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Motivation
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▪Human beings perceive objects 
independently of their pose, can 
machines do that too?
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Intro - Abstract

▪ We propose a metric learning framework for the construction of invariant 
signatures of non-rigid 3D point clouds under the isometry transformations group.

▪ We achieve results superior to the SOTA, by achieving descriptors that are more 
pose invariant yet more descriptive.

▪ Our method is more efficient that the SOTA, thus allowing for computations on 
larger point clouds.
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Prior Work

Learning Invariant 
Representations of 
Planar Curves - Gautam 
Pai et al. 
Using CNNs to learn geometric 
invariants under various 
transformation groups on planar 
curves. Successfully learned the 
gaussian curvature of curves.

MDS
A classical algorithm that 
attempts to embed a non-
Euclidian high dimensional 
metric space into a Euclidean 
space of a lower dimension 
while preserving the metric.

Geodesic Distance 
Descriptors – Shamai et al. 
Approximates a truncated basis for 
the geodesic distance functions of 
the metric space and uses it to 
embed the shape into a lower 
dimension.

Preserves the information encoded 
in the metric indirectly
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Learning Invariant Representations Of Planar Curves

•The goal of this work is to learn an invariant to the set of Euclidean 
transformations on planar curves.

•This is done using a Siamese learning scheme and a contrastive 
loss:

ℒ 𝑊1,𝑊2, 𝑌 = 1 − 𝑌
1

2
𝐷𝑊12

2 + 𝑌
1

2
max 0, 𝜇 − 𝐷𝑊12

2

• They use resampling techniques and smoothing in order to achieve re-
parametrization and scale invariance.

• They show that they were able to learn a signature strongly correlated to the 
Euclidean curvature.
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MDS

•Definition: let 𝑥𝑖 𝑖=1
𝑛 ⊆ ℝ3 be the vertices of a mesh, and ∀𝑖, 𝑗

∈ 𝑛 𝛿𝑖𝑗 = 𝑑𝑔𝑒𝑜 𝑥𝑖 , 𝑥𝑗 , then let 𝑋𝑖 𝑖=1
𝑛 ⊆ ℝ𝑘 be a mapping of 

𝑥𝑖 𝑖=1
𝑛 , the stress is defined as: 

𝑆𝑡𝑟𝑒𝑠𝑠 𝑥𝑖 𝑖=1
𝑛 =

σ𝑖<𝑗 𝛿𝑖𝑗 − 𝑑 𝑋𝑖 , 𝑋𝑗
2

σ𝑖<𝑗 𝛿𝑖𝑗
2

•The stress is could be thought of as the total energy of a spring 
system.

•Goal: minimize Stress!
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MDS

• Objective (reminder): min σ𝑖<𝑗 𝛿𝑖𝑗 − 𝑑 𝑋𝑖 , 𝑋𝑗
2

• Definition: 𝐷𝑠𝑟 ≔ 𝛿𝑠𝑟
2 , ෩𝐷𝑠𝑟 = 𝑑 𝑋𝑠 , 𝑋𝑟 = 𝑋𝑟 − 𝑋𝑠 2

2.

• Definition: B ≔ 𝐽𝐷𝐽, ෨𝐵𝑠𝑟 ≔ 𝑋𝑠
𝑇𝑋𝑟 = 𝑋𝑇𝑋

𝑠𝑟
.

• W.l.o.g σ𝑖=1
𝑛 𝑋𝑖 = 0, thus it could be proven that ෨𝐵 =

1

2
𝐽෩𝐷𝐽 where 𝐽 ≔ 𝐼 −

1

𝑛
1 1𝑇

and thus the objective could be written as: 

argmin
෩𝐷

𝐷 − ෩𝐷
𝐹

2
= argmin

෩𝐷
𝐽 𝐷 − ෩𝐷 𝐽

𝐹

2
= argmin

෩𝐷
𝐵 − ෨𝐵

𝐹

2

• It is known that this problem is solved by a truncated SVD approximation, thus using 
spectral decomposition: 𝐵 = 𝑉Λ𝑉𝑇 where Λ = 𝑑𝑖𝑎𝑔 𝜆1, … , 𝜆𝑘, 0, … , 0 , the optimal 

