

Technion - Israel Institute of Technology

GIP Lab

Project in Image Processing and Analysis

234329

Learning Unique Invariant Signatures

of Non-Rigid Point Clouds

Authors:

Sari Hleihil & Idan Shenfield.

Supervisor:

Ido Imanuel.

1

Table of Contents

1 Abstract .. 0

2 Introduction .. 0

3 Previous Work ... 1

3.1 MDS .. 2

3.2 NMDS .. 2

3.3 Geodesic Distance Descriptors .. 2

4 Training For Invariance ... 3

4.1 The Signature .. 4

4.2 Loss function ... 4

4.3 Architecture ... 5

4.4 Dataset ... 5

4.5 Rotation Invariance ... 6

5 Experiments ... 8

5.1 Loss Functions ... 8

5.2 Normalization .. 9

5.3 Loss Functions and Normalization ..10

5.4 Alignnet ...11

6 Results & Comparison ...11

6.1 Testing Method ..11

6.2 Results ...12

7 Conclusions ..13

8 References .. 0

1 Abstract
We propose a metric learning framework for the construction of invariant signatures of non-rigid 3D point

clouds under the isometry transformations group. We leverage the representational power of convolutional

neural networks to compute these signatures and show that in comparison with classical methods, we

achieve superior results that allow for higher classification accuracy using the invariant signature, and a

lower pose dependency, with the additional advantage of much lower complexity, allowing for the

calculation of invariant signatures for larger point clouds with orders of magnitude less time, this is achieved

without the use of edge information that is commonly used for such applications.

2 Introduction
Non-rigid objects such as humanoids or any

shape1 with joints pose a difficulty for

computational shape identification. Consider a

rigid shape. For any scan of the same shape, we

have 6 degrees of freedom, 3 for the rotation, and

3 for the translation, allowing for a relatively

simple embedding space; in contrast, non-rigid

shapes can bend their joints, and thus each joint

can add 1 or more degrees of freedom in a simple

articulated model, or even more if we consider

elastic deformations of the surface around the

joint as a result of it moving e.g., skin folding.

Hence, shapes such as human beings with many

joints can have a relatively large and complex

embedding space due to the large pose2 space,

which leads to a more challenging identification

task.

In practice, this means that it can be hard to

computationally differentiate between the

identity of a shape and its pose; a pose Invariant

representation of shapes is required. We ask for

this representation to be different for different

shapes, but to be the same for the same shape

under a change of pose and orientation.

Formally, it is common practice to model shapes

as Riemannian manifolds, and the changes

between them as a distance preserving

transformation, which is referred to as an

1 We shall use the word shape to describe an object

regardless of its pose\orientation, e.g., a specific

person is an object.
2 We shall use the word pose to describe the way a

shape appears (regardless of the object itself), such as

the setting of its joints and its orientation.

isometry. This is because only the joints are

moved, but all other parts of the shape are not

moved with respect to their neighborhood, hence

if the metric was to be altered, it would only be in

the joints’ areas due to elastic deformations of the

skin, muscle, and fat. We neglect effects of this

deformation in our current model, but since we

make use of real scans, our model is trained on

data containing such deformations and thus

theoretically it could learn to account for them.

Henceforth, let 𝑋 be the set of all non-rigid

objects3 and 𝑆 ⊆ 𝑋𝑋 be the set of all isometric

transformations, our objective is to find a

function 𝜙 such that:

(1) ∀𝑥, 𝑦 ∈ 𝑋: 𝜙(𝑥) = 𝜙(𝑦) ⟺ ∃𝜓 ∈ 𝑆, 𝜓(𝑥)

= 𝑦

This definition is not the standard definition of an

invariant signature, as it also asks for the

signature to be unique to each object. This is

important if our goal is to learn a useful signature,

since removing this condition means that trivial

signatures are accepted as viable signatures e.g.,

signatures that are constant over all shapes, but

such signatures contain no information.

Since objects are continuous, we obviously

cannot deal with them directly using computers,

and therefore we choose to represent them using

point clouds sampled from the object. We show

that even at lower resolutions and without using

3 We shall use the word object to describe a shape in a

specific pose, such that there is no ambiguity in this

definition.

1

edge information our method achieves

satisfactory results.

To find a function satisfying the above

conditions, we make use of deep neural networks,

a slightly altered PointNet [14] is used to encode

the objects into normalized 1024-dimensinoal

vectors that are pose invariant and unique to each

shape.

To achieve this we train our network in a Siamese

network setup, where different objects are fed

into encoders with shared weights. The loss

function motivates the network to learn pose

invariant signatures by motivating close

signatures for objects representing the same

shape in different poses, and distant signatures for

objects representing different shapes.

We compare our signatures in a shape

classification task against MDS-type algorithms

and an end-to-end classifier that shares its

architecture with our algorithm. Interestingly, our

algorithm beats the classifier trained with the

same architecture, showing that our training

scheme motivated learning meaningful

signatures.

Figure: the upper two tringular meshes are of

the same person (shape) in different poses, and

the bottom two are two different poses of

another shape.

An invariant signature extractor would produce

the same signature for the upper two meshes,

and a different signature the is identical for the

bottom two.

3 Previous Work
Learning Invariant Representations of

Planar Curves

Deep learning methods have been successfully

used to learn invariant signatures of planar curves

by [1] where they rely on the fundamental

theorem of differential invariants [22], which

states that every differential invariant of a planar

curve with respect to some group of

transformations is a function of the derivatives of

a unique differential invariant (of a bounded

order) with respect to an arclength

parameterization.

This means that every differential invariant of a

planar curve is a function of an infinitesimal

neighborhood of each point, meaning that no

global context is needed to calculate the

differential invariants, and thus convolutional

networks could be used.

To do this, [1] uses a convolutional network while

assuming that the points are ordered correctly,

meaning that the output corresponding to each

point would be a function of the receptive field of

the convolution which is a neighborhood of the

point itself. The signature is trained using a

Siamese network setup. By learning an invariant

signature under the Euclidean transformation

group, Gautam et al. show that this method

successfully learns a function strongly correlated

to the Gaussian curvature of planar curves which

is the first differential invariant of a planar curve

under the Euclidean transformation group.

