

Motion Controller. The main reason was due to the fact our algorithm depends on it 

and we thought it is best to leave the Oculus Rift to the end as we saw it more as a 

final touch. 

To connect the Leap Motion Controller to our game we installed the addon of the 

controller dedicated to the Unity Engine. With it came a 'GameComponent' of type 

Leap that on it the hands are being rendered. The script 'HandModelManager.cs' 

that comes with the Leap package allows us to sample the hand's coordinates values 

in every frame. As we already discussed in 3.2.1 regarding the hand 3D object, we 

configured the origin point of the Leap Motion Controller to be at the beginning of 

the Blackjack table to mimic the player's position. 

 

3.3.2. Implementing the Hand Movement Recognition 

Algorithm 
Once we finished the connection of the Leap Motion Controller, implementing our 

hand movement recognition algorithm in the game was easy. We used an existing 

script named 'HandModelManager.cs' to do so. In this script, each time the hand's 

coordinates are being updated, we updated the relevant details to our algorithm as 

well using a dedicated API we wrote for that.  
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The API supports both recording movements and recognizing them. The main 

functions in this API are: 

• RecordGesture(): Record a movement. 

• IsRecording(): Return true if a recording is currently being performed. 

• StartRecognizing(): Begin the hand movement recognition process. 

• GetIsNoHandsDetected(): Return true if at the end of the recognition process the 

Leap Motion Controller did not detect any hands. 

• GetLastMove(): Return the last recognized movement. 

During the development of this API, we tried using Leap's API for "Pinch" gesture 

recognition. We wanted to use "Pinch" as an input from the player to approve 

certain actions in our game. Sadly, Leap's detection was not accurate enough, so we 

gave up on this idea. Instead, we used the Oculus Rift's controller for input from the 

player, more of it in the next section. 

 

3.3.3. Connecting the Oculus Rift Headset 
Having both Leap Motion Controller and our hand movement recognition algorithm 

working in our game, we lastly wanted to connect the Oculus Rift Headset. At first, 

we had trouble handling the Oculus Rift as it required a dedicated GPU, and all of us 

had only integrated GPU on our computers. Luckily, we found a computer with the 

right hardware to support the Oculus and it made our life much easier (we were not 

able to come to the lab due to the closure in the hard Coronavirus times). 

After finding the computer, we installed the Oculus Rift's Unity addon and got its API. 

We configure the game's camera to aim at the direction of the Oculus Rift direction 

and we got the desired result: a virtual casino in virtual reality! 

It was a cool experience, but we had a problem with our 2D canvas. We first made 

the canvas stick to the player's screen, meaning it will always be visible no matter 

the direction the player is looking. It made a lot of sense to the scores and 

instructions text be this way, but Unity's engine had problems making the text on the 

canvas vibrate a lot which made our eyes hurt and an overall unpleasant experience, 

to say the least from playing. To fix this issue, we simply moved the 2D canvasses to 

a static location in world space at the end of the Blackjack table. 
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Then, as we explained at the end of section 3.3.2, we wanted to replace the "Pinch" 

recognition mechanism as it performed poorly. We installed another package named 

OVR which enables the usage of the Oculus Rift's controller. With it, we configured 

the main button – 'Button.One' to be our OK input and we further used the up and 

down arrows ('Button.DpadUp' and 'Button.DpadDown') to increase or decrease the 

money in the betting stage.  

 

 

  

 
3.3.3.1. Oculus Rift Controller 
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4. Results 

Our way of work on researching the algorithm was to perform dry 

and wet tests. First, we implemented and ran our ideas in Python 

on recorded movements and visualize the results – the dry tests. 

Only then, when we saw good results, we would take the idea to 

test in our testing system to see actual live results – the wet tests. If 

the wet tests performed as expected, we kept our dry test results to 

showcase here. 