solution is 𝑉𝑛×𝑘 ෨Λ𝑘×𝑘

1

2 𝑤ℎ𝑒𝑟𝑒 ෨Λ is a truncated version of Λ.
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GDD
• The LBO basis is optimal for general smooth functions, but what if we constrain our 

functions to be the geodesic distance functions, another basis might be optimal.

• This work aims to find such a basis efficiently.

• Using furthest point-sampling an estimation of the geodesic distance matrix could be 
obtained.

• By clever mathematical manipulation (matrix decompositions and factorizations) an 
approximation of 𝑄, Λ could be obtained such that:

𝐷 ≈ ෠𝑄𝑇Λ ෠𝑄

▪ a matrix X could be written such that 

𝑋 = ෠𝑄 Λ ⟹ 𝑋𝑋𝑇 ≈ 𝐷

▪ X is a set of complex point-descriptors, and the above equation shows that the 
geodesic distances are preserved in the Euclidean distances between the descriptors 
of the points.
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Intro – Mathematical Framework

▪ Let 𝑋 be the set of all non-rigid shapes and 𝑆 ⊆ 𝑋𝑋 be the group of all isometric transformations, our

objective is to find a function 𝜙 such that:

1 ∀𝑥, 𝑦 ∈ 𝑋: 𝜙 𝑥 = 𝜙 𝑦 ⟺ ∃𝜓 ∈ 𝑆, 𝜓 𝑥 = 𝑦

▪ equivalently:

▪ Given an object in some pose 𝑥 ∈ 𝑋, ∀𝜓 ∈ 𝑆 𝜙 𝑥 = 𝜙 𝜓 𝑥 . (2)

▪ Given two different objects 𝑥, 𝑦 ∈ 𝑋 (i.e., ∀𝜓 ∈ 𝑆, 𝜓 𝑥 ≠ 𝑦), 𝜙 𝑥 ≠ 𝜙(𝑦). (3)
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Training For Invariance

▪ Since we have no known target 
signatures, we must learn them in an 
unsupervised fashion.

▪ We use a Siamese learning scheme.

▪ The same network is used to encode 3 
samples: the original, a positive and a 
negative example.

▪ The signatures are fed into our loss 
function, that minimizes the difference 
between the original and the positive 
sample and maximizes the difference with 
the negative sample.
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Details:
The signature

▪ As described, we aim for an invariant signature 
under the isometry transform group.

▪ We observe that point clouds are unordered sets, 
and thus to achieve invariance to the 
reparameterization, we aim for a global signature.

▪ We chose an embedding space of 1024 dimensions 
but constrained the embedding to be on the 1024-
dimensional unit sphere.

▪ This constraint allows for more stable training, 
and more meaningful descriptors.
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Details:
The Loss Function

LinearInfoNCE

▪ We aimed for a simple separation, preferably a 
linear one, and thus we used the angle between the 
signatures as our measure of distance.

▪ Since the signature is normalized, the inner 
product is equal to the cosine of the angle, and 
since the cosine is in −1,1 ,

𝜙 𝑠 , 𝜙 𝑂 + 1

2
∈ [0,1]

and thus, could be used as a probability measure.

▪ Note that if the vectors are identical, the probability is 1, 
if they are opposite, it is 0.
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Details:
The Loss Function

LinearInfoNCE

▪ Meaning that the probability could be interpreted as the 
probability of the signatures being of the same object, 
and thus BCE could be used.

