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1 Abstract 
We propose a metric learning framework for the construction of invariant signatures of non-rigid 3D point 

clouds under the isometry transformations group. We leverage the representational power of convolutional 

neural networks to compute these signatures and show that in comparison with classical methods, we 

achieve superior results that allow for higher classification accuracy using the invariant signature, and a 

lower pose dependency, with the additional advantage of much lower complexity, allowing for the 

calculation of invariant signatures for larger point clouds with orders of magnitude less time, this is achieved 

without the use of edge information that is commonly used for such applications. 

2 Introduction 
Non-rigid objects such as humanoids or any 

shape1 with joints pose a difficulty for 

computational shape identification. Consider a 

rigid shape. For any scan of the same shape, we 

have 6 degrees of freedom, 3 for the rotation, and 

3 for the translation, allowing for a relatively 

simple embedding space; in contrast, non-rigid 

shapes can bend their joints, and thus each joint 

can add 1 or more degrees of freedom in a simple 

articulated model, or even more if we consider 

elastic deformations of the surface around the 

joint as a result of it moving e.g., skin folding. 

Hence, shapes such as human beings with many 

joints can have a relatively large and complex 

embedding space due to the large pose2 space, 

which leads to a more challenging identification 

task. 

In practice, this means that it can be hard to 

computationally differentiate between the 

identity of a shape and its pose; a pose Invariant 

representation of shapes is required. We ask for 

this representation to be different for different 

shapes, but to be the same for the same shape 

under a change of pose and orientation. 

Formally, it is common practice to model shapes 

as Riemannian manifolds, and the changes 

between them as a distance preserving 

transformation, which is referred to as an 

                                                      
1 We shall use the word shape to describe an object 

regardless of its pose\orientation, e.g., a specific 

person is an object. 
2 We shall use the word pose to describe the way a 

shape appears (regardless of the object itself), such as 

the setting of its joints and its orientation. 

isometry. This is because only the joints are 

moved, but all other parts of the shape are not 

moved with respect to their neighborhood, hence 

if the metric was to be altered, it would only be in 

the joints’ areas due to elastic deformations of the 

skin, muscle, and fat. We neglect effects of this 

deformation in our current model, but since we 

make use of real scans, our model is trained on 

data containing such deformations and thus 

theoretically it could learn to account for them. 

Henceforth, let 𝑋 be the set of all non-rigid 

objects3 and 𝑆 ⊆ 𝑋𝑋 be the set of all isometric 

transformations, our objective is to find a 

function 𝜙 such that: 

(1) ∀𝑥, 𝑦 ∈ 𝑋:   𝜙(𝑥) = 𝜙(𝑦) ⟺ ∃𝜓 ∈ 𝑆, 𝜓(𝑥)

= 𝑦 

This definition is not the standard definition of an 

invariant signature, as it also asks for the 

signature to be unique to each object. This is 

important if our goal is to learn a useful signature, 

since removing this condition means that trivial 

signatures are accepted as viable signatures e.g., 

signatures that are constant over all shapes, but 

such signatures contain no information. 

Since objects are continuous, we obviously 

cannot deal with them directly using computers, 

and therefore we choose to represent them using 

point clouds sampled from the object. We show 

that even at lower resolutions and without using 

3 We shall use the word object to describe a shape in a 

specific pose, such that there is no ambiguity in this 

definition. 
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edge information our method achieves 

satisfactory results. 

To find a function satisfying the above 

conditions, we make use of deep neural networks, 

a slightly altered PointNet [14] is used to encode 

the objects into normalized 1024-dimensinoal 

vectors that are pose invariant and unique to each 

shape. 

To achieve this we train our network in a Siamese 

network setup, where different objects are fed 

into encoders with shared weights. The loss 

function motivates the network to learn pose 

invariant signatures by motivating close 

signatures for objects representing the same 

shape in different poses, and distant signatures for 

objects representing different shapes. 

We compare our signatures in a shape 

classification task against MDS-type algorithms 

and an end-to-end classifier that shares its 

architecture with our algorithm. Interestingly, our 

algorithm beats the classifier trained with the 

same architecture, showing that our training 

scheme motivated learning meaningful 

signatures. 

  

  

Figure: the upper two tringular meshes are of 

the same person (shape) in different poses, and 

the bottom two are two different poses of 

another shape. 

An invariant signature extractor would produce 

the same signature for the upper two meshes, 

and a different signature the is identical for the 

bottom two. 

3 Previous Work 
Learning Invariant Representations of 

Planar Curves 

Deep learning methods have been successfully 

used to learn invariant signatures of planar curves 

by [1] where they rely on the fundamental 

theorem of differential invariants [22], which 

states that every differential invariant of a planar 

curve with respect to some group of 

transformations is a function of the derivatives of 

a unique differential invariant (of a bounded 

order) with respect to an arclength 

parameterization. 

This means that every differential invariant of a 

planar curve is a function of an infinitesimal 

neighborhood of each point, meaning that no 

global context is needed to calculate the 

differential invariants, and thus convolutional 

networks could be used. 

To do this, [1] uses a convolutional network while 

assuming that the points are ordered correctly, 

meaning that the output corresponding to each 

point would be a function of the receptive field of 

the convolution which is a neighborhood of the 

point itself. The signature is trained using a 

Siamese network setup. By learning an invariant 

signature under the Euclidean transformation 

group, Gautam et al. show that this method 

successfully learns a function strongly correlated 

to the Gaussian curvature of planar curves which 

is the first differential invariant of a planar curve 

under the Euclidean transformation group. 
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3.1 MDS 
Multi-Dimensional-Scaling [2] is a classical 

algorithm, or rather a family of classical 

algorithms, that embed data of a high dimensional 

general metric space (not necessarily Euclidean) 

into lower dimension (usually) Euclidean space; 

the algorithm attempts to minimize the pairwise 

distance matrix of the object before and after the 

embedding. We note that these methods require 

such distances to be provide/computable, and 

thus using points-clouds is not trivial, and usually 

triangulated meshes are used. 