4.1. Intel RealSense SR300 Noises 
 

Sadly, we did not save any of our logs. The noisy data by the SR300 camera was 

presented and shown live to Yaron and we all agreed we should exchange the SR300 

in favor of the Leap Motion Controller. We felt it is important to mention it in the 

report as presenting the noisy data would have been nice. 

We ask the reader to believe in our tests and work, keeping in mind that replacing 

the device cost in rewriting the algorithm and testing system from scratch for the 

new Leap Motion Controller.  

 

4.2. L2DTW Impact 
 

We implemented L2DTW and L2 in our Python lab script. For each one of the 

movement matrices, we generated 25 additional matrices of different lengths and 

values using uniform distribution to randomly increase or decrease by given 

percentage.  

Let us mark the original matrix as 𝑀𝑛×63. Our inflation configuration to generate a 

matrix 𝑀𝑛′×63
′  from it was: 

• Frames inflation 𝑓 = 0.5, is effecting the generated movement's length – the 

number of frames. So, the generated matrix length 𝑛′ is equal to: 

𝑛′ = 𝑈(𝑛 ⋅ (1 − 𝑓), 𝑛 ⋅ (1 + 𝑓)) 

With 𝑓 = 0.5 we mean that for us the movement should still be recognized if its 

frames length is between 0.5 − 1.5 of the original length. 

• Values inflation 𝑣 = 4, is affecting the generated movements values. For each 

value 𝑚𝑖,𝑗 in the movement matrix, the generated value 𝑚𝑖′,𝑗′
′  for our generated 

matrix would be equal to: 
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𝑚𝑖′,𝑗′
′ = 𝑈(𝑚𝑖,𝑗 ⋅

1

𝑣
,𝑚𝑖,𝑗 ⋅ 𝑣) 

Both 𝑖′, 𝑗′ are relative to 𝑖, 𝑗 according to the generated new length 𝑛′: 

𝑖′ = ⌊
𝑛

𝑛′
⋅ 𝑖⌋ 

𝑗′ = ⌊
𝑛

𝑛′
⋅ 𝑗⌋ 

With 𝑣 = 4 we mean that from our experience with our live testing system, the 

values can be between 0.25 − 4 times of their original value and still make sense 

to be the same movement. 

For each of the 25 generated movements, we calculated the distance from the 

original one using L2 and L2DTW. The thresholds for each movement were chosen 

using our testing system live with the Leap Motion Controller to see what works well 

with each movement. To simplify the graph, we divided the distance (L2 and L2DTW) 

by the threshold so each threshold will be equal to 1. The results were strongly in 

favor of DTW without leaving a doubt for all 4 movements:  

After seeing the impressive results, we implemented the algorithm in our testing 

system and saw the improvement in real time using the Leap Motion Controller as 

was told in section 3.1.7. 

 

 

  

  
4.2.1. L2DTW Against L2 Tests Results 
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4.3. Correctness Factor Against Threshold 
 

We will first show dry tests we ran in our Python lab script showcasing why the 

threshold approach cannot be trusted. In this test, we averaged the L2DTW distance 

of all the 25 generated movements to each of our recorded movements: 

The grey circles are distance results, the darker the circle seems means more 

calculations yielded the same distance. The blue color is the average of all the 25 

distance calculations. We remind you that these 25 movements were generated by 

us and they are not a representation of the real-life scenarios. And, even with these 

highly accurate generated movements, apart from "Stand", all the movements were 

not alone under their threshold value, meaning there is a high chance of miss-

recognizing a movement. You can argue that the threshold should be changed and 

fine-tuned for each movement more but changing the threshold for one will harm 

the other and for more reasons explained in section 3.1.7, it is easy to see why the 

threshold approach is problematic. Moreover, in our testing system, the same 

problem remains, and it is much more noticeable testing live. It was too random to 

put the finger on a threshold value that was not hitting more than one movement. 

Too tight will not recognize a lot, too far will miss-recognize a lot. 

So, as said in section 3.1.8 we decided to go with the Correctness Factor approach. 

