
The Computer Science Department
The Technion-Israel Institute of Technology

RepMet:
Representative-based metric
learning for classification and
few-shot object detection

This is an undergraduate project in
the Geometric Processing Laboratory

By: Nir Shopen and Omer Kawaz
Supervisor: Alona Goltz

Date: 22/01/2022

Introduction
The aim of the project was to implement a DML classification

network according to the article RepMet: Representative-based

metric learning for classification and few-shot object detection.

The article describes the system architecture we relied on when

we used the Python language and backbone network provided

to us by Alona.

After implementing the architecture and optimizing the hyper

parameters the network provided results that are not

necessarily better than the base version.

Better results may be obtained by expanding the amount of

hyper-parameters and making an informed choice of

augmentations.

Background

The approach taken by the article is DML - Distance Metric

Learning.

A method in which each image and representative is

represented by a vector in space (of a predetermined size) and

the purpose of the network is to produce representations so

that vectors that represent objects from identical classes are

closer in space than vectors that represent objects from

different classes.

System description

The system consists of the following parts:

Backbone network, DML embedding module, FC Layer layer, two

loss functions (Cross-entropy loss and Embedding loss), and a

posterior calculation system.

The backbone network was provided to us by Alona and the

cross-entropy loss function is given in the pytorch library.

The DML embedding module was implemented as required in the

article using two FC Layers, batch normalization and ReLU non-

linearity.

The FC Layer layer is initialized with Scalar 1 and its size is N *

K * E when:

N number of departments

K number of representatives

E Size of the vector representing the space.

After calculating the distances between the representatives and

the output collector, the results were transferred to the loss

functions and the posterior calculations (percentages of

affiliation to the department).

The embedding loss function is implemented by us according to

the instructions of the article and depends on the alpha

parameter

The posterior calculations were realized by us as well and

depend on the sigma parameter (choice between equations 2

and 5 according to performance).

The results are then forwarded and all parts of the system train

together and a new epoch begins.

Description of performance
The system architecture depends on many parameters as well

as posterior calculations that depend on the choice between

two equations (2 and 5).

The algorithm on which the system is built is a rigid algorithm

(except for the choice between equations 2 and 5) which

means we have no option to test a different implementation or

change the structure of the system. The way to bring the

system to maximum efficiency is by optimizing hyper

parameters.

We selected a number of hyper parameters that we thought

were the most important and on which we ran optimization

using a serial method.

We ran for a start, for each of the hyper parameters, a test to

determine the tuning range by running the whole system with

default values and a wide range for the parameter being tested

and a review of the system results for each value.

After finding the initial optimal ranges we ran the system on all

the parameter ranges we found until we reached optimal

results.

Hyper parameters
We selected the hyper parameters according to the article and

according to the general parameters of the training

The parameters we chose are:

Alpha (appears in equation number 4, the embedding loss

equation),

Sigma (appears in equation number 1 and 2 and 5 contain it),

K (base number of representatives)

Learning rate,

And the size of the embedding layers.

Initial tuning graphs

Results
After all the runs we found the values of the ideal parameters

K = 3, sigma = 0.25, alpha = 1, learning rate = 0.0001

embedding layers = 1024 ,.

The following are the results of the algorithm (with equation 5,

as recommended by the authors of the article) with the above

values versus the baseline results:

It can be seen that the algorithm results are not necessarily

better than the baseline results and that its performance is

more or less fixed after about 300 epochs.

In addition, we also chose to examine equation number 2

instead of equation number 5, contrary to the recommendation

of the authors of the article, understanding that each data set

has a slightly different architecture, and we also found that

better results were obtained:

Conclusions and recommendations
The quantity and range of selected hyper parameters are

insufficient for the current data to obtain a network that

provides priority results.

There are many additional parameters, and we do not rule out

that turning them into hyper parameters and adjusting them

may provide even better results.

For example: the vector size of the representatives in space

(size E in the article)

In addition, as reviewed on the results page we saw that

equation 2 was superior to equation number 5 although in the

article the authors state that equation number 5 is preferable

for classification purposes. Therefore, according to the results

we do not think that the conclusion of the authors of the

article can be relied upon and both equation number 2 and 5

should be examined when looking for the ideal architecture.

References

RepMet: Representative-based metric learning for classification
and few-shot object detection -

https://arxiv.org/pdf/1806.04728.pdf

By: Leonid Karlinsky∗, Joseph Shtok∗, Sivan Harary∗, Eli
Schwartz∗, Amit Aides, Rogerio Feris IBM Research AI