2

3.1 MDS
Multi-Dimensional-Scaling [2] is a classical

algorithm, or rather a family of classical

algorithms, that embed data of a high dimensional

general metric space (not necessarily Euclidean)

into lower dimension (usually) Euclidean space;

the algorithm attempts to minimize the pairwise

distance matrix of the object before and after the

embedding. We note that these methods require

such distances to be provide/computable, and

thus using points-clouds is not trivial, and usually

triangulated meshes are used.

Formally, let {𝑥𝑖}𝑖=1
𝑛 ⊆ 𝑋 where (𝑋, 𝑑𝑋) is a

general metric space, define 𝑑𝑖𝑗 = 𝑑𝑋(𝑥𝑖, 𝑥𝑗), the

classical MDS algorithm solves the following

optimization problem:

{𝑦𝑖
∗}𝑖=1

𝑛 ≔ argmin
{𝑦𝑖}𝑖=1

𝑛
{∑ (𝑑𝑖𝑗

2 − ‖𝑦𝑖 − 𝑦𝑗‖
2

2
)

𝑛

𝑖=1

}

Such problems could be solved in many ways,

some are iterative and others are axiomatic &

deterministic.

[3] right: the popular 3D Swiss roll, lift: MDS

embedding of the Swiss roll.

Note: that one could see that the geodesic

distances of points in the left object are

represented by the Euclidean distance on the

right.

As mentioned previously, objects are modeled as

metric spaces. The MDS algorithm could applied

to meshes describing such spaces to embed the 2-

dimensional manifold into a Euclidean space of

higher dimension. The metric of original metric

space is defined by the geodesic distances

between the points of the mesh which could be

calculated using known methods such as Fast

Marching [4] or the Heat Method [5], many

variations of this have been suggested over the

years such as in [6],[7] and [8]. Because we

model pose transformations as isometries, the

embeddings into Euclidean space for any two

poses of the same object are also isometric, but an

isometry in the Euclidean space is a Euclidean

transformation. This means that the question of

weather two shapes are isometric is equivalent to

the question of weather their embeddings are a

result of a Euclidean transformation of one

another.

3.2 NMDS
Non-Metric MDS[9] is a variant of multi-

dimensional scaling that attempts to conserve the

order of the distances and not the distances

themselves, meaning that if we were to replace

each element of the distance matrices (before and

after the embedding) by its rank, optimally the

resulting matrix would be untouched by the

NMDS embedding.

To do this, the algorithm attempts to optimize a

term we call the stress, which is defined by the

following equation:

𝑆𝑡𝑟𝑒𝑠𝑠 ≔ √
∑(𝑓(𝑥) − 𝑑)2

∑𝑑2

Where:

• 𝑥 is the vector of proximities.

• 𝑑 the point distances.

• 𝑓 is a monotonic transformation of 𝑥,

which could be found by using Isotonic

regression [10].

3.3 Geodesic Distance Descriptors
Geodesic Distance Descriptors [11], is an

algorithm that attempts to find an orthogonal set

that minimizes the MSE of the best representation

of the distance matrix as linear combinations of

the elements of the set (noting that we do not call

it a basis as it does not have to be of the dimension

of the space, and thus reducing the

dimensionality). Mathematical approximations

3

are used to make this process more efficient and

less heavy in terms of computational resources;

this leads to a decomposition of the

approximation 𝐷̃ = 𝑄Λ𝑄𝑇, where Λ is a diagonal

matrix, and thus 𝑋 ≔ 𝑄√Λ is well defined, and

noting that 𝑋𝑋𝑇 = 𝐷̃ one could say that 𝑋

encodes the full information found in 𝐷̃, and thus

X could be our embedding where 𝑋 ∈ ℂ𝑛×𝑐

where n is the number of points and c is the

chosen dimension of the embedding space.

This means that X could be thought of as the set

of pointwise descriptors for each point.

Additionally, we note that since the entire process

only takes into consideration the geodesic

distances between points. One can prove that the

resulting descriptors are permutation, rotation,

and translation invariant.

Additionally, as discussed above, we model non-

rigid transformations as isometric

transformations, meaning that the geodesic

distance matrix should not be affected, and thus

resulting in a descriptor invariant to pose

changes.

4 Training For Invariance
We observe that our objective (1) for the learned

function 𝜙 could be thought of as two conditions:

1- Given a shape in some pose 𝑥 ∈ 𝑋, ∀𝜓 ∈

𝑆 𝜙(𝑥) = 𝜙(𝜓(𝑥)). (2)

2- Given two different shapes 𝑥, 𝑦 ∈ 𝑋 (i.e.,

∀𝜓 ∈ 𝑆, 𝜓(𝑥) ≠ 𝑦), 𝜙(𝑥) ≠ 𝜙(𝑦). (3)

Noting that if and only if both atoms are satisfied,

equation (1) is satisfied.

Analyzing our new set of objectives, we can see

that the first one asserts that pose invariance,

while the second asserts that different objects

produce different signatures, and thus excluding

trivial invariant signatures.

One possible method to learn such a signature is

adversarial training; an encoder network learns

the signature, while two classifier heads are

trained, where one learns to classify the shapes,

and the other learns to classify the poses; the

heads are trained in interleaving intervals with the

encoder, such that the encoder’s loss is defined in

so that it minimizes the shape classifier’s loss and

maximizes the pose classifier’s loss.

The problem with the above approach is that it

requires labels for the poses, while for data

acquired from animations, for example, there are

thousands of poses, which might be unique, and

therefore the classification task would be hard

and there might not be enough examples of each

pose to generalize (the curse of dimensionality).

Animations are interesting since 3D scans of the

same shape in different poses are not common,

and a great source for such scans is 3D animations

that include hundreds of different frames of the

same shape in different poses.

Our solution to this problem is to use a metric

learning scheme, where we only need to know

whether the two given point clouds represent the

same shape, and if so, we need to know whether

they are the same pose or not. This means that we

have 3 options: same shape different pose, same

shape and pose & different shapes. The reasoning

behind us not caring about the pose of different

shapes could be seen from our objective, if two

shapes are different, we want the signatures to be

different regardless of the pose.

Additionally, we note that objects of the same

shape and pose are identical, meaning that

trivially the network produces the same output for

both, and therefore we do not need to keep track

of them. This leaves us with only two options: the

same shape in a different pose and different

shapes, which we term positive and negative

examples respectively.

After establishing a dataset with the above

annotations, we sample triplets such that the first

object is called the original sample, along with

negative and positive examples of that object. we

build our loss function such that it maximizes

some metric between the signatures of the

negative examples and the original samples’ and

minimizes it between the positive examples’

signature and the original samples’.