Formally, let {𝑥𝑖}𝑖=1
𝑛 ⊆ 𝑋 where (𝑋, 𝑑𝑋) is a 

general metric space, define 𝑑𝑖𝑗 = 𝑑𝑋(𝑥𝑖, 𝑥𝑗), the 

classical MDS algorithm solves the following 

optimization problem: 

{𝑦𝑖
∗}𝑖=1

𝑛 ≔ argmin
{𝑦𝑖}𝑖=1

𝑛
{∑ (𝑑𝑖𝑗

2 − ‖𝑦𝑖 − 𝑦𝑗‖
2

2
)

𝑛

𝑖=1

} 

Such problems could be solved in many ways, 

some are iterative and others are axiomatic & 

deterministic. 

 

[3] right: the popular 3D Swiss roll, lift: MDS 

embedding of the Swiss roll. 

Note: that one could see that the geodesic 

distances of points in the left object are 

represented by the Euclidean distance on the 

right. 

 

As mentioned previously, objects are modeled as 

metric spaces. The MDS algorithm could applied 

to meshes describing such spaces to embed the 2-

dimensional manifold into a Euclidean space of 

higher dimension. The metric of original metric 

space is defined by the geodesic distances 

between the points of the mesh which could be 

calculated using known methods such as Fast 

Marching [4] or the Heat Method [5], many 

variations of this have been suggested over the 

years such as in [6],[7] and [8]. Because we 

model pose transformations as isometries, the 

embeddings into Euclidean space for any two 

poses of the same object are also isometric, but an 

isometry in the Euclidean space is a Euclidean 

transformation. This means that the question of 

weather two shapes are isometric is equivalent to 

the question of weather their embeddings are a 

result of a Euclidean transformation of one 

another. 

3.2 NMDS 
Non-Metric MDS[9] is a variant of multi-

dimensional scaling that attempts to conserve the 

order of the distances and not the distances 

themselves, meaning that if we were to replace 

each element of the distance matrices (before and 

after the embedding) by its rank, optimally the 

resulting matrix would be untouched by the 

NMDS embedding. 

To do this, the algorithm attempts to optimize a 

term we call the stress, which is defined by the 

following equation: 

𝑆𝑡𝑟𝑒𝑠𝑠 ≔ √
∑(𝑓(𝑥) − 𝑑)2

∑𝑑2
 

Where: 

• 𝑥 is the vector of proximities. 

• 𝑑 the point distances. 

• 𝑓 is a monotonic transformation of 𝑥, 

which could be found by using Isotonic 

regression [10]. 

3.3 Geodesic Distance Descriptors  
Geodesic Distance Descriptors [11], is an 

algorithm that attempts to find an orthogonal set 

that minimizes the MSE of the best representation 

of the distance matrix as linear combinations of 

the elements of the set (noting that we do not call 

it a basis as it does not have to be of the dimension 

of the space, and thus reducing the 

dimensionality). Mathematical approximations 
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are used to make this process more efficient and 

less heavy in terms of computational resources; 

this leads to a decomposition of the 

approximation 𝐷̃ = 𝑄Λ𝑄𝑇, where  Λ is a diagonal 

matrix, and thus 𝑋 ≔ 𝑄√Λ is well defined, and 

noting that 𝑋𝑋𝑇 = 𝐷̃ one could say that 𝑋 

encodes the full information found in 𝐷̃, and thus 

X could be our embedding where 𝑋 ∈ ℂ𝑛×𝑐 

where n is the number of points and c is the 

chosen dimension of the embedding space. 

This means that X could be thought of as the set 

of pointwise descriptors for each point. 

Additionally, we note that since the entire process 

only takes into consideration the geodesic 

distances between points. One can prove that the 

resulting descriptors are permutation, rotation, 

and translation invariant. 

Additionally, as discussed above, we model non-

rigid transformations as isometric 

transformations, meaning that the geodesic 

distance matrix should not be affected, and thus 

resulting in a descriptor invariant to pose 

changes. 

4 Training For Invariance 
We observe that our objective (1) for the learned 

function 𝜙 could be thought of as two conditions: 

1- Given a shape in some pose 𝑥 ∈ 𝑋, ∀𝜓 ∈

𝑆 𝜙(𝑥) = 𝜙(𝜓(𝑥)). (2) 

2- Given two different shapes 𝑥, 𝑦 ∈ 𝑋 (i.e., 

∀𝜓 ∈ 𝑆, 𝜓(𝑥) ≠ 𝑦), 𝜙(𝑥) ≠ 𝜙(𝑦). (3) 

Noting that if and only if both atoms are satisfied, 

equation (1) is satisfied. 

Analyzing our new set of objectives, we can see 

that the first one asserts that pose invariance, 

while the second asserts that different objects 

produce different signatures, and thus excluding 

trivial invariant signatures. 

One possible method to learn such a signature is 

adversarial training; an encoder network learns 

the signature, while two classifier heads are 

trained, where one learns to classify the shapes, 

and the other learns to classify the poses; the 

heads are trained in interleaving intervals with the 

encoder, such that the encoder’s loss is defined in 

so that it minimizes the shape classifier’s loss and 

maximizes the pose classifier’s loss. 

The problem with the above approach is that it 

requires labels for the poses, while for data 

acquired from animations, for example, there are 

thousands of poses, which might be unique, and 

therefore the classification task would be hard 

and there might not be enough examples of each 

pose to generalize (the curse of dimensionality). 

Animations are interesting since 3D scans of the 

same shape in different poses are not common, 

and a great source for such scans is 3D animations 

that include hundreds of different frames of the 

same shape in different poses. 

Our solution to this problem is to use a metric 

learning scheme, where we only need to know 

whether the two given point clouds represent the 

same shape, and if so, we need to know whether 

they are the same pose or not. This means that we 

have 3 options: same shape different pose, same 

shape and pose & different shapes. The reasoning 

behind us not caring about the pose of different 

shapes could be seen from our objective, if two 

shapes are different, we want the signatures to be 

different regardless of the pose. 

