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Abstract

In recent years, researchers have shown an increased inter-
est in 3D human pose and shape estimation. Most studies in
the field relies solely on completion from partial shape with-
out additional information, resulting a limited models that
cannot always reconstruct the partial shape precisely. The
study utilized prior based approach for shape reconstruction
of human partial scans that significantly improved the per-
formance of existing methods. Additionally, in this study we
developed and applied new technique for sampling from large
datasets resulting solid increase of the performance across all
tested learning models. The sampling methodology presented
here has profound implications for future studies of machine-
learning models that relies on learning from large datasets.
Finally, we designed new visualization tools to explore the
shape and the pose manifold of parametric body models and
datasets.

Keywords: 3D shape completion, Non-rigid geometry,
FPS sampling, Single View Reconstruction.

1 Introduction

In recent years, major advances in computational capabilities
have arise a growing demand for creating and consuming 3D
content. However, professional scanning devices are too ex-
pensive to be used for the typical user. As a result, acquisition
of 3D visual content is often limited by affordable depth sen-
sors which use few number viewpoints and resulting substan-
tial partiality of the complete shape. Thus, 3D shape comple-
tion plays a crucial role in addressing the issue of incomplete
scans.

The required accuracy of the reconstruction can vary de-
pending on the desired Application. For instance, in rigid
scenarios like collision-free motion planning or robotic fruit-
harvesting, only rough approximation is needed, and can ex-
ploit properties of Symmetry and context [9, 23]. In contrast,
in many types of non-rigid cases like on the entertainment
[15] or the medical imaging fields [1] accurate estimation is
required. That is, precision is a key requirement in the com-
pletion process and the offered completion should respect the

geometry of the original partial shape. Therefore, they often
cannot be based solely on symmetry properties due to their
non-rigid nature, and should be established upon more data in
addition to the original scan.

[11] lists two basic approaches currently being adopted in
research into shape completion of non-rigid shapes. One is
generative based method and the second is alignment based
method. Generative based approaches learn to approximate
the class distribution and achieved impressive results in shape
completion tasks. Yet, they suffer from notable methodolog-
ical weaknesses, i.e. they are limited in that they only con-
siders the partial shape during the completion time and does
not take into account additional information that derived from
the object. Hence, they failed to demonstrate generalization
capabilities and cannot provide a accurate completion for un-
seen partial shapes. On the other hand, alignment based meth-
ods aiming to fit a complete shape to a partial shape. Since
they exploit additional data during the inference time, they
have potential advantage in terms of generalization and pre-
cise completions. However, current alignment based methods
can carry only moderate partiality and considered to be slow.

This study set out to shine new light on shape completion
tasks from several angles:

1. We introduce the design of visualization tools to explore
the shape manifold of parametric body models.

2. We show a new methodology for choosing samples from
large datasets that increase the performance of the learning
process.

3. We propose a new architecture for shape completion
from single partial view and another complete view in another
pose.

4. We show a new architecture for shape completion from
single complete view and another set of multiple partial views
in another pose.

2 Related work
deep learning on 3D point clouds
There are different approaches to represent a 3D object such
as (i) point cloud,(ii) triangular mesh,(iii) voxel grids, (iv)
set of projected views (in other words, group of 2D images).
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Whereas it is common to work with regulated input format
like images or volumes in deep learning, a major problem
with the first two representations is that they are usually not
regulated. In order to overcome this issue, most researchers
has been transforming those representations to one of the last
two representations before utilizing them as part of the dataset
for deep net architectures. Yet, there are certain drawbacks
associated with the use of this approach such as unwanted
voluminous of the original data and quantization artifacts. A
more direct approach to learning from 3D point clouds can
be found in [21] studies who introduce the point cloud net-
works method that able to learn from the raw point clouds.
The advantage of this particular method arise from the nature
of point cloud as a simple representation. It allows to describe
complex meshes while avoiding combinatorial irregularities.
Another advantage of using this networks is that its relatively
has small computational footprint and supplement fine tun-
ing between accuracy and complexity. This paper will utilise
[21] approach on point clouds data for all of the resons stated
above.

3D shape completion of non-rigid objects
shape completion task describes how to create a full 3D mod-
els from a partial data that acquired from an object in the real
world. Generally, it has become commonplace to distinguish
rigid from non-rigid types of models. The target model can
be classified as rigid if it capable to change its shape over
time only with rigid transformations - translation,rotation or
reflection. For instance a couch, stone, sculpture and a coin
are few examples for rigid models. Nevertheless, If the model
is capable of changing its shape with non-rigid transforma-
tion in a way that maintain the distances between the points
of the model along the surface of the model, this quantity
also known as geodesic distances. In another words, non-rigid
transformations also can be called isometries (e.g. bending).
For example a robotic arm,human hand or a can all be classi-
fied as a non-rigid shapes. In this paper, we like to focus on
3D shape completion of non-rigid human scans.