▪ the final loss function is:
𝑙 𝜙; 𝐺 ≔

1

𝐺 − 1
෍

𝑠∈𝐺+

− log
𝜙 𝑠 ,𝜙 𝑂 + 1

2
+ ෍

𝑠∈𝐺−

− log 1 −
𝜙 𝑠 , 𝜙 𝑂 + 1

2

Where:

▪ G is the set of examples, 𝐺+, 𝐺− are the sets of positive 
and negative examples, and 𝜙 is the parametric 
function.
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The Architecture

▪ Pointclouds are unordered sets, and 
thus we need a network invariant to re-
permutation.

▪ We use a PointNet encoder with max-
pooling, and a MLP head.

▪ The same encoder is shared amongst 
the 3 examples.

▪ We try feeding second moments as 
features to the encoder as well.
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Experiments

▪ Our focus was not finding the best 
architecture possible, but rather a general 
training scheme that could be used with 
any architecture.

▪ Two important components are the loss 
function & normalization layers, thus we 
searched for the best combination.
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Experiments  
-loss functions

▪ Contrastive Loss:

ℒ 𝑊1,𝑊2, 𝑌 = 1 − 𝑌
1

2
𝐷𝑊12

2 + 𝑌
1

2
max 0, 𝜇 − 𝐷𝑊12

2

▪ Triplet Loss:

ℒ 𝑥, 𝑥𝑝, 𝑥𝑛 ≔ max 0, 𝛾 𝑓 𝑥𝑝 − 𝑓 𝑥
2

2
− 1 − 𝛾 𝑓 𝑥𝑝 − 𝑓 𝑥

2

2
+ 𝛼

▪ SigmoidInfoNCE:

𝑙 𝜙; 𝐺 ≔
1

𝐺 − 1
෍

𝑠∈𝐺+

− log 𝜎
𝜙 𝑠 , 𝜙 𝑂

𝜏
+ ෍

𝑠∈𝐺−

− log 1 − 𝜎
𝜙 𝑠 ,𝜙 𝑂

𝜏

▪ LinearInfoNCE:
𝑙 𝜙; 𝐺 ≔

1

𝐺 − 1
෍

𝑠∈𝐺+

− log
𝜙 𝑠 ,𝜙 𝑂 + 1

2
+ ෍

𝑠∈𝐺−

− log 1 −
𝜙 𝑠 , 𝜙 𝑂 + 1

2
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Experiments  
-Normalization

▪ Normalization is a very important part of any deep learning 
architecture it usually provides a more stable learning 
process, and better overall results.

▪ Different types of normalization have been proposed over 
the years, we considered a few:

▪ Batch normalization.

▪ Layer normalization.

▪ Instance normalization.

▪ No normalization.

PAGE 19



Experiments – The Search!

▪ We observe that the loss function 
and normalization type might not 
be independent, and thus we run 
a grid search, allowing us to find 
the best pair.

▪ We run a K-Fold validation on 
each pair (loss function & 
normalization type) and 
calculate the percentage of 
models that reached certain 
accuracy thresholds.
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Testing Method #1

▪ We want to test weather our two goals are satisfied:
▪ Given an object in some pose 𝑥∈𝑋, ∀𝜓∈𝑆 𝜙(𝑥)=𝜙(𝜓(𝑥)). (2)
▪ Given two different objects 𝑥,𝑦∈𝑋 (i.e., ∀𝜓∈𝑆, 𝜓(𝑥)≠𝑦), 𝜙(𝑥)≠𝜙(𝑦). (3)

▪ If (3) is satisfied, two the signatures of different shapes coming from two different objects are
necessarily unique, and thus allow for classification of the objects by their signature.

▪ An MLP is used to classify the objects by their signatures, a high accuracy means that (3) is satisfied.

▪ If (2) is satisfied, the signatures of two shapes of the same object (different pose) are similar, and
thus would not allow for classification of the pose given the signature.

▪ An MLP is used to classify the poses by their signatures, a low accuracy means that (2) is satisfied.
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Testing Method #2

▪ We use 3 types of encoders:
▪ Baseline classifier (after removing the linear head).

▪ Uses our architecture but is trained end-to-end for classification.