Additionally, we note that objects of the same 

shape and pose are identical, meaning that 

trivially the network produces the same output for 

both, and therefore we do not need to keep track 

of them. This leaves us with only two options: the 

same shape in a different pose and different 

shapes, which we term positive and negative 

examples respectively.  

After establishing a dataset with the above 

annotations, we sample triplets such that the first 

object is called the original sample, along with 

negative and positive examples of that object. we 

build our loss function such that it maximizes 

some metric between the signatures of the 

negative examples and the original samples’ and 

minimizes it between the positive examples’ 

signature and the original samples’. 
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4.1 The Signature 
We choose our signature to be a vector of some 

come dimension 𝑛, but We limit the signature 

vector to vectors with a unit norm meaning that 

𝜙 ∈ 𝒮𝑛 𝑋
. This gave us more stable results 

numerically, reduces the degrees of freedom by 

only 1, and encourages a linear separation. 

Another important reason for this choice is that it 

makes the network encode the similarity of 

different vectors into their direction rather than 

their range, which is more precise and allows for 

the use of the cosine similarity measure: 

cos(∠(𝑥, 𝑦)) ≔
⟨𝑥, 𝑦⟩𝑠𝑡𝑑

‖𝑥‖2‖𝑦‖2
= ⟨𝑥, 𝑦⟩𝑠𝑡𝑑 

Where the last equality is a direct result of 

normalizing the vectors, this means that this 

measure could be easily calculated. 

4.2 Loss function 
As will be described in section 5.1, we 

experimented with a variety of loss functions, 

until we finally arrived at what we termed the 

‘LinearInfoNCE’, which is inspired by the 

InfoNCE loss[12]. 

Let G be a set of objects, denote 𝐺 =

{𝑂}⨆𝐺+⨆𝐺−, where 𝑂 is the original sample, and 

𝐺+, 𝐺− are the sets are positive and negative 

examples respectively. The LinearInfoNCE  

function acting on the encoder 𝜙 and the sample 

set G, is defined as: 

𝑙(𝜙; 𝐺)

≔
1

|𝐺| − 1
[ ∑ − log (

⟨𝜙(𝑠), 𝜙(𝑂)⟩ + 1

2
)

𝑠∈𝐺+

+ ∑ − log (1 −
⟨𝜙(𝑠), 𝜙(𝑂)⟩ + 1

2
)

𝑠∈𝐺−

] 

One way to understand the above function is that 

we model the probability of two objects being the 

same to be a linear (or more precisely affine) 

function of the cosine of the angle between the 

two vectors, this a result of the vectors being unit 

vectors and therefore: 

⟨𝜙(𝑠), 𝜙(𝑂)⟩ = cos(∠(𝜙(𝑠), 𝜙(𝑂)) 

Since the range of the cosine function is [-1,1], 

while a probability’s range is [0,1], we define the 

model the probability of two signatures being 

outputs of the same shape as 
⟨𝜙(𝑠),𝜙(𝑂)⟩+1

2
 which 

has the adequate range. Notice that for two 

similar signatures the angle would be small, and 

thus the cosine would be close to 1 (its maximal 

value), leading to that the probability too would 

be close to 1 as expected. If the angle is large, the 

closer it gets to 𝜋 [𝑟𝑎𝑑], the smaller the cosine 

becomes, so that finally at 𝜋 [𝑟𝑎𝑑] it becomes -1, 

making the probability 0 as we would expect. 

Another important property of the cosine measure 

of the angle is that it is symmetric, and thus it is a 

function of the amount of difference in angle and 

not the direction, which is more fitting, as there is 

no specific ordering that should be followed 

between the shapes or their signatures and adding 

such an ordering can make the distribution on the 

sphere biased. 

Our objective is to maximize the probability 

when the example is a positive one and to 

minimize it otherwise, and since we are using a 

probability measure that is a linear function of the 

cosine of the angle, this would lead to minimizing 

the angle between signatures of the same shapes 

which satisfies (2) and maximizing it for different 

shapes which satisfies (3), meaning that the 

minimization of such a loss achieves our original 

objective. 

We observe that maximizing the probability 

when the example is a positive one, and 

minimizing it otherwise, could be modeled as a 

binary classification problem, and thus a Binary 

Cross-Entropy is used applied the above-

described probabilities, finally giving us the 

LinearInfoNCE loss. 
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4.3 Architecture 

 

Figure modified from [13] 

Our focus was not to engineer a highly 

sophisticated network that fits our problem 

exactly, rather we aimed to use a simple general 

network, but to optimize the training scheme such 

that it can be used with a wide range of datasets 

and different networks. 

We make no assumption on the point cloud vertex 

ordering, and as such our method is applicable to 

general point clouds and natural depth 

projections; furthermore, we do not assume a 

triangulated shape or knowledge of the geodesic 

distances, making our algorithm simple, efficient 

and general.  

We used an encoder inspired by O. Halimi et. 

Al’s encoder [13] used in a Siamese network 

setup, and then added a neural network with 

either 1 or 2 Linear layers (commonly termed 

MLP) for classification tasks. 

The encoder is a simple PointNet [14] inspired 

network, meaning that it takes the features of each 

point which in our case are either the coordinates 

alone or the coordinates alongside the 

components of the second order moments (i.e., 

𝑥2, 𝑦2, 𝑧2, 𝑥𝑦, 𝑧𝑦 and 𝑥𝑧 as detailed in the section 

4.5.1), and then feeds those into an MLP that its 

weights shared by all the points. These are all 

concatenated and a max-pooling operation is 

applied along the points axis, giving a vector 

invariant to permutations on the order of points, 

and thus this vector could be fed into an MLP to 

get the final encoding. 