4

4.1 The Signature
We choose our signature to be a vector of some

come dimension 𝑛, but We limit the signature

vector to vectors with a unit norm meaning that

𝜙 ∈ 𝒮𝑛 𝑋
. This gave us more stable results

numerically, reduces the degrees of freedom by

only 1, and encourages a linear separation.

Another important reason for this choice is that it

makes the network encode the similarity of

different vectors into their direction rather than

their range, which is more precise and allows for

the use of the cosine similarity measure:

cos(∠(𝑥, 𝑦)) ≔
⟨𝑥, 𝑦⟩𝑠𝑡𝑑

‖𝑥‖2‖𝑦‖2
= ⟨𝑥, 𝑦⟩𝑠𝑡𝑑

Where the last equality is a direct result of

normalizing the vectors, this means that this

measure could be easily calculated.

4.2 Loss function
As will be described in section 5.1, we

experimented with a variety of loss functions,

until we finally arrived at what we termed the

‘LinearInfoNCE’, which is inspired by the

InfoNCE loss[12].

Let G be a set of objects, denote 𝐺 =

{𝑂}⨆𝐺+⨆𝐺−, where 𝑂 is the original sample, and

𝐺+, 𝐺− are the sets are positive and negative

examples respectively. The LinearInfoNCE

function acting on the encoder 𝜙 and the sample

set G, is defined as:

𝑙(𝜙; 𝐺)

≔
1

|𝐺| − 1
[∑ − log (

⟨𝜙(𝑠), 𝜙(𝑂)⟩ + 1

2
)

𝑠∈𝐺+

+ ∑ − log (1 −
⟨𝜙(𝑠), 𝜙(𝑂)⟩ + 1

2
)

𝑠∈𝐺−

]

One way to understand the above function is that

we model the probability of two objects being the

same to be a linear (or more precisely affine)

function of the cosine of the angle between the

two vectors, this a result of the vectors being unit

vectors and therefore:

⟨𝜙(𝑠), 𝜙(𝑂)⟩ = cos(∠(𝜙(𝑠), 𝜙(𝑂))

Since the range of the cosine function is [-1,1],

while a probability’s range is [0,1], we define the

model the probability of two signatures being

outputs of the same shape as
⟨𝜙(𝑠),𝜙(𝑂)⟩+1

2
 which

has the adequate range. Notice that for two

similar signatures the angle would be small, and

thus the cosine would be close to 1 (its maximal

value), leading to that the probability too would

be close to 1 as expected. If the angle is large, the

closer it gets to 𝜋 [𝑟𝑎𝑑], the smaller the cosine

becomes, so that finally at 𝜋 [𝑟𝑎𝑑] it becomes -1,

making the probability 0 as we would expect.

Another important property of the cosine measure

of the angle is that it is symmetric, and thus it is a

function of the amount of difference in angle and

not the direction, which is more fitting, as there is

no specific ordering that should be followed

between the shapes or their signatures and adding

such an ordering can make the distribution on the

sphere biased.

Our objective is to maximize the probability

when the example is a positive one and to

minimize it otherwise, and since we are using a

probability measure that is a linear function of the

cosine of the angle, this would lead to minimizing

the angle between signatures of the same shapes

which satisfies (2) and maximizing it for different

shapes which satisfies (3), meaning that the

minimization of such a loss achieves our original

objective.

We observe that maximizing the probability

when the example is a positive one, and

minimizing it otherwise, could be modeled as a

binary classification problem, and thus a Binary

Cross-Entropy is used applied the above-

described probabilities, finally giving us the

LinearInfoNCE loss.

5

4.3 Architecture

Figure modified from [13]

Our focus was not to engineer a highly

sophisticated network that fits our problem

exactly, rather we aimed to use a simple general

network, but to optimize the training scheme such

that it can be used with a wide range of datasets

and different networks.

We make no assumption on the point cloud vertex

ordering, and as such our method is applicable to

general point clouds and natural depth

projections; furthermore, we do not assume a

triangulated shape or knowledge of the geodesic

distances, making our algorithm simple, efficient

and general.

We used an encoder inspired by O. Halimi et.

Al’s encoder [13] used in a Siamese network

setup, and then added a neural network with

either 1 or 2 Linear layers (commonly termed

MLP) for classification tasks.

The encoder is a simple PointNet [14] inspired

network, meaning that it takes the features of each

point which in our case are either the coordinates

alone or the coordinates alongside the

components of the second order moments (i.e.,

𝑥2, 𝑦2, 𝑧2, 𝑥𝑦, 𝑧𝑦 and 𝑥𝑧 as detailed in the section

4.5.1), and then feeds those into an MLP that its

weights shared by all the points. These are all

concatenated and a max-pooling operation is

applied along the points axis, giving a vector

invariant to permutations on the order of points,

and thus this vector could be fed into an MLP to

get the final encoding.

4.4 Dataset
We used the FAUST and DFAUST datasets, both

of which are 3D registered scans of humanoid

figures, and have a trivial vertex correspondence

for their 6890 vertices. Due to computational

considerations, we utilize only 1035 points from

each point cloud, where the sampling was done

using Pyvista’s default down sampling technique.

The shapes are provided triangular meshes but we

extract simpler point-cloud representations from

each triangulated mesh for the sake of simplicity

and generalizability.

4.4.1 DFAUST:

The DFAUST dataset consists of approximately

40,000-point clouds in 3D, which consist of 10

different people (shapes), each with around 10-15

different animations containing around 200-400

3D registered triangular meshes.

To build our training, validation, and testing sets,

we had to reduce the correlation between the

different sets as much as possible without making

the dataset smaller than it already is.

5 full-length animations are shared amongst

every person in the dataset, out of these 2 were

chosen to be the validation set, and another 2 to

be the test set, we do this for every given person,

and this results in approximately an 80,10,10 split

(32K, 4K, 4K).

As will be described in section 4.5.2, one of the

methods that we use to solve the problem of

rotation invariance is PCA normalization. We

note that this is a computationally heavy task

which increases the training time by an order of

magnitude. To deal with this issue, we created a

version of the DFAUST dataset that had already

been normalized using PCA, but as we described

in section 4.5.2, the PCA normalization in unique

up to flipping the signs of each coordinate

independently, hence we implement an

augmentation that does exactly that; when

training we load the pre-normalized data and

apply the augmentation which is computationally

6

light and does not increase our training time, but

applying Lemma 1 (see below) we receive an

equivalency between the simple augmentation

and applying a random rotation and then PCA

normalization.