Parametric models
3D models of the human body are one of the key components
of 3D human body shape and pose estimation. Whereas there
is a large number of published studies [3, 4, 12, 8, 13, 7, 20]
that offered methods for human body models, SMPL model
[14] can be considered as the most popular and very fre-
quently used by the industry and the research community.
It can accurately express a diverse human shape in differ-
ent natural human poses. Together with SMPL compatible
complementary body models: (i) MANO hands model [22]
and (ii) DMPL soft tissues deformations model [14], the
model encodes the 3D human body into shape parameters
β ∈ R16 and pose parameters ~θ and coined as SMPL+H.
The pose parameters ~θ consist of the following vectors:
~θ = (θtransformation, θrotation, θbody pose, θhands pose, θsoft tissues) ∈ R3×3×63×90×8 The
body model decode the parameters tuple (~θ,β) into human
triangular mesh with N = 6890 vertices with the function
P(~θ,β) = R3N . This paper contribute to the understanding
of the pose and shape manifolds of datasets that use this body

model with new visualization tools.

Figure 1: AMASS dataset unified from 14 external mo-
cap datasets with varying number of actors, animations and
frames.

AMASS dataset
By far, the most comprehensive dataset of human shapes is
AMASS [17] dataset. AMASS merge 14 disparate archived
datasets [Figure 1] to an aligned marker-based optical mo-
tion capture (mocap) data based on the SMPL+H body model.
Each dataset in AMASS consist of actors and for each actor
there is a group of animations that comprised from frames. In
this respect, each actor have have its own shape parameters
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β and for each frame can be describe as a pose parameters
~θ. Throughout this paper, the term ’sample’ encompasses the
shape and pose parameters tuple (~θ,β) that taken from the
AMASS frame with its corresponding actor.

3 Method

3.1 Visualization tools
In the following paragraphs,we will briefly discuss two visu-
alization approaches that we implemented in order to demon-
strate and understand the amass body model and the pose
manifold on AMASS dataset.

AMASS body model visualizer

This tool [Figure 2] was designed in order to examine the hu-
man body model parameterization used in AMASS. Namely
to interactively view SMPL+H, P(~θ,β) = R3N . The user
can interact with a GUI and choose which animation file to
investigate. Moreover, The user can play the animation for-
ward and backward, changing the original gender of the actor,
and change the shape parameters β ∈ R16 and pose parame-
ters ~θ for each frame in the animation and watch the resulting
model in real time. The aim of this tool was to develop intu-
ition about the human model parameters importance.

Figure 2: Screenshots from AMASS body model visualizer
tool. The user can manipulate each element in the parameters
tuple (~θ,β) on the SMPL+H body model and immediately
see the results. For illustrative purpose in this figure we limit
some of the parameters dimensionality.

AMASS pose manifold explorer

Although AMASS have large number of samples, it is limited
by the fact that it relies on multiple datasets with different

quantities. For example, each dataset contain different sam-
ples in terms of motion complexities and variations. In other
words, the variance in the pose manifold for each actor can
be highly different. The aim of this tool is to visually explore
the shape manifold for each actor and animation in AMASS
[Figure 3]. In order to gain insights into the shape manifold
variations for each actor the following steps were taken: First,
we used principal component analysis (PCA) for dimension-
ality reduction of each sample θbody pose ∈ R63 into a reduced
3D version θ̂body pose ∈ R3. Secondly, we group all the 3D
projected pose samples for each actor and plot them in space
colored acording to the animation and the frame. Thirdly, for
each selected frame we display the corresponding pose on a
natural template actor shape. Finally, we added 3 sliders that
controls the current actor,animation and the frame.

Figure 3: AMASS pose manifold visualizer. The big red point
is the current frame sample, the green points represents the
current animation and the remaining blue samples are the re-
set of the frames for the actor.