4.4 Dataset 
We used the FAUST and DFAUST datasets, both 

of which are 3D registered scans of humanoid 

figures, and have a trivial vertex correspondence 

for their 6890 vertices. Due to computational 

considerations, we utilize only 1035 points from 

each point cloud, where the sampling was done 

using Pyvista’s default down sampling technique. 

The shapes are provided triangular meshes but we 

extract simpler point-cloud representations from 

each triangulated mesh for the sake of simplicity 

and generalizability.  

4.4.1 DFAUST: 

The DFAUST dataset consists of approximately 

40,000-point clouds in 3D, which consist of 10 

different people (shapes), each with around 10-15 

different animations containing around 200-400 

3D registered triangular meshes. 

To build our training, validation, and testing sets, 

we had to reduce the correlation between the 

different sets as much as possible without making 

the dataset smaller than it already is. 

5 full-length animations are shared amongst 

every person in the dataset, out of these 2 were 

chosen to be the validation set, and another 2 to 

be the test set, we do this for every given person, 

and this results in approximately an 80,10,10 split 

(32K, 4K, 4K). 

As will be described in section 4.5.2, one of the 

methods that we use to solve the problem of 

rotation invariance is PCA normalization. We 

note that this is a computationally heavy task 

which increases the training time by an order of 

magnitude. To deal with this issue, we created a 

version of the DFAUST dataset that had already 

been normalized using PCA, but as we described 

in section 4.5.2, the PCA normalization in unique 

up to flipping the signs of each coordinate 

independently, hence we implement an 

augmentation that does exactly that; when 

training we load the pre-normalized data and 

apply the augmentation which is computationally 
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light and does not increase our training time, but 

applying Lemma 1 (see below) we receive an 

equivalency between the simple augmentation 

and applying a random rotation and then PCA 

normalization. 

4.4.2 FAUST: 

To understand how well our model generalizes to 

unseen shapes, we use the FAUST dataset, which 

contains 10 people in 10 different poses each. 

Here we went with a uniformly random 80% train 

and 20% test split over each shape in the dataset. 

4.5 Rotation Invariance 
The basic networks were able to perform 

reasonably well on the original data, as we show 

in the section 1.1.1, but when using the proposed 

network whilst augmenting the data by adding a 

random rotation makes the network work 

considerably worse, yielding unsatisfactory 

results. 

Rotation Invariance is desirable since real-world 

data might not always be aligned, e.g., cameras 

might be tilted, surfaces might be uneven and 

shapes might be rotated; an algorithm that   

Multiple solutions were considered, most 

notably: 

1. Alignment networks[14], described 

in detail in the section 5.4. 

2. Providing second order moments as 

inputs to the network. 

3. Using PCA to normalize the inputs. 

Following is an explanation for each of the above 

methods. 

4.5.1 Utilizing Second Order Moments as 

Inputs 

A solution that was inspired by [15], instead of 

providing the network a point cloud where each 

point’s features are its 𝑥, 𝑦 and 𝑧 coordinates, we 

calculate the second order moments i.e., 

𝑥2, 𝑦2, 𝑧2, 𝑥𝑦, 𝑥𝑧 and 𝑦𝑧, and provide them 

alongside the point-cloud coordinates as inputs 

for the network. This solution is simpler than the 

one shown in [15], as it doesn’t use K-NN to feed 

each points the moments of neighboring point. 

Our approach clearly doesn’t provide localization 

information, but still provides information that 

would be otherwise hard to calculate. 

One might initially assume that this is 

unnecessary as the network is capable of learning 

the above-mentioned moments by itself if 

needed. However, since they are not linearly 

dependent on first moments, it has been shown to 

take number of layers logarithmic to the largest 

multiplication, which would make the network 

deeper and hence more susceptible to exploding 

gradients, and undesirably increase the size of the 

model hypothesis space. 

In addition, higher moments provide us with 

meaningful geometric information. For example, 

together they construct the covariance matrix. 

The spectral decomposition of the covariance 

matrix supplies us with the principle components, 

the primary directions of change for each point 

cloud, acting as orientation axis, meaning that 

this information could be used in order to learn a 

canonical orientation for shapes. 

Results using the above method are provided in 

section 6.2. 

4.5.2 PCA Normalization 

Principle component analysis [16], is a classic 

algorithm that is used traditionally for linearly 

embedding data into lower-dimensional spaces. 

This is done by analyzing the second-moment 

matrix of the data (a.k.a., the covariance matrix 

of the data) and determining which eigenvectors 

correspond to the largest eigenvalues. This could 

be shown to achieve the minimal MSE between 

the original point-cloud and any representation 

using a set of n vectors.  

Formally, we aim to find 𝑇 an orthogonal 

projection matrix such that: 

𝑇 = argmin
𝑈∈ℝ𝑛×𝑚

{𝔼𝑥[‖𝑈𝑈∗𝑥 − 𝑥‖2
2]} 

Where: 

• 𝑥 is a sample from our data distribution, 

𝑥 ∈ ℝ𝑚. 
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• 𝑚 is the dimension of a sampled point 

from our data. 

• 𝑛 is the chosen embedding dimension. 

• 𝑈 is the target matrix of orthonormal 

column vectors. 

Note that we could generalize the problem to 

general linear projections instead of orthogonal 

ones, but it could be easily proven that there 

exists an optimal solution of the generalized 

problem which is also an orthonormal matrix, and 

thus an optimal solution for the problem above is 

optimal for the generalized problem. 

The solution to the above problem is: 

𝑇 = (

| | … |
𝑢̂1 𝑢̂2 … 𝑢̂3

| | … |
) 

Where 𝑢̂𝑖 is the normalized eigenvector with the 

ith highest eigenvalue of the covariance matrix 

𝔼[𝑋𝑋∗]. 

This could be shown to be equivalent to 𝑢̂𝑖 

satisfying: 

𝑢̂𝑖 = argmin
𝑢̂𝑖∈ℝ𝑚 𝑠.𝑡.