4.4.2 FAUST:

To understand how well our model generalizes to

unseen shapes, we use the FAUST dataset, which

contains 10 people in 10 different poses each.

Here we went with a uniformly random 80% train

and 20% test split over each shape in the dataset.

4.5 Rotation Invariance
The basic networks were able to perform

reasonably well on the original data, as we show

in the section 1.1.1, but when using the proposed

network whilst augmenting the data by adding a

random rotation makes the network work

considerably worse, yielding unsatisfactory

results.

Rotation Invariance is desirable since real-world

data might not always be aligned, e.g., cameras

might be tilted, surfaces might be uneven and

shapes might be rotated; an algorithm that

Multiple solutions were considered, most

notably:

1. Alignment networks[14], described

in detail in the section 5.4.

2. Providing second order moments as

inputs to the network.

3. Using PCA to normalize the inputs.

Following is an explanation for each of the above

methods.

4.5.1 Utilizing Second Order Moments as

Inputs

A solution that was inspired by [15], instead of

providing the network a point cloud where each

point’s features are its 𝑥, 𝑦 and 𝑧 coordinates, we

calculate the second order moments i.e.,

𝑥2, 𝑦2, 𝑧2, 𝑥𝑦, 𝑥𝑧 and 𝑦𝑧, and provide them

alongside the point-cloud coordinates as inputs

for the network. This solution is simpler than the

one shown in [15], as it doesn’t use K-NN to feed

each points the moments of neighboring point.

Our approach clearly doesn’t provide localization

information, but still provides information that

would be otherwise hard to calculate.

One might initially assume that this is

unnecessary as the network is capable of learning

the above-mentioned moments by itself if

needed. However, since they are not linearly

dependent on first moments, it has been shown to

take number of layers logarithmic to the largest

multiplication, which would make the network

deeper and hence more susceptible to exploding

gradients, and undesirably increase the size of the

model hypothesis space.

In addition, higher moments provide us with

meaningful geometric information. For example,

together they construct the covariance matrix.

The spectral decomposition of the covariance

matrix supplies us with the principle components,

the primary directions of change for each point

cloud, acting as orientation axis, meaning that

this information could be used in order to learn a

canonical orientation for shapes.

Results using the above method are provided in

section 6.2.

4.5.2 PCA Normalization

Principle component analysis [16], is a classic

algorithm that is used traditionally for linearly

embedding data into lower-dimensional spaces.

This is done by analyzing the second-moment

matrix of the data (a.k.a., the covariance matrix

of the data) and determining which eigenvectors

correspond to the largest eigenvalues. This could

be shown to achieve the minimal MSE between

the original point-cloud and any representation

using a set of n vectors.

Formally, we aim to find 𝑇 an orthogonal

projection matrix such that:

𝑇 = argmin
𝑈∈ℝ𝑛×𝑚

{𝔼𝑥[‖𝑈𝑈∗𝑥 − 𝑥‖2
2]}

Where:

• 𝑥 is a sample from our data distribution,

𝑥 ∈ ℝ𝑚.

7

• 𝑚 is the dimension of a sampled point

from our data.

• 𝑛 is the chosen embedding dimension.

• 𝑈 is the target matrix of orthonormal

column vectors.

Note that we could generalize the problem to

general linear projections instead of orthogonal

ones, but it could be easily proven that there

exists an optimal solution of the generalized

problem which is also an orthonormal matrix, and

thus an optimal solution for the problem above is

optimal for the generalized problem.

The solution to the above problem is:

𝑇 = (

| | … |
𝑢̂1 𝑢̂2 … 𝑢̂3

| | … |
)

Where 𝑢̂𝑖 is the normalized eigenvector with the

ith highest eigenvalue of the covariance matrix

𝔼[𝑋𝑋∗].

This could be shown to be equivalent to 𝑢̂𝑖

satisfying:

𝑢̂𝑖 = argmin
𝑢̂𝑖∈ℝ𝑚 𝑠.𝑡.

∀0<𝑗<𝑖,𝑢̂𝑗⊥𝑢̂𝑖

∧ ‖𝑢̂𝑖‖2=1

{𝕍𝑎𝑟𝑥(𝑢̂𝑖
𝑇𝑥)}

Meaning that these are the directions in which the

orthogonal projections of the points have the

largest variance, this could be exploited to gain

information about the orientation of the shape

[23], as in our case the shapes are humanoid

figures, and thus for most positions the direction

with the highest variance is the one that goes

parallel to the spine.

And therefore, if we solve optimization problem

but use 𝑛 = 𝑚, we get 𝑇 ∈ ℝ3×3 which is a

rotation matrix, which orients each mesh such

that the first coordinate is the one with the highest

variance, the second is the second highest and

finally the third is the one with the least amount

of change, we do this in hopes of reducing the

degrees of freedom enough so that the network

learns a signature invariant to the slight

orientation differences that might be the result of

different poses. For example, a person in the

splits position (legs wide open) might have a

higher variance in the direction of the legs (to his

sides) rather than his spine.

This allows our network to learn a simpler task on

PCA oriented shapes, and when combining the

PCA-normalization layer into our algorithm this

gives a general pipeline that deals with isometric

and Euclidean transformation, without requiring

the network to learn to deal with the general

Euclidean transformations by itself.

Figure: A mesh with the principle components

plotted over it where red, green, and blue

correspond to the eigenvalues in descending

order.

Lastly, we show that this provides us with an

algorithm that is invariant to rotations up to

multiplication an axis mirroring rotation matrix.

Lemma 1: the above described normalization

method is invariant to rotations up to a

multiplication with an axis mirroring rotation

matrix:

𝑑𝑖𝑎𝑔{±1, ±1, ±1}

Note: the elements are independent, meaning that

there are 8 different options in total.