▪ Geodesic distance descriptors.
▪ Our encoder (w\ and w\o second moments).

▪ The learning-based methods are all trained on DFaust.

▪ The encoders are all evaluated on:
▪ DFaust in shape classification with a 1- and 2-layer MLP.
▪ Faust in shape classification with a 2-layer MLP.
▪ Faust in pose classification with a 2-layer MLP.
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Results
w\o Rotation

▪ Running the previously mentioned 
evaluation technique without applying a 
random rotation yields the following 
results:

▪ Our model is superior to the SOTA 
(GDD) by a significant margin.
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c Shape classification (↑) Pose 

Classification (↓)
Algorithm \ Test DFaust –

1 layer 

head

DFaust – 2 

layer head

Faust – 2 

layer 

head

Faust – 2 layer 

head

Baseline classifier 91.1% 91.08% 65% 40%
SN w/o moments 99.54% 99.1% 65% 15.8%
SN w/ moments 99.86% 99.54% 40% 35%

GDD 12% 92% 25% 10%



Rotation 
Invariance

▪ In some settings general rotations are a natural 
isometry transformation, and thus we try to make 
our encoder rotation invariant.

▪ Running our algorithm unchanged produces the 
following results:

▪ The performance drops significantly, putting the 
algorithm below the previous SOTA which is 
completely rotation invariant as it is based on the 
geodesic distance matrix.

▪ We avoid using geodesic distances as this 
information cannot always be obtained reliably.
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Shape classification (↑) Pose Classification 

(↓)
Algorithm \ Test DFaust – 1 

layer head

DFaust – 2-

layer head

Faust – 2-

layer head

Faust – 2-layer head

Baseline classifier 82% 82% 30% 70%

SN w/o moments 75.1% 74.6% 25% 33%

SN w/ moments 77% 80% 50% 36.6%

GDD 12% 92% 25% 10%



Rotation Invariance

PCA Normalization

Using second moment 
information about the shape in 
order to align it.
This is done as a pre-processing 
step, and thus alleviate the 
burden from the network itself.

Alignment Network

Learning a function that can 
extract the rotation transform 
that aligns a given mesh.
We note that this an ill posed 
problem since there is not one 
correct orientation for a mesh.

Second Moments

We observe that the rotation 
information is all encoded into the 
covariance matrix which could be 
extracted from the second moments.
We try feeding the second moments 
to our network in hopes that it 
implicitly learns the rotation.
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Second Moments

▪ Second Moment information can be very useful in determining orientation, and other 
statistics about objects.

▪ Neural networks have a hard time learning multiplications, and as such feeding this 
information to the network directly can reduce the amount of work that the network 
must do, and thus making the task simpler.

▪ This allows us to use shallower networks.
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Alignment Networks

▪ Objective: learn a function, such that given some shape, the functions outputs some 
representation of a rotation that when applied to the shape, gives the shape in some 
canonical orientation (e.g., shoulders along the x axis, spine along the y axis).

▪ We learn such a function in a supervised fashion, and we experimented with three 
losses:

▪ L2 loss over the difference between the predicted Euler angles representation of the 
predicted and the ground truth angles.

▪ L2 loss over the difference between the predicted rotation matrix and the ground truth 
rotation matrix.

▪ L2 loss between the rotation matrix transposed multiplied by the ground truth matrix, 
and the unit matrix.
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PCA - Normalization

▪ PCA finds the set of orthonormal directions of the highest variance 
of the shape’s projection, then projects and expresses the shape in 
this basis.
▪ These could be shown to be the eigen values of the covariance matrix.