∀0<𝑗<𝑖,𝑢̂𝑗⊥𝑢̂𝑖

∧ ‖𝑢̂𝑖‖2=1

{𝕍𝑎𝑟𝑥(𝑢̂𝑖
𝑇𝑥)} 

Meaning that these are the directions in which the 

orthogonal projections of the points have the 

largest variance, this could be exploited to gain 

information about the orientation of the shape 

[23], as in our case the shapes are humanoid 

figures, and thus for most positions the direction 

with the highest variance is the one that goes 

parallel to the spine. 

And therefore, if we solve optimization problem 

but use 𝑛 = 𝑚, we get 𝑇 ∈ ℝ3×3 which is a 

rotation matrix, which orients each mesh such 

that the first coordinate is the one with the highest 

variance, the second is the second highest and 

finally the third is the one with the least amount 

of change, we do this in hopes of reducing the 

degrees of freedom enough so that the network 

learns a signature invariant to the slight 

orientation differences that might be the result of 

different poses. For example, a person in the 

splits position (legs wide open) might have a 

higher variance in the direction of the legs (to his 

sides) rather than his spine. 

This allows our network to learn a simpler task on 

PCA oriented shapes, and when combining the 

PCA-normalization layer into our algorithm this 

gives a general pipeline that deals with isometric 

and Euclidean transformation, without requiring 

the network to learn to deal with the general 

Euclidean transformations by itself. 

 

Figure: A mesh with the principle components 

plotted over it where red, green, and blue 

correspond to the eigenvalues in descending 

order. 

Lastly, we show that this provides us with an 

algorithm that is invariant to rotations up to 

multiplication an axis mirroring rotation matrix. 

Lemma 1: the above described normalization 

method is invariant to rotations up to a 

multiplication with an axis mirroring rotation 

matrix: 

𝑑𝑖𝑎𝑔{±1, ±1, ±1} 

Note: the elements are independent, meaning that 

there are 8 different options in total. 
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Proof. Given a rotation matrix 𝑅, we define 𝑌 =

𝑅𝑋,  and thus the covariance matrix of Y is: 

𝔼[𝑌𝑌𝑇] = 𝔼[𝑅𝑋𝑋𝑇𝑅𝑇] = 𝑅𝔼[𝑋𝑋𝑇]𝑅𝑇

= 𝑅𝔼[𝑋𝑋𝑇]𝑅𝑇 

And thus for 𝑣 an eigenvector of 𝔼[𝑋𝑋𝑇] with 

eigenvalue 𝜆, one can easily see that 𝑢 = 𝑅𝑣 is an 

eigenvector of 𝔼[𝑌𝑌𝑇] with the same 

eigenvalue: 

𝔼[𝑌𝑌𝑇]𝑢 = 𝔼[𝑌𝑌𝑇]𝑅𝑣 = 𝑅𝔼[𝑋𝑋𝑇]𝑅𝑇𝑅𝑣

= 𝑅𝔼[𝑋𝑋𝑇]𝑣 = 𝑅𝜆𝑣 = 𝜆𝑅𝑣

= 𝜆𝑢 

And the opposite direction is trivial since 𝑣 =

𝑅𝑇𝑢, and therefore it is a direct result of the above 

result. 

A direct result from this is that if 𝑇 = (𝑢̂1, . . 𝑢̂𝑛) 

is a solution to the original problem, then after 

rotation 𝑇̃ = (𝑅𝑢̂1, . . 𝑅𝑢̂𝑛) = 𝑅(𝑢̂1, . . 𝑢̂𝑛) = 𝑅𝑇 

is the solution for the rotated problem, and 

therefore the final embedding would be: 

𝑇̃𝑇𝑌 = 𝑇𝑇𝑅𝑇(𝑅𝑋) = 𝑇𝑇𝑋 

𝑅𝑖
2 ≔ 𝛼̃, 

Which is exactly the original solution. 

As for the 8 solutions we mentioned above, we 

note that for every normalized eigenvector 𝑢, −𝑢 

is a valid solution as well, and therefore we might 

in different runs get 𝑢 and −𝑅𝑢, and thus the 

difference in sign. 

∎ 

Lastly, we note that theoretically if two or more 

eigenvectors have the same eigenvalue, the 

number of possible solutions would become 

infinite, since they would form a solution space 

of a dimension higher than 1, meaning that there 

is an infinite number of orthonormal basis for this 

space. We neglect such cases for two reasons. 

Firstly, having two directions have the same 

eigenvalue is uncommon for general natural 

shapes. Secondly, due to numeric instabilities, the 

probability of actually getting two exactly equal 

eigenvalues drops substantially. We have 

asserted this assumption holds empirically. 

5 Experiments 

5.1 Loss Functions 
In section 4.2 we showed our proposed loss 

function which we call LinearInfoNCE, but other 

loss functions were tested to determine the best 

fitting loss function, among those are: 

5.1.1 Contrastive Loss 

Contrastive loss [17] basic well-known loss that 

aims to minimize the L2 distance between the 

signatures that come from the same shape, and 

aims to maximize the L2 distance between the 

signatures that come from different shapes. 

ℒ(𝑊1, 𝑊2, 𝑌) = (1 − 𝑌)
1

2
𝐷𝑊12

2

+ 𝑌
1

2
max(0, 𝜇 − 𝐷𝑊12

)
2
 

Where: 

• 𝑊𝑖 is the signature of the ith object. 

• 𝐷𝑊𝑖𝑗
 is the L2 distance between 𝑊𝑖, 𝑊𝑗 

meaning 𝐷𝑊𝑖𝑗
= ‖𝑊𝑖 − 𝑊𝑗‖

2
. 

• 𝑌 is a binary variable, which receives the 

value 1 iff 𝑊1, 𝑊2 come from different 

shapes. 

• 𝜇 is a hyperparameter, which defines the 

‘cutoff’. 