We ran a few recognitions in our Python lab and seeing the good behavior from the 

algorithm we decided to go right away to test it in our testing system. We will 

present an example of a recognition graph here: 

  

  
4.3.1. Average of 25 Generated Movements Against All Movements Tests Results 
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All the distance values are presented as bars, the top 3 lowest bars are the closest 

distances. So, a Correctness Factor of 3 is enough to fix our issue. You can see for 

example in the "Split" bars graph, the third highest is not a "Split" but "Double 

Down", yet still, we have a major of 2 so we would have recognized it well. 

In real-time when testing it live with the Leap Motion Controller, this approach 

worked even better, and hence we used it in our game. 

  

  

  
4.3.2. Example for Recognition Results 
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5. Conclusions 

After a lot of attempts and failures along the way, our vision for 

BlackjackVR came to life and we are very proud and happy with the 

results. The game is fun, enjoyable and we learned a lot from the 

process of developing it. From the research of our hand movement 

recognition algorithm to the development of the game in Unity, it 

was an adventure we will not forget. 

5.1. Hand Movement Recognition Algorithm 
 

• Our naïve numerical approach for the algorithm works. With DTW and a different 

approach from a threshold of recognition, we were able to make the best out of 

it without compromising on performance. 

• Although it did work, we will not recommend this algorithm for more than 8-10 

movements, as this algorithm is not time efficient.  

• With that said, the algorithm does have its positives: it is very easy to understand 

and the implementation of it in any system working with a Leap Motion 

Controller is quick and simple. 

 

5.2. BlackjackVR Game 
 

• Unity was perfect for our needs. It is very user-friendly, and the large and 

professional community of it helped our vision to become a reality – a virtual 

reality. 

• Both Oculus Rift and Leap Motion Controller have packages dedicated to Unity 

and the connection between them was nice and easy. 

• We will recommend Unity to every developer looking to develop a virtual reality 

product. 
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6. Recommendations 

Our recommendations are more of a future work regarding our 

project. We believe it can be pushed further and if it does, we will 

be happy to know. 

• We think our numerical algorithm can be replaced with a Deep Learning model. 

Just like speech recognition is now commonly recognized by DL, we think 

movement recognition can be done as well. The coordinates of the hand 

provided by the Leap Motion Controller could be used as an input to a Sequence-

to-Sequence type model so the recognition can be more accurate, fast, and able 

to support much more movements, removing the Oculus Rift's controller for the 

bidding stage. 

• Perhaps, Leap Motion Controller can be dropped in favor of the Oculus Quest 

which has a new hand recognition as well. For a player, this will make the game 

cheaper and more comfortable to use. 

• Game-wise, we would like Unity to resolve the text on screen vibration issue so 

the player will not need to look for a specific place for the scores and other 

information. 

• Moreover, we think the game can be made into a multiplayer game, enriching 

the experience of the player, making the casino come to life. 

• Last but by no means least, graphics-wise, we know that for today's standard our 

game is not as sharp looking. So of course, this can be improved as well.  
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7. Literary Sources 
 

7.1. General Information 
 

Unity 
https://en.wikipedia.org/wiki/Unity_(game_engine) 

Oculus Rift 
https://en.wikipedia.org/wiki/Oculus_Rift 

Leap Motion 
https://en.wikipedia.org/wiki/Leap_Motion 

Dynamic Time Warping 
https://en.wikipedia.org/wiki/Dynamic_time_warping 

 

7.2. Image Links 
 

2.1.1. Unity Logo 
https://www.unity.com 

2.2.1. Oculus Rift 
https://www.amazon.com/Oculus-Rift-Virtual-Reality-Headset-pc/dp/B00VF0IXEY 

2.3.1. Leap Motion Controller 
https://www.robotshop.com/en/leap-motion-controller.html 

3.1.1.2. Leap Motion Controller Hand Structure 
https://developer-archive.leapmotion.com/documentation/csharp/devguide/Leap_Overview.html 