▪ Denote the coordinates of the shape by X, and let R be an arbitrary 
rotation, 𝑌 = 𝑅𝑋:

𝔼 𝑌𝑌𝑇 = 𝔼 𝑅𝑋𝑋𝑇𝑅𝑇 = 𝑅𝔼 𝑋𝑋𝑇 𝑅𝑇 = 𝑅𝔼 𝑋𝑋𝑇 𝑅𝑇

▪ Let 𝑢 be an eigen vector with eigenvalue 𝜆 of 𝑅𝔼 𝑋𝑋𝑇 , denote 𝑣
= 𝑅𝑢:

𝔼 𝑌𝑌𝑇 𝑢 = 𝑅𝔼 𝑋𝑋𝑇 𝑅𝑇𝑅𝑣 = 𝑅𝔼 𝑋𝑋𝑇 𝑣 = 𝜆𝑅𝑣 = 𝜆𝑢

▪ Thus, denoting the original PCA matrix as 𝑇𝑋:
𝑇𝑦 = 𝑅𝑇𝑥 ⟹ 𝑃𝐶𝐴𝑌 = 𝑇𝑦

𝑇𝑌 = 𝑇𝑥𝑅
𝑇𝑅𝑋 = 𝑃𝐶𝐴𝑋
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PCA - Normalization

▪ Using the standard PCA algorithm to embed our pointcloud into 
ℝ3, the embedding becomes a simple rotation and translation 
transform.

▪ We proved that the embedding is rotation invariant, additionally 
we observe that because of the nature of PCA embeddings, for 
most poses, humanoids are aligned naturally by PCA.

▪ The solution is not unique and is determined up to a flip of each 
coordinate independently, meaning a multiplication with:

𝑑𝑖𝑎𝑔 ±1,±1,±1

▪ Note: if two eigenvalue were equal, a degree of freedom 
representing planar rotation would be added, but we showed this 
not to be the case, and we argue that it is numerically unlikely.
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Results
w\ Rotation

▪ We see that using the PCA 
normalization we achieve results that 
are superior to the SOTA in most 
metrics.

▪ Notably we do that in a lower 
complexity, and thus allowing for 
computations on larger pointclouds.
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Shape classification (↑) Pose Classification 

(↓)
Algorithm \ Test DFaust – 1 

layer head

DFaust – 2-

layer head

Faust – 2-

layer head

Faust – 2-layer head

Baseline classifier 82% 82% 30% 70%
SN w/o moments 75.1% 74.6% 25% 33%
SN w/ moments 77% 80% 50% 36.6%

PCA baseline 12% 11.6% 30% 23%
PCA SN w/o moments 88.22% 86.34% 65% 10%
PCA SN w/ moments 91.48% 92% 55% 18%

GDD 12% 92% 25% 10%



Conclusions

▪ We propose a training framework which produces 
SOTA results.

▪ Assuming aligned data, our framework  needs no 
preprocessing and surpasses the previous SOTA 
by a large margin.

▪ When removing the above assumption, we add a 
pre-processing step, which helps the model 
surpass the SOTA.
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Possible 
Future Work

▪ Our work did not focus on the network 
architecture, future works might investigate 
designing better fitting architectures.

▪ Extending our work by adding a generator that 
takes in the signature and reconstructing the shape 
in a constant\conditioned pose.

▪ Learning a rotation invariant signature without the 
use of PCA normalization.

▪ Using geodesic distances as an extra input to 
further improve the pose invariance.

PAGE 32



PAGE 33



PAGE 34

[1] G. Pai, A. Wetzler, and R. Kimmel, “L EARNING I NVARIANT R

EPRESENTATIONS O F,” pp. 1–11, 2017.

[2] R. S. Society, “Review of the Development of Multidimensional Scaling Methods Author

( s ): A . Mead Source : Journal of the Royal Statistical Society . Series D ( The

Statistician ) , 1992 , Vol . Published by : Wiley for the Royal Statistical Society Stable

URL : https,” vol. 41, no. 1, pp. 27–39, 1992.

[3] J. A. Burgoyne and S. McAdams, “Non-linear scaling techniques for uncovering the

perceptual dimensions of timbre,” Int. Comput. Music Conf. ICMC 2007, no. April 2014,

pp. 73–76, 2007.