As one can see, if the signatures come from the 

same shape, Y would be 0, and therefore the loss 

would be: 

𝐿𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑊1, 𝑊2) =
1

2
𝐷𝑊12

2  

Meaning that optimizing the loss would minimize 

the distance as planned. 

Otherwise, if the signatures come from different 

shapes, Y would be 1, and therefore the loss 

would be: 

𝐿𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑊1, 𝑊2) =
1

2
max(0, 𝜇 − 𝐷𝑊12

)
2
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Optimizing this term would maximize 𝐷𝑊12
 as 

planned, but it would stop if the distance 

exceeded the given threshold 𝜇, this is very 

necessary, as if we were to use 𝑌
1

2
𝐷𝑊12

2 instead, 

the network could learn to prefer increasing the 

difference between signatures of different shapes, 

but not focus as much on bringing the signatures 

of the same shape close, because increasing a 

large number that is squared has stronger effect 

than decreasing a small squared number, in other 

words it is more beneficial to increase the 

distance between negative example that to reduce 

the distance between positive examples. 

5.1.2 Triplet Loss 

Triplets loss[18] is yet another common loss 

function, it too uses the L2 norm, but it differs 

slightly, its goal could be interpreted as 

maximizing the difference between the average 

distance between signatures of the same shape 

and the average distance between signatures of 

different shapes. 

To achieve this the proposed loss function is 

modified to: 

ℒ(𝑥, 𝑥𝑝, 𝑥𝑛) ≔ max (0, 𝛾‖𝑓(𝑥𝑛) − 𝑓(𝑥)‖2
2

− (1 − 𝛾)‖𝑓(𝑥𝑝) − 𝑓(𝑥)‖
2

2

+ 𝛼) 

Where: 

• 𝑥 is some sample. 

• 𝑥𝑝 is a positive sample, meaning a 

sample of the same shape in a different 

pose. 

• 𝑥𝑛 is a negative sample, meaning a 

sample of a different shape. 

• 𝛾 ∈ (0,1) is a weighting hyperparameter. 

• 𝛼 is the difference threshold 

hyperparameter. 

• 𝑓 is the encoder function. 

The gamma allows us to pick a value that 

normalizes both terms to be of the same order of 

magnitude or to give more emphasis to one of 

them. on the other hand, the 𝛼 combined with the 

clipping operation means that if the (signed) 

distance drops below −𝛼 (meaning that the 

difference is over 𝛼) the loss would become zero. 

This way the network would not be tempted to 

overfit a subset of the training data while 

neglecting the rest, instead it stops optimizing the 

given triplet when it reaches a resolution ability 

of 𝛼. 

5.1.3 SigmoidInfoNCE 

This loss has the same motivation described for 

LinearInfoNCE, but it differs only in it how it 

transforms the cosine similarity into a probability 

measure, LinearInfoNCE, as the name implies, 

does this linearly (or rather affinely), but 

SigmoidInfoNCE does this by exploiting the 

sigmoid function, and therefore it is calculated by 

the equation: 

𝑙(𝜙; 𝐺)

≔
1

|𝐺| − 1
[ ∑ − log (𝜎 (

⟨𝜙(𝑠), 𝜙(𝑂)⟩

𝜏
))

𝑠∈𝐺+

+ ∑ − log (1 − 𝜎 (
⟨𝜙(𝑠), 𝜙(𝑂)⟩

𝜏
))

𝑠∈𝐺−

] 

Where: 

• 𝜏 is a temperature hyperparameter that 

controls the sensitivity of the probability 

to changes in the cosine similarity. 

In other words, this is just a Binary Cross Entropy 

loss where the probabilities are calculated by 

𝜎 (
⟨𝜙(𝑠),𝜙(𝑂)⟩

𝜏
). 

5.2 Normalization 
Normalization of the outputs of the layers of the 

network has been repeatedly shown to improve 

stability by reducing the covariate shift [19], 

reducing overfitting and accelerating the training 

of the network [20]. 

To reap the full benefits of normalization, one 

must pick the right kind of normalization for the 

task, the top candidates for our specific task were 

Batch Normalization [24], Layer Normalization 

[25], and Instance Normalization [26] (which 

using Pytorch terminology is a special case of 
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layer norm, but for the sake of clarity, in the 

following section we are going to refer to them by 

different names). 

 

As could be seen in the above figure[21], N is 

the batch size, C is the number of channels and 

H,W represent any additional dimensions. The 

different normalization schemes differ in what 

dimension each of them normalizes, the pixels 

annotated in blue in the above figure are 

normalized using the same standard deviation 

and mean. 

Batch Norm, given a batch of samples, calculates 

the standard deviations and means of the set of all 

features of each channel, and then normalizes 

each channel of every sample in the batch using 

the corresponding standard deviation and mean. 

This gives independence between the channels 

but creates a dependence between the features of 

each channel and the samples of the batch.  

Layer Norm, given a sample, calculates the 

standard deviation and mean of the set of all 

features, and then normalizes every feature using 

these values. Means that we normalize each 

sample independently of other samples, and 

assume a shared distribution of each sample 

features. 

Instance Norm, given a sample, calculates the 

standard deviations and means of the set of all 

features of each channel, and then normalizes the 

features of each channel of the given sample 

using the corresponding standard deviation and 

mean. This gives each sample independence of 

other samples in the batch, as well as 

independence between different channels of the 

sample. 

In our case we tested Batch Normalization and 

Instance Normalization where the dimension that 

we normalize along is the points, meaning that we 

learn a statistic for the distribution of the points 

and normalize across it. Notice that is a 

permutation invariant operation, which is of top 

importance, as we do not assume some ordering 

on the points, meaning that ‘the same point’ could 

appear in different positions in the vector in 

different samples. 

5.3 Loss Functions and Normalization 
To check which normalization technique and loss 

function fit our goals best, we used the FAUST 

dataset, to run a simple shape classification test 

(we elaborate on this in section 6.1.1) using a K-

Fold validation technique, and then we used 4 

different thresholds of accuracy 

{49%, 59%, 69%, 79%}, and calculated the 

percentage of models that surpassed each 

threshold. 