3.1.1.3. Leap Motion Controller Hand Hierarchy 
https://blog.leapmotion.com/getting-started-leap-motion-sdk/hand-hierarchy/ 

3.1.2.1. Intel RealSense D435 
https://www.bhphotovideo.com/c/product/1432415-REG/intel_82635awgdvkprq_realsense_d435_webcam.html 

3.1.3.1. Intel RealSense RS300 
https://he.aliexpress.com/i/4000073134324.html 

3.1.7.5. Dynamic Time Warping Demonstration 
https://en.wikipedia.org/wiki/Dynamic_time_warping 

3.3.3.1. Oculus Rift Controller 
https://docs.unity3d.com/550/Documentation/Manual/OculusControllers.html 
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8. Appendices 
 

We decided to join our Python Lab script. Each of the plots seen in this report was 

produced fully by the functions in this script. It is highly documented so we will not 

add additional explanations here. 

We ran the script using Python 3.7 interpreter and PyCharm. The requirements are 

'numpy' and 'matplotlib'. The script is using recorded matrices expected to be in a 

directory named 'recorded_movements'. 

 

""" 

                                                BlackjackVR's Python Lab 

                                    A movement recognition algorithm research script. 

 

 

Instructions: 

    To run the script, make sure the recorded movements are located in a directory named 'recorded_movements' and  

    that all 4 movements are there. Comment and uncomment the calls to the tests from the 'main' function. 

 

Requirements: 

    numpy>=1.20.1 

    matplotlib>=3.3.4 

 

Authors: 

    Ofek Gutman 

    Eduardo Abramoff 

    Guy Lecker 

""" 

from typing import List, Tuple, Dict 

import os 

import random 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Paths: 

SCRIPT_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)))  # Script path is set automatically. 

OUTPUT_PATH = SCRIPT_PATH  # To edit the script's output, defaulted to the script's location. 

 

# Amount of matrices to generate, meaning amount of tests to run: 

GENERATED_MOVEMENTS_AMOUNT = 25 

 

# Used main and secondary colors in the plots: 

COLOR_1 = "royalblue" 

COLOR_2 = "coral" 

 

 

def insure_reproducible_results(seed: int): 

    """ 

    To get reproducible results to match our report this method seeds random and numpy.random. 

    :param seed: The seed's value. 

    """ 

    random.seed(seed) 

    np.random.seed(seed) 

 

 

class Directories: 

    """ 

    Output directories names to use. 

    """ 

    PLOTS = "plots"  # Output directory for the plots. 

    RECORDED_MOVEMENTS = "recorded_movements"  # Original recorded matrices expected to be located here.       

    GENERATED_MOVEMENTS = "generated_movements"  # Output directory for generated movement matrices. 

 

    @staticmethod 

    def create_directory(path: str): 

        """ 

        Create the directories involved in the given path. 

        :param path: The path to create the directories. 

        """ 

        os.makedirs(path, 

                    exist_ok=True) 
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class Movements: 

    """ 

    Tested movements names and their thresholds value of recognition. 

    """ 

    DOUBLEDOWN = ("doubledown", 360000) 

    HIT = ("hit", 170000) 

    SPLIT = ("split", 250000) 

    STAND = ("stand", 610000) 

 

    @staticmethod 

    def to_list() -> List[Tuple[str, int]]: 

        """ 

        Get all movements tuples as a list. 

        :return: The movements list. 

        """ 

        return [ 

            attribute_value 

            for attribute_name, attribute_value in Movements.__dict__.items() 

            if (not (attribute_name.startswith('__') and attribute_name.endswith('__')) 

                and isinstance(attribute_value, tuple)) 

        ] 

 

 

class MovementRecognitionFactory: 

    """ 

    Functions library for movements recognition methods. 