8

Proof. Given a rotation matrix 𝑅, we define 𝑌 =

𝑅𝑋, and thus the covariance matrix of Y is:

𝔼[𝑌𝑌𝑇] = 𝔼[𝑅𝑋𝑋𝑇𝑅𝑇] = 𝑅𝔼[𝑋𝑋𝑇]𝑅𝑇

= 𝑅𝔼[𝑋𝑋𝑇]𝑅𝑇

And thus for 𝑣 an eigenvector of 𝔼[𝑋𝑋𝑇] with

eigenvalue 𝜆, one can easily see that 𝑢 = 𝑅𝑣 is an

eigenvector of 𝔼[𝑌𝑌𝑇] with the same

eigenvalue:

𝔼[𝑌𝑌𝑇]𝑢 = 𝔼[𝑌𝑌𝑇]𝑅𝑣 = 𝑅𝔼[𝑋𝑋𝑇]𝑅𝑇𝑅𝑣

= 𝑅𝔼[𝑋𝑋𝑇]𝑣 = 𝑅𝜆𝑣 = 𝜆𝑅𝑣

= 𝜆𝑢

And the opposite direction is trivial since 𝑣 =

𝑅𝑇𝑢, and therefore it is a direct result of the above

result.

A direct result from this is that if 𝑇 = (𝑢̂1, . . 𝑢̂𝑛)

is a solution to the original problem, then after

rotation 𝑇̃ = (𝑅𝑢̂1, . . 𝑅𝑢̂𝑛) = 𝑅(𝑢̂1, . . 𝑢̂𝑛) = 𝑅𝑇

is the solution for the rotated problem, and

therefore the final embedding would be:

𝑇̃𝑇𝑌 = 𝑇𝑇𝑅𝑇(𝑅𝑋) = 𝑇𝑇𝑋

𝑅𝑖
2 ≔ 𝛼̃,

Which is exactly the original solution.

As for the 8 solutions we mentioned above, we

note that for every normalized eigenvector 𝑢, −𝑢

is a valid solution as well, and therefore we might

in different runs get 𝑢 and −𝑅𝑢, and thus the

difference in sign.

∎

Lastly, we note that theoretically if two or more

eigenvectors have the same eigenvalue, the

number of possible solutions would become

infinite, since they would form a solution space

of a dimension higher than 1, meaning that there

is an infinite number of orthonormal basis for this

space. We neglect such cases for two reasons.

Firstly, having two directions have the same

eigenvalue is uncommon for general natural

shapes. Secondly, due to numeric instabilities, the

probability of actually getting two exactly equal

eigenvalues drops substantially. We have

asserted this assumption holds empirically.

5 Experiments

5.1 Loss Functions
In section 4.2 we showed our proposed loss

function which we call LinearInfoNCE, but other

loss functions were tested to determine the best

fitting loss function, among those are:

5.1.1 Contrastive Loss

Contrastive loss [17] basic well-known loss that

aims to minimize the L2 distance between the

signatures that come from the same shape, and

aims to maximize the L2 distance between the

signatures that come from different shapes.

ℒ(𝑊1, 𝑊2, 𝑌) = (1 − 𝑌)
1

2
𝐷𝑊12

2

+ 𝑌
1

2
max(0, 𝜇 − 𝐷𝑊12

)
2

Where:

• 𝑊𝑖 is the signature of the ith object.

• 𝐷𝑊𝑖𝑗
 is the L2 distance between 𝑊𝑖, 𝑊𝑗

meaning 𝐷𝑊𝑖𝑗
= ‖𝑊𝑖 − 𝑊𝑗‖

2
.

• 𝑌 is a binary variable, which receives the

value 1 iff 𝑊1, 𝑊2 come from different

shapes.

• 𝜇 is a hyperparameter, which defines the

‘cutoff’.

As one can see, if the signatures come from the

same shape, Y would be 0, and therefore the loss

would be:

𝐿𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑊1, 𝑊2) =
1

2
𝐷𝑊12

2

Meaning that optimizing the loss would minimize

the distance as planned.

Otherwise, if the signatures come from different

shapes, Y would be 1, and therefore the loss

would be:

𝐿𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑊1, 𝑊2) =
1

2
max(0, 𝜇 − 𝐷𝑊12

)
2

9

Optimizing this term would maximize 𝐷𝑊12
 as

planned, but it would stop if the distance

exceeded the given threshold 𝜇, this is very

necessary, as if we were to use 𝑌
1

2
𝐷𝑊12

2 instead,

the network could learn to prefer increasing the

difference between signatures of different shapes,

but not focus as much on bringing the signatures

of the same shape close, because increasing a

large number that is squared has stronger effect

than decreasing a small squared number, in other

words it is more beneficial to increase the

distance between negative example that to reduce

the distance between positive examples.

5.1.2 Triplet Loss

Triplets loss[18] is yet another common loss

function, it too uses the L2 norm, but it differs

slightly, its goal could be interpreted as

maximizing the difference between the average

distance between signatures of the same shape

and the average distance between signatures of

different shapes.

To achieve this the proposed loss function is

modified to:

ℒ(𝑥, 𝑥𝑝, 𝑥𝑛) ≔ max (0, 𝛾‖𝑓(𝑥𝑛) − 𝑓(𝑥)‖2
2

− (1 − 𝛾)‖𝑓(𝑥𝑝) − 𝑓(𝑥)‖
2

2

+ 𝛼)

Where:

• 𝑥 is some sample.

• 𝑥𝑝 is a positive sample, meaning a

sample of the same shape in a different

pose.

• 𝑥𝑛 is a negative sample, meaning a

sample of a different shape.

• 𝛾 ∈ (0,1) is a weighting hyperparameter.

• 𝛼 is the difference threshold

hyperparameter.

• 𝑓 is the encoder function.

The gamma allows us to pick a value that

normalizes both terms to be of the same order of

magnitude or to give more emphasis to one of

them. on the other hand, the 𝛼 combined with the

clipping operation means that if the (signed)

distance drops below −𝛼 (meaning that the

difference is over 𝛼) the loss would become zero.

This way the network would not be tempted to

overfit a subset of the training data while

neglecting the rest, instead it stops optimizing the

given triplet when it reaches a resolution ability

of 𝛼.

5.1.3 SigmoidInfoNCE

This loss has the same motivation described for

LinearInfoNCE, but it differs only in it how it

transforms the cosine similarity into a probability

measure, LinearInfoNCE, as the name implies,

does this linearly (or rather affinely), but

SigmoidInfoNCE does this by exploiting the

sigmoid function, and therefore it is calculated by

the equation:

𝑙(𝜙; 𝐺)

≔
1

|𝐺| − 1
[∑ − log (𝜎 (

⟨𝜙(𝑠), 𝜙(𝑂)⟩

𝜏
))

𝑠∈𝐺+

+ ∑ − log (1 − 𝜎 (
⟨𝜙(𝑠), 𝜙(𝑂)⟩

𝜏
))

𝑠∈𝐺−

]

Where:

• 𝜏 is a temperature hyperparameter that

controls the sensitivity of the probability

to changes in the cosine similarity.

