

Object Glorification

By Shani Bidgary and Shani Bar-Gera

Supervisors: Boaz Sternfeld and Yaron Honen

Spring 2021

2

Table of Contents

Introduction…………………………………..………………….………...………………………....3

Application Overview……………………………………………....……...…………………..…....4

Technologies and Platforms……………………………………………...………………………...7

Development Process…………………………………………….……...……………………....…9

Stage 1 - Object Segmentation………………………………...…………………..……..9

 Mask-R-CNN……………………………..…………………………….…...…..….9

 TensorFlow……………………………….……………………...………...……....12

 Grabcut…………………………………….……………….…………………..…..14

Stage 2 - Connecting the Segmentation Script to an App……………………...….…..17

Stage 3 - Creating the UI………………………………………………………...………..18

Future Work…………………………………………………………………………...……………..19

Conclusion………………………………………………………………………....………………...20

References………………………………………………………………………...………………...21

3

Introduction

The goal of the project was to create an application that glorifies a chosen object within a

given image. After the glorification, the user would have some sort of ability to “play” with the

object by performing various manipulations on the object.

We decided to achieve this goal by creating an Android application that allows users to

select an image, or to take one, mark an object in that given image and perform the

glorification process. In this case , glorifying means blurring the background and magnifying

the object. After the object is glorified the user can perform manipulations on the object such

as scaling and rotating. We also decided to add a bonus option - allowing the user to select

two objects at once.

To achieve our goal we need first to find a segmentation algorithm to segment the image

and by that separate the desired object from the background. After that, we need to find a

way to connect that segmentation algorithm to an Android application. And lastly , we need to

create a simple UI for the Android application.

4

Application Overview

1. Opening Page

2. Select Image - the user can choose between uploading an image from the gallery or

taking an image with the camera

3. Mark an Object - the user can mark with their fingers the general area the desired

object is in the photo

5

4. Clear Mark - if the user wishes they can clear the mark and try again

5. Glorify the Object - by pressing on the star button the Python script is called and the

image processing is occurring. A new image will be displayed with the object

magnified and a blurred black and white background. To undo the changes the user

can use the ‘clear mark’ button (X button).

6

6. Manipulate Object - the user can magnify the selected object with their fingers, rotate

the object with the bar, and save the entire image with the save button.

7

Bonus: Two objects - the user can perform the whole process also on two objects

simultaneously. After the glorification, the user can choose which object to manipulate with

radio buttons.

8

Technologies and Platforms

● Python 3

The image processing for this application was written with

Python. The Python script receives an image and a rectangle that

the user marks and includes the desired object, and returns an

object and a blurred black and white background.

● OpenCV

The image processing includes segmenting the object with the

GrabCut algorithm, blurring the background, changing it to black

and white, and magnifying the segmented object. All these were

done with the OpenCV package offered by Python.

● Android Studio - native

Android Studio is an IDE for Google's Android operating

system, designed specifically for Android development. We

used the native Gradle-based version.

● Gradle

Gradle is a build automation tool for multi-language software

development. It supports different languages, we used Java.

Gradle uses DAGs to determine the order in which tasks can

be run, and provides dependency management. Gradle is

distributed as an open-source software.

● Chaquopy plugin

Chaquopy is a plugin for Android Studio's Gradle-based build

system. It provides a simple API for the Android developer to

include Python components in an Android app.

https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Android_software_development

9

The Development Process

In order to create our app we separated our development process into three main parts:

1. Segmenting an image with Python

2. Connecting the segmentation to the Android app

3. Creating the app’s UI

We will now talk about each stage, our thought process, challenges, and resolutions from

each part.

Stage 1 - Object Segmentation

Object segmentation is the process of segmenting an image into portions of smaller size

images. Meaning, the computer will be able to tell how many objects there are in the image

and to tell for each object if it corresponds to the foreground or the background.

In order to glorify an object from an image, we wanted to find a good segmentation algorithm

to catch that object and separate it from the background. We read about various

segmentation algorithms and studied and tested three main ones: Mask-R-CNN, Tensorflow,

and Grabcut.

Mask-R-CNN (1st attempt)

Mask R-CNN is a Region-Based Convolutional Neural Network (CNN). It detects objects in

an image and generates a segmentation mask for each one of them.