    """ 

 

    @staticmethod 

    def generate_movement_matrix(original_matrix: np.ndarray, frames_inflation: float, 

                                 values_inflation: float) -> np.ndarray: 

        """ 

        Generate a movement matrix from a given original matrix. The frames and values inflation can be adjusted as  

        how accurate the generated copy will be. 

        :param original_matrix: The matrix to generate a new matrix from. 

        :param frames_inflation: Percentage of how much the frames amount can be larger or smaller than the    

                                 original. 

        :param values_inflation: Multiplication of how much the values can be larger or smaller than the original. 

        :return: The new generated movement matrix. 

        """ 

        # Initialize the randomize matrix: 

        randomize_matrix_shape = (int(np.random.uniform( 

            low=original_matrix.shape[0] * (1 - frames_inflation), 

            high=original_matrix.shape[0] * (1 + frames_inflation), 

            size=(1,))), 63) 

        randomize_matrix = np.zeros(shape=randomize_matrix_shape) 

 

        # Prepare for running: 

        original_matrix_index = 0 

        step = original_matrix.shape[0] / randomize_matrix.shape[0] 

        randomize_matrix = randomize_matrix.flatten() 

        original_matrix = original_matrix.flatten() 

 

        # Start filling the randomize matrix: 

        for random_matrix_index in range(randomize_matrix_shape[0] * 63): 

            randomize_matrix[random_matrix_index] = float(np.random.uniform( 

                low=original_matrix[int(original_matrix_index)] * (1 / values_inflation), 

                high=original_matrix[int(original_matrix_index)] * values_inflation, 

                size=(1,) 

            )) 

            original_matrix_index += step 

 

        # Return the randomized matrix: 

        randomize_matrix.resize(randomize_matrix_shape) 

        return randomize_matrix 

 

    @staticmethod 

    def l2(a: float, b: float): 

        """ 

        Perform L2 distance with the square root. 

        :param a: Number a. 

        :param b: Number b. 

        :return: (a - b) ^ 2 

        """ 

        return (a - b) ** 2 

 

    @staticmethod 

    def l2_distance(recorded_movement: np.ndarray, movement: np.ndarray) -> float: 

        """ 

        Calculate the L2 distance between the movement matrices given to the shortest frame length. 

        :param recorded_movement: The recorded original matrix - A. 

        :param movement: The generated matrix - B. 

        :return: sum_i((a_i - b_i) ^ 2) where i = len(A) > len(B) ? len(B) : len(A) 

        """ 

        # Prepare for calculating the distance: 

        recorded_movement = recorded_movement.flatten() 

        movement = movement.flatten() 

        limit_index = min(recorded_movement.shape[0], movement.shape[0]) 

        distance = 0 

 

        # Calculate the distance: 

        for i in range(limit_index): 

            distance += MovementRecognitionFactory.l2(recorded_movement[i], movement[i]) 

        return distance 
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    @staticmethod 

    def l2dtw_distance(recorded_movement: np.ndarray, movement: np.ndarray, w: int) -> float: 

        """ 

        Calculate the L2 distance between the movement matrices given using the DTW algorithm. 

        :param recorded_movement: The recorded original matrix - A. 

        :param movement: The generated matrix - B. 

        :param w: Window size. Defaulted to 10 as in our game. 

        :return: The L2DTW distance between A and B. 

        """ 

        # Prepare the DTW matrix: 

        recorded_movement = recorded_movement.flatten() 

        movement = movement.flatten() 

        n = recorded_movement.shape[0] 

        m = movement.shape[0] 

        w = max(w, abs(n - m)) 

        dtw_matrix = np.ones(shape=(n, m)) * np.inf 

        dtw_matrix[0][0] = 0 

        for i in range(1, n): 

            for j in range(max(1, i - w), min(m, i + w + 1)): 

                dtw_matrix[i][j] = 0 

 

        # Start the DTW algorithm: 

        for i in range(1, n): 

            for j in range(max(1, i - w), min(m, i + w + 1)): 

                cost = MovementRecognitionFactory.l2(recorded_movement[i], movement[j]) 

                dtw_matrix[i][j] = cost + min( 

                    dtw_matrix[i - 1][j], 

                    dtw_matrix[i][j - 1], 

                    dtw_matrix[i - 1][j - 1] 

                ) 

        return dtw_matrix[n - 1][m - 1] 

 

 

class Tests: 

    """ 

    Functions library for dry tests to run from the main function. 