The reason for checking pairs comprised of a loss 

function and a normalization technique, rather 

than checking each individually, is that there 

might be a correlation between the two, and thus 

a need for checking the entire gird instead of 

sampling points on each axis (where the first axis 

is the loss function and the second is the 

normalization technique). 

Hence for each pair of a loss function and a 

normalization technique we perform K-Fold 

validation for K=5, and calculate the percentage 

of the K trained models that got an accuracy 

above each given threshold. 

 

As can be seen from the above figure, the 

LinearInfoNCE performs more consistently than 

other loss functions, and with the added benefit of 

it being the only function with no 

hyperparameters, it was a clear decision. 

The normalization on the other hand was not as 

clear of a decision, but a slight advantage of using 
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no normalization could be observed in the above 

testing, furthermore while training on DFAUST 

not using normalization increases the accuracy by 

5% and thus it was decided not to use it. 

Many reasons could play a role in this interesting 

result. Our theory is that neither of the 

normalization techniques makes sense given the 

type of data, as different meshes should have 

different distributions of their points and channels 

because of the differences in the pose. The 

difference in these statistics could be important. 

For example, a high standard deviation in some 

direction could indicate that this is the direction 

of the spine of a standing mesh, on the other hand, 

a low standard deviation could indicate the depth 

direction of a mesh. Normalizing the data might 

hide away this information and thus make it 

harder to orient the shape. 

5.4 Alignnet 
One possible solution for the rotation invariance 

problem that was described above is training an 

alignment network as proposed in [14], where the 

network attempts to learn the 6D pose vector 

(meaning the 3D translation, and a 3D 

representation of a general 3D rotation using 

Euler angles). 

To train such a network, we note that by default 

the DFAUST point clouds are aligned perfectly, 

by applying random 3D rotations sampled 

uniformly and 3D translations sampled from a 

multivariate normal distribution to its samples, 

we build a dataset of shapes transformed by a 

Euclidean transformation alongside the 

transformations’ parameters. Using this dataset, a 

network could be trained to predict a Euclidean 

transformation’s parameters, given a transformed 

object. 

As for the loss, different losses showed different 

results, for the translation a simple L2 metric was 

all that was needed, as for the rotation, there were 

more options, notably: 

1. L2 loss over the difference between the 

predicted Euler angles representation of 

the predicted and ground truth rotations. 

Note: in order to avoid problems 

pertaining to the cyclicity of the Euler 

angles representation, the last non-linear 

layer’s output is bounded to one cycle of 

the angle’s range. 

2. L2 loss over the difference between the 

rotation matrix induces by the predicted 

Euler angles and the ground truth rotation 

matrix. 

3. L2 loss between the rotation matrix 

transposed multiplied by the ground truth 

matrix, and the unit matrix, the reasoning 

behind this loss is that it is equivalent to 

the predicted rotation matrix’s inverse 

canceling out the ground truth rotation, 

which is the original objectives. 

Testing showed slight differences between the 

different losses, but overall the networks were 

unable to transfer over to FAUST after training 

on DFAUST and scored lower overall on 

DFAUST on the subsequent classification task. 

We assume that this happens because we trained 

the network on DFAUST which contains a low 

number of different shapes, and thus the network 

could learn to overfit them (e.g., classify the 

shape and then understand its orientation based 

on its identity), which would make the network 

unable to generalize to other datasets such as 

FAUST. 

6 Results & Comparison 

6.1 Testing Method 
To quantitively measure the quality of the learned 

signatures, we argue that if our signature satisfies 

eq (1), then it should contain all the necessary 

information to classify the different shapes, but it 

should contain minimal to no information about 

the pose, and thus two main tests were proposed. 

6.1.1 Shape Classification 

The first test is a simple shape classification test, 

where we add an MLP head that takes the 

signature from the pre-trained encoder (which we 

freeze when testing), and then train the head to 

classify the different shapes (in our case, 

humanoid point-clouds). 
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A high accuracy suggests that the signature is 

unique. For each different shape there exists a 

different signature, and thus they can be 

distinguished one from the other, satisfying eq. 

(3). 

Notice that this does not mean that the network 

has learned a pose invariant signature since each 

shape can still get different outputs for each pose, 

but the meaning of this is that each shape’s 

signature space (spanned by the embeddings it 

gets for all its different poses) has a small or no 

intersection with other shapes’ signature spaces, 

and thus the satisfaction of eq. (2) is not implied 

by high accuracy in this test. 

Technical Details: 

We make use of two tests, one where the MLP 

head is a one-layer MLP, making the test a linear 

classification test. If successful it means that a 

linear separation was achieved in the signature 

space. 

The other test is a two-layer MLP, allowing it to 

learn a more complex separation, but without 

having it be able to become too specific\overfit 

the data. 

We run the test in two settings, once on DFAUST, 

and once for cross-dataset generalization on 

FAUST. In both cases, the signature network is 

trained on DFAUST, this gives us two measures 

one for accuracy on similar data measured on 

DFAUST, and one for the generalization ability 

measured on FAUST. 

6.1.2 Pose Classification 

The second test is a pose classification test. The 

is similar to the shape classification test described 

above, meaning that we add an MLP head as 

described and learn a classification task on the 

signatures where the target is to predict the 

correct pose. 

A low top accuracy on this test means that the 

signature retains low (or no) information about 

the pose of the shape, meaning that it has 

achieved pose invariance, hence satisfying eq. 

(2). 

Technical Details: 

The same scheme that was used for the shape 

classification task was used here, with one 

difference, DFAUST contains 4000 frames for 

each shape on average. Learning such a 

classification task would have us learn an output 

vector of dimension 4000, but since our data is 

relatively sparse (40 samples), this means that on 

average each frame appears 10 times, this is not 

sufficient for learning to predict the pose. 