3.2 Sampling the dataset
In order to address the variations in the pose manifold vari-
ance for AMASS dataset [Figure 5] and the pose bias for each
actor [Figure 4], we develop a new methodology for choos-
ing samples based on the samples distances. The first step in
this process was to choose the 10 female and 10 male actors
with the highest variance on AMASS and dividing them to
group based on gender. Afterwards, from each actor we sam-
pled two kinds of frame sets with 50 samples. Whereas The
first set was chosen randomly, the second was sampled us-
ing the Farthest point sampling (FPS) [Algorithm 1]. It aims
to sample a subset of points that are farthest away from each
other, resulting a subset of samples that are unbiased in terms
of pose manifold [Figure 6]. Finally, we assembled together
all the combinations each gender with each set type, resulting
4 different datasets [Table 1].

3.3 Deep learning models
Each shape will be represented as a point cloud embedded in
R3. Generally, each point can represent another types of data
in addition to it’s 3D coordinates such that each point em-
bedded in Rd, but for this formulation we will use d = 3.
Our objective is, given a full shape Q = {qi}

nq

i=1 and a tar-
get partial shape in different pose P = {pi}

np

i=1 to reconstruct
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Figure 4: 3D PCA projection of the pose manifold of an actor for series of 6 chronological frames of the same animation.
What is interesting in this figure is the general pattern of the animation continuity. In other words, closer frames in the time
domain reflected on the projected domain by short distances between the samples. Perhaps one of the most important finding
from those projections are the massive centroids that are presents poses that are closer to the common rest poses for the actor.
In this respect, it can be seen from those centroids that the pose manifold of the different actors is biased towards the rest
poses.
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Figure 5: The pose parameters variance Var(θbody pose) for
each dataset in AMASS. What stads out in this chart is
the variability between different datasets. For example, in
MPI LIMITS dataset [2] includes an wide-ranging variety of
human poses in contrast to EKUT dataset [18] the contain
smaller variability in the pose manifold.

Figure 6: The first 4 poses that sampled for a single female
actor on BMLmovi[24]. What can be clearly seen in this fig-
ure is the high variability of the poses achieved using FPS
sampling.

Algorithm 1: FARTHEST POINT SAMPLING (FPS)
Data:
N ∈ N+ the number of frames of a given actor.
n ∈ {1, 2, ..., N} the number of frames to be sampled.
Θbody pose = {θbody pose}Ni=1 the body pose vectors for
each frame.
Result: selected frames S ⊆ {1, 2, ..., N}, |S| = n
Function FPS(N , n , Θbody pose)

if n=N then
S ← {1, 2, ..., N}
return S

sample randomly: s← U{1, 2, ..., N}
S ← {s}
U ← {1, 2, ..., N} \ S
while |S| < n do
∀i ∈ U : dmini =

minj∈U ;j 6=i

∣∣∣∣∣∣∣∣θbody pose
j − θbody pose

i

∣∣∣∣∣∣∣∣
2

s← argmaxi∈U d
min
i

S ← S ∪ {s}
U ← U \ {s}

return S

Males Females
Random high-variance males random (MR) high-variance females random (FR)

FPS high-variance males fps (MF) high-variance females fps (FF)

Table 1: Different sampling methods datasets names

P to its full shape R = {ri}nr
i=1. In other terms, we inter-

ested to find R that is close as possible to the ground truth
unknown full shape G = {gi}

ng

i=1 that P was acquired from.
In order to archive this goal, we are are using a fixed template
T = {ti}nt

i=1 of a full shape in the ”zero” pose [Figure 9] and
try to learn a deformation function F : R3 → R3 such that
F (T ) = R. From this prospective, we can say that θ is the
deformation parameter for the fixed template T , also known
as the global shape descriptor. It is important to note that be-
cause we are using a body model with fixed vertices number
N we know that , N = nt = nr = nq = ng , particularly
nt = nr and therefore F is well defined. It is, of course, im-
portant to acknowledge that input pair (Q,P ) will influence
the reconstruction function F . Therefore, we denote θ as a
latent encoding of the input pair (Q,P ) and model this corre-
lation by offering a parametric function Fθ : R3 → R3. The
implementation of this process using a neural-network of en-
coder and decoder tries to learn the space of deformations θ as
well as the decoder and encoder weights in order to archive a
precise completion of P . The architectural approach taken in
this study is a mixed architecture based on two papers. Firstly,
the deformation of a fixed template as shown in 3D-CODED
[10] and secondly, the usage of an input full prior shape from
another pose as seen on [11].
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Figure 7: FTP Architecture. The top help of the figure describe the encoding process while the decoding phase is presented
at the bottom. Completion process: The first step in this process is to provide the partial shape P and the whole shape prior
Q into the encodes. Each shape is consist of N 6D points that comprised of coordinates and its corresponding unit normal
vector. The encoded shapes, θwhole(Q), θpart(P ) then concatenate together, resulting the full global shape descriptor θ. Prior to
the decoding phase, we concatenate the latent code of the input shape θ for all the 6D points on T .Notice that θ is the same
across all the points in T . Finally, to obtain the full reconstruction R, we calculate the deformation for the template shape
Fθ(T ) = R.