There are two types of Mask R-CNN:

1. Semantic Segmentation - classifies each pixel into a fixed set of categories without

differentiating object instances.

2. Instance Segmentation - deals with the correct detection of each object in an image

while also precisely segmenting each one of the instances.

10

What is CNN?

Convolutional Neural Network (CNN). Artificial neural networks are used in image

recognition and processing.

CNN Architecture consists of three main layers:

1. Convolutional layer  - uses filters and kernels to create a feature map from the

image.

2. Pooling layer  - downsizes the feature map by summarizing the presence of features

in patches.

3. Fully connected layer -  connects every neuron in one layer to every neuron in

another layer.

When combining these layers the neural network can learn how to recognize the desired

object in the input image.

A simple CNN architecture works well for one object but isn’t optimal when multiple objects

are wanted. In this case, we will want a more complex algorithm like R-CNN.

What is R-CNN?

R-CNN utilizes rectangles across the object regions and then evaluates all of the regions of

interest independently to classify them into the proposed class.

https://viso.ai/deep-learning/image-recognition/
https://viso.ai/deep-learning/image-recognition/

11

Fast R-CNN

Fast R-CNN is an improved version of R-CNN architectures that has two stages:

1. Region Proposal Network- a neural network that proposes multiple objects within a

particular image

2. Fast R-CNN - extracts features using Regions of Interest from each rectangle and

performs classification and regression

How Does Mask-R-CNN Work?

Mask R-CNN is an extension of Faster R-CNN. A new branch for predicting an object mask

was added in parallel to the existing branch for bounding box recognition.

Should We Use It?

We tried to find implementations of Mask-R-CNN online but had a lot of problems due to

version conflicts of packages of the various implementations. After many attempts to find a

proper implementation, we decided to not use this method for our application.

12

TensorFlow (2nd attempt)

What is TensorFlow?

Tensorflow is an open-source library for numerical computation and machine learning. It

involves Machine Learning and Deep Learning models and algorithms.

The computations of Tensorflow use tensors, which are vectors/matrices of n-dimensions

that represent data. TensorFlow has many applications like voice recognition, series

prediction, and the application that is relevant for our project - image recognition.

Image Recognition with TensorFlow

Deep Learning gets some images that are labeled manually and trains the system to identify

them. After, the system will be able to identify other examples that are not previously shown.

The advantage of TensorFlow is that it helps to identify and categorize different objects

within one image.

Should We Use It?

We Tested TensorFlow of various images to see if it fits the needs of our application.

Here are some examples of our testing attempts:

13

While it seemed to work for the more popular objects like dogs, cars, and birds it was not

very well trained and other objects like the chair or the screws. We understood that in order

to use this algorithm we need to have a large number of photos to train the program so a

wider range of objects could be segmented. We preferred an app that works well straight

away so we decided to not use TensorFlow for our segmentation algorithm.

14

Grabcut (3rd attempt)

What is Grabcut?

Grabcut is an image segmentation method based on graph cuts that segments an image into

the foreground and background. It estimates the color distribution of the image using GMM

(Gaussian mixture model).

The algorithm receives a rectangle on an image that includes the selected objects. The area

lying outside of the rectangle is defined as the background and the algorithm defines the

area in the rectangle as a color distribution model using GMM. Every pixel is connected to

one another by a gradient and each one is given one of three labels: foreground,

background, or unknown. Neighboring pixels of similar color distribution are likely to have the

same label.

Then, the algorithm creates a weighted graph which is solved by using the Min-Cut

algorithm. The vertices are the pixels in the image, and neighboring vertices are linked with

edges whose weights are defined by color similarity. Additional two nodes are added,

Source node and Sink node. Every foreground pixel is connected to Source node and every

background pixel is connected to Sink node. The weights of these edges are defined by the

probability of a pixel being foreground or background. If there is a large difference in pixel

color, the edge between them gets a lower weight. Finally, iterations of Min-Cut algorithm

are used to define a label for each pixel. The pixels that are connected to the source node

are labeled as foreground and those connected to the sink node are labeled as background.

15

Should We Use It?

We tested Grabcut on various images:

16

The Grabcut testing seemed to show much better results, as seen in the images above, than

Tensorflow. It has many simple and easy Python implementations that we found online

unlike Mask-R-CNN. It works for all pictures and does not require any training, has a decent

runtime, and light in memory consumption. Therefore, we chose Grabcut as our

segmentation algorithm.