In other words, this is just a Binary Cross Entropy

loss where the probabilities are calculated by

𝜎 (
⟨𝜙(𝑠),𝜙(𝑂)⟩

𝜏
).

5.2 Normalization
Normalization of the outputs of the layers of the

network has been repeatedly shown to improve

stability by reducing the covariate shift [19],

reducing overfitting and accelerating the training

of the network [20].

To reap the full benefits of normalization, one

must pick the right kind of normalization for the

task, the top candidates for our specific task were

Batch Normalization [24], Layer Normalization

[25], and Instance Normalization [26] (which

using Pytorch terminology is a special case of

10

layer norm, but for the sake of clarity, in the

following section we are going to refer to them by

different names).

As could be seen in the above figure[21], N is

the batch size, C is the number of channels and

H,W represent any additional dimensions. The

different normalization schemes differ in what

dimension each of them normalizes, the pixels

annotated in blue in the above figure are

normalized using the same standard deviation

and mean.

Batch Norm, given a batch of samples, calculates

the standard deviations and means of the set of all

features of each channel, and then normalizes

each channel of every sample in the batch using

the corresponding standard deviation and mean.

This gives independence between the channels

but creates a dependence between the features of

each channel and the samples of the batch.

Layer Norm, given a sample, calculates the

standard deviation and mean of the set of all

features, and then normalizes every feature using

these values. Means that we normalize each

sample independently of other samples, and

assume a shared distribution of each sample

features.

Instance Norm, given a sample, calculates the

standard deviations and means of the set of all

features of each channel, and then normalizes the

features of each channel of the given sample

using the corresponding standard deviation and

mean. This gives each sample independence of

other samples in the batch, as well as

independence between different channels of the

sample.

In our case we tested Batch Normalization and

Instance Normalization where the dimension that

we normalize along is the points, meaning that we

learn a statistic for the distribution of the points

and normalize across it. Notice that is a

permutation invariant operation, which is of top

importance, as we do not assume some ordering

on the points, meaning that ‘the same point’ could

appear in different positions in the vector in

different samples.

5.3 Loss Functions and Normalization
To check which normalization technique and loss

function fit our goals best, we used the FAUST

dataset, to run a simple shape classification test

(we elaborate on this in section 6.1.1) using a K-

Fold validation technique, and then we used 4

different thresholds of accuracy

{49%, 59%, 69%, 79%}, and calculated the

percentage of models that surpassed each

threshold.

The reason for checking pairs comprised of a loss

function and a normalization technique, rather

than checking each individually, is that there

might be a correlation between the two, and thus

a need for checking the entire gird instead of

sampling points on each axis (where the first axis

is the loss function and the second is the

normalization technique).

Hence for each pair of a loss function and a

normalization technique we perform K-Fold

validation for K=5, and calculate the percentage

of the K trained models that got an accuracy

above each given threshold.

As can be seen from the above figure, the

LinearInfoNCE performs more consistently than

other loss functions, and with the added benefit of

it being the only function with no

hyperparameters, it was a clear decision.

The normalization on the other hand was not as

clear of a decision, but a slight advantage of using

11

no normalization could be observed in the above

testing, furthermore while training on DFAUST

not using normalization increases the accuracy by

5% and thus it was decided not to use it.

Many reasons could play a role in this interesting

result. Our theory is that neither of the

normalization techniques makes sense given the

type of data, as different meshes should have

different distributions of their points and channels

because of the differences in the pose. The

difference in these statistics could be important.

For example, a high standard deviation in some

direction could indicate that this is the direction

of the spine of a standing mesh, on the other hand,

a low standard deviation could indicate the depth

direction of a mesh. Normalizing the data might

hide away this information and thus make it

harder to orient the shape.

5.4 Alignnet
One possible solution for the rotation invariance

problem that was described above is training an

alignment network as proposed in [14], where the

network attempts to learn the 6D pose vector

(meaning the 3D translation, and a 3D

representation of a general 3D rotation using

Euler angles).

To train such a network, we note that by default

the DFAUST point clouds are aligned perfectly,

by applying random 3D rotations sampled

uniformly and 3D translations sampled from a

multivariate normal distribution to its samples,

we build a dataset of shapes transformed by a

Euclidean transformation alongside the

transformations’ parameters. Using this dataset, a

network could be trained to predict a Euclidean

transformation’s parameters, given a transformed

object.

As for the loss, different losses showed different

results, for the translation a simple L2 metric was

all that was needed, as for the rotation, there were

more options, notably:

1. L2 loss over the difference between the

predicted Euler angles representation of

the predicted and ground truth rotations.

Note: in order to avoid problems

pertaining to the cyclicity of the Euler

angles representation, the last non-linear

layer’s output is bounded to one cycle of

the angle’s range.

2. L2 loss over the difference between the

rotation matrix induces by the predicted

Euler angles and the ground truth rotation

matrix.

3. L2 loss between the rotation matrix

transposed multiplied by the ground truth

matrix, and the unit matrix, the reasoning

behind this loss is that it is equivalent to

the predicted rotation matrix’s inverse

canceling out the ground truth rotation,

which is the original objectives.

Testing showed slight differences between the

different losses, but overall the networks were

unable to transfer over to FAUST after training

on DFAUST and scored lower overall on

DFAUST on the subsequent classification task.

We assume that this happens because we trained

the network on DFAUST which contains a low

number of different shapes, and thus the network

could learn to overfit them (e.g., classify the

shape and then understand its orientation based

on its identity), which would make the network

unable to generalize to other datasets such as

FAUST.

6 Results & Comparison

6.1 Testing Method
To quantitively measure the quality of the learned

signatures, we argue that if our signature satisfies

eq (1), then it should contain all the necessary

information to classify the different shapes, but it

should contain minimal to no information about

the pose, and thus two main tests were proposed.

6.1.1 Shape Classification

The first test is a simple shape classification test,

where we add an MLP head that takes the

signature from the pre-trained encoder (which we

freeze when testing), and then train the head to

classify the different shapes (in our case,

humanoid point-clouds).