    """ 

 

    @staticmethod 

    def generate_movement_matrices(frames_inflation: float, values_inflation: float): 

        """ 

        Generate movement matrices as much as the global parameter 'GENERATED_MOVEMENTS_AMOUNT' equal to. The   

        generated movements will be located at OUTPUT_PATH/Directories.GENERATED_MOVEMENTS 

        :param frames_inflation: Percentage of how much can the frame number increase or decrease. 

        :param values_inflation: Percentage of how much can the values increase or decrease. 

        """ 

        # Prepare to generate: 

        insure_reproducible_results(seed=100) 

        Directories.create_directory(path=os.path.join(OUTPUT_PATH, Directories.GENERATED_MOVEMENTS)) 

        file_suffix = ".1.csv" 

        movements_list = Movements.to_list() 

 

        # For each original movement matrix, generate 'GENERATED_MOVEMENTS_AMOUNT' matrices: 

        for movement_name, _ in movements_list: 

            # Load the original matrix: 

            original_matrix = np.genfromtxt(os.path.join(SCRIPT_PATH, Directories.RECORDED_MOVEMENTS, 

                                                         movement_name + file_suffix), 

                                            delimiter=",") 

            # Generate: 

            for i in range(GENERATED_MOVEMENTS_AMOUNT): 

                matrix = MovementRecognitionFactory.generate_movement_matrix(original_matrix=original_matrix, 

                                                                             frames_inflation=frames_inflation, 

                                                                             values_inflation=values_inflation) 

                np.savetxt(os.path.join(OUTPUT_PATH, Directories.GENERATED_MOVEMENTS, 

                                        movement_name + str(i) + ".csv"), 

                           matrix, 

                           delimiter=",") 

 

    @staticmethod 

    def l2_vs_l2dtw(): 

        """ 

        Run the test comparing the recognition of L2 against L2DTW. 

        """ 

        print("L2 vs L2DTW") 

        Directories.create_directory(path=os.path.join(OUTPUT_PATH, Directories.PLOTS)) 

        file_suffix = ".1.csv" 

        for movement_name, threshold in Movements.to_list(): 

            # Load original matrix: 

            original_matrix = np.genfromtxt(os.path.join(SCRIPT_PATH, Directories.RECORDED_MOVEMENTS, 

                                                         movement_name + file_suffix), 

                                            delimiter=",") 

            # Load generated matrices: 

            matrices = []  # type: List[np.ndarray] 

            for matrix_file in os.listdir(os.path.join(OUTPUT_PATH, Directories.GENERATED_MOVEMENTS)): 

                if movement_name in matrix_file: 

                    matrices.append(np.genfromtxt(os.path.join(OUTPUT_PATH, Directories.GENERATED_MOVEMENTS, 

                                                               matrix_file), 

                                                  delimiter=",")) 

            # Calculate distances: 

            l2_distances = []  # type: List[float] 

            l2dtw_distances = []  # type: List[float] 

            for matrix in matrices: 

                l2_distances.append(MovementRecognitionFactory.l2_distance(recorded_movement=original_matrix, 

                                                                           movement=matrix) / threshold) 

                l2dtw_distances.append(MovementRecognitionFactory.l2dtw_distance(recorded_movement=original_matrix, 