Creating the Segmentation Script

After choosing the Grabcut algorithm we improved the Python script to fit our needs and by

using the OpenCV package we blurred the background, turned it to be black and white, and

enlarged the returned object. In doing this we faced the challenge of separating the object

from the background that we eventually solved with the use of masks.

The improved script’s results:

17

Stage 2 - Connecting the Segmentation Script To an App

After creating a segmentation script in Python we wanted to connect the script to an Android

app. This proved to be a challenge since we didn’t find an easy default option to run Python

scripts in Android apps that are written in Java/Kotlin.

First Attempt - HTTP Server

In our first attempt, we wanted to set a Python server that will run in the background and

communicate with the app using HTTP requests. It will receive an image from the app and a

rectangle, and will return an image of the segmented and enlarged object and another image

of the blurred black and white background.

We created a Flutter Android app written in Kotlin and a Python server. While the app and

server seemed to work fine separately we had many issues with transferring an image

between one another, creating a 2 sided communication stream, and transferring multiple

objects. In addition, we were worried about how to make sure the server always runs in the

background and preferred an app that can be standalone after being downloaded to the

Android device. We also preferred an app that is not reliant on network availability and that

could work also without reception or WiFi. Due to all those reasons, we decided to look for

other options.

Second Attempt - Chaquopy Plugin

After deciding to look for other options to connect our Python script to an Android app we did

some research online. We found the Chaquopy Plugin that allows creating Gradle-based

Android apps objects from Python scripts that can accept input, send it to the python

function, and return the output. With this plugin, we were able with a simple API to run

python functions from an Android app, without the need to set up a separate server or for the

app to rely on any network connection.

But by switching to Chaquopy we had to do some adjustments in our implementation.

Firstly, those Python objects required us to accept input in string format so we had to convert

our input into string format before sending it and the output out of string format after

receiving it. We also had to convert the input in the Python script from string to Image and

after the Image processing back to a string.

Secondly, to use Chaquopy we needed to change the Flutter app to a Gradle based app and

in addition we switched to writing in Java instead of Kotlin mainly because we found a very

helpful tutorial that explained how to use Chaquopy that used Java.

Another issue we encountered was that our Grabcut implementation used the python-igraph

package which is not supported by Chaquopy.

The Chaquopy development team opened an issue following our request to add igraph

package support:

https://github.com/chaquo/chaquopy/issues/539

Since they mentioned the issue isn’t of high priority for them we decided in the meanwhile to

use the Grabcut implementation offered by Python OpenCV. This implementation was much

simpler and required far less code but also took more time to run. To improve the script’s

performance we resized the uploaded image to a smaller size before sending it to the

Python script.

18

Stage 3 - Creating the UI

In our last stage, we had to learn Java and some Android App development in order to

create a comfortable and user-friendly interface.

We created buttons for the user to add an image from the gallery or from the camera.

We created a canvas layer for the user to easily draw on the selected image and mark the

desired object. This required us to learn thoroughly how to use the Canvas and Paint

libraries. We had to master the asynchronous functions in order to identify when the user

finished drawing, allow the user to use the buttons in order to call the Python script and

process the image and block the buttons from use while the processing occurs.

We added various features like rotating the object, magnifying it with the user’s fingers and

saving the new image created.

We improved the UX by enabling selection cancelation.

And lastly, we added a bonus option of selecting 2 objects simultaneously and enabling

manipulation of each one separately.

Another challenge we faced was that the app didn’t act the same on different devices, for

example for one device the image uploaded from the camera was displayed horizontally

while on a different device it was displayed vertically. To solve this we learned about

ExifInterface. Exchangeable Image File Format (Exif) is a standard that specifies detailed

information about a photograph or other piece of media recorded by a camera. It is portable

to different devices. For example we were able to access the image’s rotation and set it to be

standard no matter what is the default rotation for the specific device.

19

Future Work

Improving the Segmentation

The algorithm segments iteratively to get the best result. But in some cases, the

segmentation won't be fine, like, it may have marked some foreground regions as

background and vice versa. In that case the user needs to do fine touch-ups by giving some

strokes on the images where some faulty results are there. The Grabcut function offered by

OpenCV allows you to enter a rectangle to mark the object but also allows you to enter a

mask with the touch-ups. In future work, the segmentation could be improved by allowing the

user to do some touch-ups as well.