12

A high accuracy suggests that the signature is

unique. For each different shape there exists a

different signature, and thus they can be

distinguished one from the other, satisfying eq.

(3).

Notice that this does not mean that the network

has learned a pose invariant signature since each

shape can still get different outputs for each pose,

but the meaning of this is that each shape’s

signature space (spanned by the embeddings it

gets for all its different poses) has a small or no

intersection with other shapes’ signature spaces,

and thus the satisfaction of eq. (2) is not implied

by high accuracy in this test.

Technical Details:

We make use of two tests, one where the MLP

head is a one-layer MLP, making the test a linear

classification test. If successful it means that a

linear separation was achieved in the signature

space.

The other test is a two-layer MLP, allowing it to

learn a more complex separation, but without

having it be able to become too specific\overfit

the data.

We run the test in two settings, once on DFAUST,

and once for cross-dataset generalization on

FAUST. In both cases, the signature network is

trained on DFAUST, this gives us two measures

one for accuracy on similar data measured on

DFAUST, and one for the generalization ability

measured on FAUST.

6.1.2 Pose Classification

The second test is a pose classification test. The

is similar to the shape classification test described

above, meaning that we add an MLP head as

described and learn a classification task on the

signatures where the target is to predict the

correct pose.

A low top accuracy on this test means that the

signature retains low (or no) information about

the pose of the shape, meaning that it has

achieved pose invariance, hence satisfying eq.

(2).

Technical Details:

The same scheme that was used for the shape

classification task was used here, with one

difference, DFAUST contains 4000 frames for

each shape on average. Learning such a

classification task would have us learn an output

vector of dimension 4000, but since our data is

relatively sparse (40 samples), this means that on

average each frame appears 10 times, this is not

sufficient for learning to predict the pose.

As a result, the pose network is tested only on

FAUST.

6.1.3 Putting It All Together

To say that an algorithm has achieved our goals

(to a certain degree), it needs to score high on the

shape classification test, but low on the pose

classification test, since together they mean that

the algorithm satisfies both eq. (2) and eq. (3)

which as explained in the introduction mean that

the algorithm satisfies eq. (1), our mathematical

definition of learning an invariant signature.

6.2 Results

6.2.1 Algorithms

The models that we show below are:

• Baseline classifier: the encoder network

that we described, with a classification

head attached. Note that for testing a new

head is attached and retrained.

• SN w/o moments: Siamese network (our

proposed method), where the inputs are

the point clouds, and the features are the

x,y, and z values.

• SN w/ moments: Siamese network (our

proposed method), where the inputs are

the point clouds, and the features are the

x, y, and z values, alongside the second

order moments

(𝑥2, 𝑦2, 𝑧2, 𝑥𝑦, 𝑦𝑧 𝑎𝑛𝑑 𝑥𝑧).

• PCA algorithm: the inputs are

normalized using the PCA normalization

method described in section 4.5.2, and

then fed into the algorithm.

13

• GDD: GDD descriptors are used as

descriptors for the object after being

flattened, notice that since both DFAUST

and FAUST have a 1:1 correspondence,

and we do not permute the points, the

signature (because of the constant

ordering) is also a global signature, and

thus could be classified using our usual

MLP methods.

6.2.2 Tests

• Object classification:

o DFAUST – 1-layer head:

classifying the signatures into

shapes using a one-layer MLP

head on the DFAUST dataset.

o DFAUST – 2-layer head:

classifying the signatures into

shapes using a two-layer MLP

head on the DFAUST dataset.

o FAUST 2-layer head: classifying

the signatures into shapes using

a two-layer MLP head on the

FAUST dataset.

• Pose classification:

o FAUST – 2-layer head:

classifying the signatures into

poses using a two-layer MLP

head on the FAUST dataset.

6.2.3 Without Rotation:

c Object classification (↑) Pose Classification (↓)

Algorithm \ Test DFAUST –

1 layer head

DFAUST – 2

layer head

FAUST – 2

layer head

FAUST – 2 layer head

Baseline classifier 91.11% 91.08% 65.23% 40.46%

SN w/o moments 99.54% 99.1% 65.23% 15.8%

SN w/ moments 99.86% 99.54% 40.65% 35.64%

GDD 12.60% 92.29% 25.53% 10%

6.2.4 With Rotation:

 Object classification (↑) Pose Classification (↓)

Algorithm \ Test DFAUST –

1 layer head

DFAUST – 2-

layer head

FAUST – 2-

layer head

FAUST – 2-layer head

Baseline classifier 82.44% 82.43% 30.09% 70.26%

SN w/o moments 75.14% 74.65% 25.96% 33.74%

SN w/ moments 77.47% 80.34% 50.61% 36.61%

PCA baseline 12.64% 11.61% 30.46% 23.98%

PCA SN w/o moments 88.22% 86.34% 65.86% 10.25%

PCA SN w/ moments 91.48% 92.89% 55.39% 18.06%

 GDD 12% 92.52% 25.22% 10.99%

• Yellow indicates the best result, Grey indicates the second-best result.

7 Conclusions
Our framework achieves a 9% improvement over

the baseline and 8% over the SOTA achieving

near 100% accuracy on the aligned data. This

means that our framework encourages learning a

meaningful descriptor that does not overfit the

training data as much as end-to-end classification

would.

We argue that the improvement over aligned data

is one of practical use as well. In the general case

for humanoid scans we can assume that the

rotation would only be 2 dimensional, this is

because in most cases people are in upright

positions. The same goes for furniture, vehicles,

etc.

14

Most notably, on data augmented with random

rotations our framework achieved results

consistently better than the same architecture

trained as a classifier (the baseline). This implies

that our training scheme urges the network to

learn valuable information that generalizes better

since on the test set it still retains a higher

accuracy than the baseline. In other words, given

the same data and the architecture our proposed

training scheme performs better than training a

classifier in an end-to-end fashion.

Additionally, we see that since the baseline has

no explicit reason to learn pose invariant

signatures, the results show that the pose could be

classified better from the signatures it produces,

unlike the Siamese training scheme that we

propose that directly punishes such behavior.

As for the GDD, as could be seen from its

construction, it is completely rotation invariant,

and almost completely pose invariant (the almost

is the result of the geodesic distances being

distorted near the joints and skin folds; GDD

achieves the best pose classification accuracy – as

expected). But interestingly, using one layer for

classification achieves very bad results, pointing

to a non-linear separation between the objects,

but as soon as we use a 2 layer MLP we get 92%

accuracy which is a tie with our best algorithm.