                                                                                 movement=matrix, 

                                                                                 w=10) / threshold) 
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            # Plot the results: 

            figure, axes = plt.subplots()  # type: plt.Figure, plt.Axes 

            axes.grid() 

            axes.plot(np.arange(1, len(matrices) + 1), l2dtw_distances, 

                      marker='o', 

                      color=COLOR_1, 

                      label="L2DTW") 

            axes.plot(np.arange(1, len(matrices) + 1), l2_distances, 

                      marker='o', 

                      color=COLOR_2, 

                      label="L2") 

            axes.plot(np.arange(1, len(matrices) + 1), np.ones(shape=(len(matrices, ))), 

                      dashes=[6, 3], 

                      color="black", 

                      label="Threshold") 

            axes.legend() 

            axes.set_title("L2DTW vs L2 for {} (Threshold = {})".format(movement_name.capitalize(), threshold)) 

            axes.set_xlabel("Movement Tests") 

            axes.set_ylabel("Distance Values") 

            plt.show() 

            figure.savefig(os.path.join(OUTPUT_PATH, Directories.PLOTS,  

                                        "l2dtw_vs_l2_for_{}.png".format(movement_name))) 

            # Log the results: 

            print(movement_name) 

            print("l2: {}".format(l2_distances)) 

            print("l2dtw: {}".format(l2dtw_distances)) 

            print() 

 

    @staticmethod 

    def l2dtw_vs_all_movements(): 

        """ 

        Run the test comparing the recognition of L2DTW of a movement on all recorded movements to see the average  

        of results among all of them. 

        """ 

        print("L2DTW vs All Movements") 

 

        # Prepare to run: 

        Directories.create_directory(path=os.path.join(OUTPUT_PATH, Directories.PLOTS)) 

        file_suffix = ".1.csv" 

        movements = Movements.to_list() 

 

        # Load the original movements: 

        original_movements = {}  # type: Dict[Tuple[str, int], np.ndarray] 

        for movement in movements: 

            # Load original matrix: 

            original_movements[movement] = np.genfromtxt(os.path.join(SCRIPT_PATH, Directories.RECORDED_MOVEMENTS, 

                                                                      movement[0] + file_suffix), 

                                                         delimiter=",") 

 

        # For each movement, load the generated movement and compare distances to all 4 original movements: 

        for generated_movement_name, _ in movements: 

            # Initialize the distances dictionary to hold the results: 

            l2dtw_distances = {}  # type: Dict[str, List[float]] 

            # Go though the generated movements directory: 

            for generated_movement_file in os.listdir(os.path.join(OUTPUT_PATH, Directories.GENERATED_MOVEMENTS)): 

                # Check its a matrix of the current movement being checked: 

                if generated_movement_name not in generated_movement_file: 

                    continue 

                # Load the generated movement: 

                generated_sample = np.genfromtxt(os.path.join(OUTPUT_PATH, Directories.GENERATED_MOVEMENTS, 

                                                              generated_movement_file), 

                                                 delimiter=",") 

                for ((movement_name, threshold), original_matrix) in original_movements.items(): 

                    # Calculate distance: 

                    if movement_name not in l2dtw_distances: 

                        l2dtw_distances[movement_name] = [] 

                    l2dtw_distances[movement_name].append( 

                        MovementRecognitionFactory.l2dtw_distance(recorded_movement=generated_sample, 

                                                                  movement=original_matrix, 

                                                                  w=10) / threshold 

                    ) 

            # Plot the results: 

            figure, axes = plt.subplots()  # type: plt.Figure, plt.Axes 

            axes.grid() 

            for movement_name, distances in l2dtw_distances.items(): 

                axes.scatter(x=[movement_name] * len(distances), 

                             y=distances, 

                             color="black", 

                             alpha=0.1) 

            axes.plot(l2dtw_distances.keys(), [sum(distances) / len(distances) 

                                               for _, distances in l2dtw_distances.items()], 

                      marker='o', 

                      color=COLOR_1) 

            axes.plot(np.arange(len(movements)), np.ones(shape=(len(movements, ))), 

                      dashes=[6, 3], 

                      color="black", 

                      label="Threshold") 

            axes.set_title("Average of {} {}s Against All " 

