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Introduction 
The aim of the project was to implement a DML classification 

network according to the article RepMet: Representative-based 

metric learning for classification and few-shot object detection. 

The article describes the system architecture we relied on when 

we used the Python language and backbone network provided 

to us by Alona. 

After implementing the architecture and optimizing the hyper 

parameters the network provided results that are not 

necessarily better than the base version. 

Better results may be obtained by expanding the amount of 

hyper-parameters and making an informed choice of 

augmentations. 

 

Background 

The approach taken by the article is DML - Distance Metric 

Learning. 

A method in which each image and representative is 

represented by a vector in space (of a predetermined size) and 

the purpose of the network is to produce representations so 

that vectors that represent objects from identical classes are 

closer in space than vectors that represent objects from 

different classes. 



 

 
 
System description 

 
 
 



The system consists of the following parts: 

Backbone network, DML embedding module, FC Layer layer, two 

loss functions (Cross-entropy loss and Embedding loss), and a 

posterior calculation system. 

The backbone network was provided to us by Alona and the 

cross-entropy loss function is given in the pytorch library. 

The DML embedding module was implemented as required in the 

article using two FC Layers, batch normalization and ReLU non-

linearity. 

The FC Layer layer is initialized with Scalar 1 and its size is N * 

K * E when: 

N number of departments 

K number of representatives 

E Size of the vector representing the space. 

After calculating the distances between the representatives and 

the output collector, the results were transferred to the loss 

functions and the posterior calculations (percentages of 

affiliation to the department). 

The embedding loss function is implemented by us according to 

the instructions of the article and depends on the alpha 

parameter 

The posterior calculations were realized by us as well and 

depend on the sigma parameter (choice between equations 2 

and 5 according to performance). 



The results are then forwarded and all parts of the system train 

together and a new epoch begins. 

 
 
Description of performance 
The system architecture depends on many parameters as well 

as posterior calculations that depend on the choice between 

two equations (2 and 5). 

The algorithm on which the system is built is a rigid algorithm 

(except for the choice between equations 2 and 5) which 

means we have no option to test a different implementation or 

change the structure of the system. The way to bring the 

system to maximum efficiency is by optimizing hyper 

parameters. 

We selected a number of hyper parameters that we thought 

were the most important and on which we ran optimization 

using a serial method. 

We ran for a start, for each of the hyper parameters, a test to 

determine the tuning range by running the whole system with 

default values and a wide range for the parameter being tested 

and a review of the system results for each value. 

After finding the initial optimal ranges we ran the system on all 

the parameter ranges we found until we reached optimal 

results. 
 



Hyper parameters 
We selected the hyper parameters according to the article and 

according to the general parameters of the training 

The parameters we chose are: 

Alpha (appears in equation number 4, the embedding loss 

equation), 

Sigma (appears in equation number 1 and 2 and 5 contain it), 

K (base number of representatives) 

Learning rate, 

And the size of the embedding layers. 

 
Initial tuning graphs 

 
 
 
 



Results 
After all the runs we found the values of the ideal parameters 

K = 3, sigma = 0.25, alpha = 1, learning rate = 0.0001 

embedding layers = 1024 ,. 

The following are the results of the algorithm (with equation 5, 

as recommended by the authors of the article) with the above 

values versus the baseline results: 

 
It can be seen that the algorithm results are not necessarily 

better than the baseline results and that its performance is 

more or less fixed after about 300 epochs. 

In addition, we also chose to examine equation number 2 

instead of equation number 5, contrary to the recommendation 

of the authors of the article, understanding that each data set 

has a slightly different architecture, and we also found that 

better results were obtained: 

 

 



Conclusions and recommendations 
The quantity and range of selected hyper parameters are 

insufficient for the current data to obtain a network that 

provides priority results. 

There are many additional parameters, and we do not rule out 

that turning them into hyper parameters and adjusting them 

may provide even better results. 

For example: the vector size of the representatives in space 

(size E in the article) 

In addition, as reviewed on the results page we saw that 

equation 2 was superior to equation number 5 although in the 

article the authors state that equation number 5 is preferable 

for classification purposes. Therefore, according to the results 

we do not think that the conclusion of the authors of the 

article can be relied upon and both equation number 2 and 5 

should be examined when looking for the ideal architecture. 
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