As a result, the pose network is tested only on 

FAUST.  

6.1.3 Putting It All Together 

To say that an algorithm has achieved our goals 

(to a certain degree), it needs to score high on the 

shape classification test, but low on the pose 

classification test, since together they mean that 

the algorithm satisfies both eq. (2) and eq. (3) 

which as explained in the introduction mean that 

the algorithm satisfies eq. (1), our mathematical 

definition of learning an invariant signature. 

6.2 Results 

6.2.1 Algorithms 

The models that we show below are: 

• Baseline classifier: the encoder network 

that we described, with a classification 

head attached. Note that for testing a new 

head is attached and retrained. 

• SN w/o moments: Siamese network (our 

proposed method), where the inputs are 

the point clouds, and the features are the 

x,y, and z values. 

•  SN w/ moments: Siamese network (our 

proposed method), where the inputs are 

the point clouds, and the features are the 

x, y, and z values, alongside the second 

order moments 

(𝑥2, 𝑦2, 𝑧2, 𝑥𝑦, 𝑦𝑧 𝑎𝑛𝑑 𝑥𝑧). 

• PCA algorithm: the inputs are 

normalized using the PCA normalization 

method described in section 4.5.2, and 

then fed into the algorithm. 
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• GDD: GDD descriptors are used as 

descriptors for the object after being 

flattened, notice that since both DFAUST 

and FAUST have a 1:1 correspondence, 

and we do not permute the points, the 

signature (because of the constant 

ordering) is also a global signature, and 

thus could be classified using our usual 

MLP methods. 

6.2.2 Tests 

• Object classification: 

o DFAUST – 1-layer head: 

classifying the signatures into 

shapes using a one-layer MLP 

head on the DFAUST dataset. 

o DFAUST – 2-layer head: 

classifying the signatures into 

shapes using a two-layer MLP 

head on the DFAUST dataset. 

o FAUST 2-layer head: classifying 

the signatures into shapes using 

a two-layer MLP head on the 

FAUST dataset. 

• Pose classification: 

o FAUST – 2-layer head: 

classifying the signatures into 

poses using a two-layer MLP 

head on the FAUST dataset. 

6.2.3 Without Rotation: 

c Object classification (↑) Pose Classification (↓) 

Algorithm \ Test DFAUST – 

1 layer head 

DFAUST – 2 

layer head 

FAUST – 2 

layer head 

FAUST – 2 layer head 

Baseline classifier 91.11% 91.08% 65.23% 40.46% 

SN w/o moments 99.54% 99.1% 65.23% 15.8% 

SN w/ moments 99.86% 99.54% 40.65% 35.64% 

GDD 12.60% 92.29% 25.53% 10% 

6.2.4 With Rotation:  

 Object classification (↑) Pose Classification (↓) 

Algorithm \ Test DFAUST – 

1 layer head 

DFAUST – 2-

layer head 

FAUST – 2-

layer head 

FAUST – 2-layer head 

Baseline classifier 82.44% 82.43% 30.09% 70.26% 

SN w/o moments 75.14% 74.65% 25.96% 33.74% 

SN w/ moments 77.47% 80.34% 50.61% 36.61% 

PCA baseline 12.64% 11.61% 30.46% 23.98% 

PCA SN w/o moments 88.22% 86.34% 65.86% 10.25% 

PCA SN w/ moments 91.48% 92.89% 55.39% 18.06% 

 GDD  12% 92.52% 25.22% 10.99% 

 

• Yellow indicates the best result, Grey indicates the second-best result. 

7 Conclusions 
Our framework achieves a 9% improvement over 

the baseline and 8% over the SOTA achieving 

near 100% accuracy on the aligned data. This 

means that our framework encourages learning a 

meaningful descriptor that does not overfit the 

training data as much as end-to-end classification 

would. 

We argue that the improvement over aligned data 

is one of practical use as well. In the general case 

for humanoid scans we can assume that the 

rotation would only be 2 dimensional, this is 

because in most cases people are in upright 

positions. The same goes for furniture, vehicles, 

etc. 
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Most notably, on data augmented with random 

rotations our framework achieved results 

consistently better than the same architecture 

trained as a classifier (the baseline). This implies 

that our training scheme urges the network to 

learn valuable information that generalizes better 

since on the test set it still retains a higher  

 

accuracy than the baseline. In other words, given 

the same data and the architecture our proposed 

training scheme performs better than training a 

classifier in an end-to-end fashion. 

Additionally, we see that since the baseline has 

no explicit reason to learn pose invariant 

signatures, the results show that the pose could be 

classified better from the signatures it produces, 

unlike the Siamese training scheme that we 

propose that directly punishes such behavior. 

As for the GDD, as could be seen from its 

construction, it is completely rotation invariant, 

and almost completely pose invariant (the almost 

is the result of the geodesic distances being 

distorted near the joints and skin folds; GDD 

achieves the best pose classification accuracy – as 

expected). But interestingly, using one layer for 

classification achieves very bad results, pointing 

to a non-linear separation between the objects, 

but as soon as we use a 2 layer MLP we get 92% 

accuracy which is a tie with our best algorithm. 

However, of FAUST, we can see that the GDD 

descriptor does not achieve as good an accuracy, 

since it’s a much smaller dataset and the 

variances might be small enough that it is hard to 

learn a good separation between the different 

objects. 

We conclude that our method achieves results 

that are competitive with the SOTA, alongside a 

simpler (linear) separation, and thus allowing for 

simpler post-processing algorithms. 

Additionally, we note that our network is 

comprised of linear and convolutional layers and 

thus it is much more efficient than GDD and other 

MDS counterparts that have cubic terms in their 

complexity. 

To summarize, we propose a deep learning-

based approach that utilizes a Siamese metric 

learning scheme to learn a pose and orientation 

signatures that is both competitive and more 

efficient than the SOTA on rotated data, and 

superior to the SOTA on aligned data. 
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