[4] J. A. Sethian, “Fast Marching Methods,” SIAM Rev., vol. 41, no. 2, pp. 199–235, 1999,

doi: 10.1137/S0036144598347059.

[5] K. Crane, C. Weischedel, and M. Wardetzky, “The heat method for distance

computation,” Commun. ACM, vol. 60, no. 11, pp. 90–99, 2017, doi: 10.1145/3131280.

[6] G. Shamai, Y. Aflalo, M. Zibulevsky, and R. Kimmel, “Classical scaling revisited,” Proc.

IEEE Int. Conf. Comput. Vis., vol. 2015 International Conference on Computer Vision,

ICCV 2015, pp. 2255–2263, 2015, doi: 10.1109/ICCV.2015.260.

[7] E. Peterfreund and M. Gavish, “Multidimensional scaling of noisy high dimensional

data,” Appl. Comput. Harmon. Anal., vol. 51, pp. 333–373, 2021, doi:

10.1016/j.acha.2020.11.006.

[8] S. Martin and J. P. Watson, “Non-manifold surface reconstruction from high-dimensional

point cloud data,” Comput. Geom. Theory Appl., vol. 44, no. 8, pp. 427–441, 2011, doi:

10.1016/j.comgeo.2011.05.002.

[9] S. M. Holland, “Non-Metric Multidimensional Scaling (MDS),” J. Cell Biol., no. May, p.

8, 2008.

[10] E. Beutner and U. Kamps, “Order restricted statistical inference for scale parameters

based on sequential order statistics,” J. Stat. Plan. Inference, vol. 139, no. 9, pp. 2963–

2969, 2009, doi: 10.1016/j.jspi.2009.01.017.

[11] G. Shamai and R. Kimmel, “Geodesic distance descriptors,” Proc. - 30th IEEE Conf. Comput. Vis.

Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 3624–3632, 2017, doi:

10.1109/CVPR.2017.386.

[12] A. van den Oord, Y. Li, and O. Vinyals, “Representation Learning with Contrastive Predictive

Coding,” 2018, [Online]. Available: http://arxiv.org/abs/1807.03748.

[13] O. Halimi et al., “Towards Precise Completion of Deformable Shapes,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12369 LNCS, pp.

359–377, 2020, doi: 10.1007/978-3-030-58586-0_22.

[14] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning on point sets for 3D

classification and segmentation,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition,

CVPR 2017, vol. 2017-Janua, pp. 77–85, 2017, doi: 10.1109/CVPR.2017.16.

[15] M. Joseph-Rivlin, A. Zvirin, and R. Kimmel, “Momenet: Flavor the moments in learning to

classify shapes,” Proc. - 2019 Int. Conf. Comput. Vis. Work. ICCVW 2019, pp. 4085–4094, 2019,

doi: 10.1109/ICCVW.2019.00503.

[16] J. Kang and A. K. Patterson, “Principal component analysis of mRNA levels of genes related to

inflammation and fibrosis in rats treated with TNBS or glutamine,” Inflammatory Bowel Diseases,

vol. 17, no. 7. pp. 1630–1631, 2011, doi: 10.1002/ibd.21544.

[17] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an invariant

mapping,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2, pp. 1735–

1742, 2006, doi: 10.1109/CVPR.2006.100.

[18] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding for face recognition

and clustering,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 07-12-June,

pp. 815–823, 2015, doi: 10.1109/CVPR.2015.7298682.

[19] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing

internal covariate shift,” 32nd Int. Conf. Mach. Learn. ICML 2015, vol. 1, pp. 448–456, 2015.

[20] T. Salimans and D. P. Kingma, “Weight normalization: A simple reparameterization to accelerate

training of deep neural networks,” Adv. Neural Inf. Process. Syst., no. Nips, pp. 901–909, 2016.

[21] Y. Wu and K. He, “Group Normalization,” Int. J. Comput. Vis., vol. 128, no. 3, pp. 742–755,

2020, doi: 10.1007/s11263-019-01198-w.

References