However, of FAUST, we can see that the GDD

descriptor does not achieve as good an accuracy,

since it’s a much smaller dataset and the

variances might be small enough that it is hard to

learn a good separation between the different

objects.

We conclude that our method achieves results

that are competitive with the SOTA, alongside a

simpler (linear) separation, and thus allowing for

simpler post-processing algorithms.

Additionally, we note that our network is

comprised of linear and convolutional layers and

thus it is much more efficient than GDD and other

MDS counterparts that have cubic terms in their

complexity.

To summarize, we propose a deep learning-

based approach that utilizes a Siamese metric

learning scheme to learn a pose and orientation

signatures that is both competitive and more

efficient than the SOTA on rotated data, and

superior to the SOTA on aligned data.

8 References
[1] G. Pai, A. Wetzler, and R. Kimmel, “L EARNING I NVARIANT R EPRESENTATIONS O F,” pp.

1–11, 2017.

[2] R. S. Society, “Review of the Development of Multidimensional Scaling Methods Author (s): A .

Mead Source : Journal of the Royal Statistical Society . Series D (The Statistician) , 1992 , Vol .

Published by : Wiley for the Royal Statistical Society Stable URL : https,” vol. 41, no. 1, pp. 27–39,

1992.

[3] J. A. Burgoyne and S. McAdams, “Non-linear scaling techniques for uncovering the perceptual

dimensions of timbre,” Int. Comput. Music Conf. ICMC 2007, no. April 2014, pp. 73–76, 2007.

[4] J. A. Sethian, “Fast Marching Methods,” SIAM Rev., vol. 41, no. 2, pp. 199–235, 1999, doi:

10.1137/S0036144598347059.

[5] K. Crane, C. Weischedel, and M. Wardetzky, “The heat method for distance computation,”

Commun. ACM, vol. 60, no. 11, pp. 90–99, 2017, doi: 10.1145/3131280.

[6] G. Shamai, Y. Aflalo, M. Zibulevsky, and R. Kimmel, “Classical scaling revisited,” Proc. IEEE Int.

Conf. Comput. Vis., vol. 2015 International Conference on Computer Vision, ICCV 2015, pp. 2255–

2263, 2015, doi: 10.1109/ICCV.2015.260.

[7] E. Peterfreund and M. Gavish, “Multidimensional scaling of noisy high dimensional data,” Appl.

Comput. Harmon. Anal., vol. 51, pp. 333–373, 2021, doi: 10.1016/j.acha.2020.11.006.

[8] S. Martin and J. P. Watson, “Non-manifold surface reconstruction from high-dimensional point

cloud data,” Comput. Geom. Theory Appl., vol. 44, no. 8, pp. 427–441, 2011, doi:

10.1016/j.comgeo.2011.05.002.

[9] S. M. Holland, “Non-Metric Multidimensional Scaling (MDS),” J. Cell Biol., no. May, p. 8, 2008.

[10] E. Beutner and U. Kamps, “Order restricted statistical inference for scale parameters based on

sequential order statistics,” J. Stat. Plan. Inference, vol. 139, no. 9, pp. 2963–2969, 2009, doi:

10.1016/j.jspi.2009.01.017.

[11] G. Shamai and R. Kimmel, “Geodesic distance descriptors,” Proc. - 30th IEEE Conf. Comput. Vis.

Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 3624–3632, 2017, doi:

10.1109/CVPR.2017.386.

[12] A. van den Oord, Y. Li, and O. Vinyals, “Representation Learning with Contrastive Predictive

Coding,” 2018, [Online]. Available: http://arxiv.org/abs/1807.03748.

[13] O. Halimi et al., “Towards Precise Completion of Deformable Objects,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12369 LNCS, pp. 359–

377, 2020, doi: 10.1007/978-3-030-58586-0_22.

[14] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning on point sets for 3D classification

and segmentation,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol.

2017-Janua, pp. 77–85, 2017, doi: 10.1109/CVPR.2017.16.

[15] M. Joseph-Rivlin, A. Zvirin, and R. Kimmel, “Momenet: Flavor the moments in learning to classify

objects,” Proc. - 2019 Int. Conf. Comput. Vis. Work. ICCVW 2019, pp. 4085–4094, 2019, doi:

10.1109/ICCVW.2019.00503.

1

[16] J. Kang and A. K. Patterson, “Principal component analysis of mRNA levels of genes related to

inflammation and fibrosis in rats treated with TNBS or glutamine,” Inflammatory Bowel Diseases,

vol. 17, no. 7. pp. 1630–1631, 2011, doi: 10.1002/ibd.21544.

[17] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an invariant mapping,”

Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2, pp. 1735–1742, 2006, doi:

10.1109/CVPR.2006.100.

[18] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding for face recognition

and clustering,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 07-12-June,

pp. 815–823, 2015, doi: 10.1109/CVPR.2015.7298682.

[19] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing

internal covariate shift,” 32nd Int. Conf. Mach. Learn. ICML 2015, vol. 1, pp. 448–456, 2015.

[20] T. Salimans and D. P. Kingma, “Weight normalization: A simple reparameterization to accelerate

training of deep neural networks,” Adv. Neural Inf. Process. Syst., no. Nips, pp. 901–909, 2016.

[21] Y. Wu and K. He, “Group Normalization,” Int. J. Comput. Vis., vol. 128, no. 3, pp. 742–755, 2020,

doi: 10.1007/s11263-019-01198-w.

[22] Olver, Peter J. Classical Invariant Theory . Cambridge: Cambridge University Press, 1999. Print.

[23] Paquet, E. “Nefertiti: a Query by Content Software for Three-Dimensional Models Databases

Management.” International Conference on Recent Advances in 3-D Digital Imaging and

Modeling : Proceedings, May 12-15, 1997, Ottawa, Ontario, Canada. [Place of publication not

identified]: IEEE Computer Society Press, 1997. 345–352. Web.

[24] Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by

reducing internal covariate shift." International conference on machine learning. PMLR, 2015.

[25] Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer normalization." arXiv preprint

arXiv:1607.06450 (2016).

[26] Ulyanov, Dmitry, Andrea Vedaldi, and Victor Lempitsky. "Instance normalization: The missing

ingredient for fast stylization." arXiv preprint arXiv:1607.08022 (2016).