                           "Movements".format(len(l2dtw_distances[generated_movement_name]), 

                                              generated_movement_name.capitalize())) 

            axes.set_xlabel("Movement Names") 

            axes.set_ylabel("Distance Values") 

            plt.show() 

            figure.savefig(os.path.join(OUTPUT_PATH, Directories.PLOTS, 

                                        "{}_average_of_{}.png".format(generated_movement_name, 

                                                                      len(l2dtw_distances[generated_movement_name]) 

                           ))) 

            # Log the results: 

            print("{} against:".format(generated_movement_name)) 

            print(l2dtw_distances) 

            print() 
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    @staticmethod 

    def recognize(matrix_file: str): 

        """ 

        Run the recognition algorithm on the given generated sample from the given directory (noisy or not). 

        :param matrix_file: The movement matrix file name including the '.csv'. 

        """ 

        # Prepare to run: 

        Directories.create_directory(path=os.path.join(OUTPUT_PATH, Directories.PLOTS)) 

        movements = Movements.to_list() 

        l2dtw_distances = {}  # type: Dict[str, float] 

 

        # Load the original movements: 

        original_movements = {}  # type: Dict[Tuple[str, int], np.ndarray] 

        for movement in movements: 

            i = 0 

            for movement_file in os.listdir(os.path.join(SCRIPT_PATH, Directories.RECORDED_MOVEMENTS)): 

                if movement[0] not in movement_file: 

                    continue 

                i += 1 

                original_movements[(movement[0] + " " + str(i), movement[1])] = np.genfromtxt( 

                    os.path.join(SCRIPT_PATH, Directories.RECORDED_MOVEMENTS, 

                                 movement_file), 

                    delimiter="," 

                ) 

 

        # Load the matrix to recognize: 

        unrecognized_matrix = np.genfromtxt(os.path.join(OUTPUT_PATH, Directories.GENERATED_MOVEMENTS,  

                                                         matrix_file), 

                                            delimiter=",") 

 

        # Calculate distances against all recorded movements: 

        for ((movement_name, threshold), original_matrix) in original_movements.items(): 

            l2dtw_distances[movement_name] = MovementRecognitionFactory.l2dtw_distance( 

                recorded_movement=original_matrix, 

                movement=unrecognized_matrix, 

                w=10 

            ) 

 

        # Plot the results: 

        figure, axes = plt.subplots()  # type: plt.Figure, plt.Axes 

        axes.grid() 

        axes.bar(l2dtw_distances.keys(), l2dtw_distances.values(), 

                 color=COLOR_1) 

        plt.xticks(np.arange(len(l2dtw_distances)), l2dtw_distances.keys(), 

                   rotation='vertical') 

        axes.set_title("Recognition Results for {}".format(matrix_file.split('.')[0].capitalize())) 

        axes.set_xlabel("Recorded Movement Files") 

        axes.set_ylabel("Distance Values") 

        plt.show() 

        figure.savefig(os.path.join(OUTPUT_PATH, Directories.PLOTS, 

                                    "recognition_of_{}.png".format(matrix_file.split('.')[0]))) 

 

 

def main(): 

    """ 

    The main function the script is running. Comment and uncomment to run tests and re-generate the matrices. 

    """ 

    # Generate the movements - notice it is seeding for reproducible results (to make it random, comment line 205). 

    Tests.generate_movement_matrices(frames_inflation=0.5, 

                                     values_inflation=4) 

 

    # Call the tests: 

    Tests.l2_vs_l2dtw() 

    Tests.l2dtw_vs_all_movements() 

    for matrix_file in ["doubledown0.csv", "hit0.csv", "split0.csv", "stand0.csv"]: 

        Tests.recognize(matrix_file=matrix_file) 

 

 

if __name__ == '__main__': 

    main() 

 