In addition, as mentioned before, we simplified the Grabcut algorithm by using the OpenCV

implementation instead of the igraph based one since Chaquopy doesn’t support the igraph

package. If in future Chaquopy versions igraph support will be available we could improve

the Grabcut implementation by using igraph again and by that improve the image processing

performance.

Improving the UI

Currently to segment the object the user needs to mark the object and press a button. In the

future, another more comfortable options could be to simply tap the marked object. This will

give the app a more simplistic UI with fewer buttons.

More possible improvements could be adding more manipulation options to the object like

moving it around, coloring it, rotating it with fingers only, and selecting an infinite number of

objects.

Publishing the App

Currently, the app is only available by direct download from our computer to a device. We

wanted to upload it to the Google Store but this required a fee for both Google and for

Chaquopy in order to get a distribution license. In the future, a small investment could allow

the app to be published to the masses.

20

Conclusion

In conclusion, the project granted us an opportunity to learn many new and interesting things

in the programming world and develop useful skills.

We got our first experience with Android development that included mastering the use of

asynchronous functions, useful android libraries like Paint, Canvas, and Exif and learning

Java and XML language. We also learned about flutter apps and the Gradle build-tool.

We learned about various image segmentation methods and improved our skills with the

OpenCV library.

We also learned about HTTP servers, Chaquopy plugin, and the challenges of integrating

pieces of code written in different languages.

We got first-hand experience with being a software architect and making technological

decisions.

Overall this project gave us a wider base of knowledge in diverse fields and a useful

experience that could serve us greatly in the future.

21

References

Grabcut Algorithm Theory

● https://medium.com/analytics-vidhya/computer-vision-understanding-grabcut-

algorithm-without-the-maths-9a97ef4c5ba3

● https://docs.opencv.org/3.4/d8/d83/tutorial_py_grabcut.html

About Chaquopy, OpenCV, Gradle

● https://chaquo.com/chaquopy/

● https://opencv.org/about/

● https://docs.gradle.org/current/userguide/what_is_gradle.html

● https://en.wikipedia.org/wiki/Gradle

TensorFlow, Mask-R-CNN Theory

● https://www.mygreatlearning.com/blog/what-is-tensorflow-machine-learning-library-

explained/

● https://viso.ai/deep-learning/mask-r-cnn/

Chaquopy igraph Issue

● https://stackoverflow.com/questions/68977565/trying-to-install-python-igraph-on-

chaquopy-android-studio

● https://github.com/chaquo/chaquopy/issues/539

Segmentation Algorithms

● https://datahacker.rs/top-10-github-papers-semantic-segmentation/

Exif Interface

● https://developer.android.com/jetpack/androidx/releases/exifinterface

Chaquopy Tutorial

● https://www.youtube.com/watch?v=dFtxLCSu3wQ&ab_channel=ProgrammingFever

https://medium.com/analytics-vidhya/computer-vision-understanding-grabcut-algorithm-without-the-maths-9a97ef4c5ba3
https://medium.com/analytics-vidhya/computer-vision-understanding-grabcut-algorithm-without-the-maths-9a97ef4c5ba3
https://docs.opencv.org/3.4/d8/d83/tutorial_py_grabcut.html
https://chaquo.com/chaquopy/
https://opencv.org/about/
https://docs.gradle.org/current/userguide/what_is_gradle.html
https://en.wikipedia.org/wiki/Gradle
https://www.mygreatlearning.com/blog/what-is-tensorflow-machine-learning-library-explained/
https://www.mygreatlearning.com/blog/what-is-tensorflow-machine-learning-library-explained/
https://viso.ai/deep-learning/mask-r-cnn/
https://stackoverflow.com/questions/68977565/trying-to-install-python-igraph-on-chaquopy-android-studio
https://stackoverflow.com/questions/68977565/trying-to-install-python-igraph-on-chaquopy-android-studio
https://github.com/chaquo/chaquopy/issues/539
https://datahacker.rs/top-10-github-papers-semantic-segmentation/
https://developer.android.com/jetpack/androidx/releases/exifinterface
https://www.youtube.com/watch?v=dFtxLCSu3wQ&ab_channel=ProgrammingFever