Encoder

Based on PointNet [21] architecture and [11] ideas, our en-
coder is comprised of two single-shape encodes. Each single-
shape encoder take a point cloud and encode it to a global
shape descriptor θ. That is, given the input tuple (Q,P ) , the
encoders produce the corresponding tuple (θwhole, θpart). In the
final stage of the encoder, we concatenate the output tuple to
the final latent space partial shape encoding θ = [θwhole, θpart].
As proposed in [11], we added for each point its normal vector
that computed using the connectivity for the underlying input
mesh, therefore each point in the input is 6D.

Generator

Once the global shape descriptor θ was extracted from the in-
put tuple (Q,P ), the parametric deformation function Fθ will
be predicted by the generator. After Fθ prediction, we append
θ for each point ti of the fixed template, resulting the gener-
ator input tuple tθi = (ti, θ). It is important to bear in mind
that θ remain fixed throughout all the generator input tuples.

Finally, for each point we compute the prediction full shape
ri = Fθ(t

θ
i ) ∈ R3 Furthermore, if we want to compute the

unit normal vectors for 6D point cloud output, we can either
calculate it with a known connectivity of the triangular mesh
or predict it using differential normal estimators [21, 5].

loss functions

In addition, The loss function must represent the accuracy of
the offered reconstruction. However, we will use a simple cal-
culation [Equation 1] that based on the Euclidean proximity
between the reconstruction R and the ground truth G.

L(R,G) =
N∑
i=1

∣∣∣∣∣∣∣∣gi − ri∣∣∣∣∣∣∣∣2
2

, (1)

To calculate the loss function, we assume that the corre-
spondence ri ↔ gi is known, and ri ∈ R is the matched point
of gi ∈ G. It has been demonstrated [11] that the concatena-
tion of the normal vectors for the points can increase the fine
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Figure 8: Example for input tuple and the resulting comple-
tion from diffrent angels. Yellow input reference shapeQ, Or-
ange partial shape P , blue FTP completion R, Pink ground
truth G.

Figure 9: The template shape used as T . This template is
corresponding to the ”zero” shape of SMPL+H body shape
model, namely (~θ,β) = (~0,0).

details of the reconstruction. As discussed above, we concate-
nate the unit normal vectors to its coordinates, resulting a 6D
points on the output, namely gi, ri ∈ R6.

Another architectural variations

The architecture described above will be coined here as Fixed
template with prior (FTP). In order to compare it past archi-
tectures we will briefly describe them here.

Fixed template without prior (3D-CODED) This variant
is an implementation of the architecture that appear on 3D-
CODED [10]. Whereas FTP is an input full prior shape from
another pose Q, on 3D-CODED [10] we use only a single
shape encoder for the partial shape P , Thus, on this variant
the global shape descriptor θ = [θpart].

changing template with prior (Towards precise) This
variant is the original implementation of the architecture
that appear on ’Towards-precise’ [11] method. While FTP
is an concatenate the global shape descriptor θ to the fixed
template points T , on Towards-precise[11] we will use the
full shape from different pose Q points instead. Formally, the
reconstruction process can be described as ri = Fθ(q

θ
i ) ∈ R3

where, of course, qθi = (qi, θ).

Furthermore, we will offered another variation of the
architecture that aims to complete a partial shape from
multiple partial point clouds given as priors that will be
evaluated separately.

Fixed template with N multiple priors (FTMP) This vari-
ant aggregates multiple nonrigid views of the same person as
the prior with multiple shape encoders. More precisely, in-
stead of using full shape from another pose Q as our prior
this version will take N partial point clouds A =

⋃N
j=1Aj

and encode all of them together on shape encoder with shared
weights, resulting θA. After the concatenation, the final shape
descriptor is θ = [θpart, θA].

Implementation details

All of our neutral networks was trained with PyTorch [19]
together with ADAM optimizer that configured with momen-
tum of 0.9 and a constant learning rate of 10−3. As mention
above, each shape contained N = 6890 6D points. More-
over, the shape-descriptor sizes were same as [11], namely
|θpart| = |θA| = |θwhole| = 512. As shown in [11] and men-
tioned above we concatenate the scaled unit normal vectors to
the coordinates for each point si = (~xsi, α~nsi) ∈ R6, with
α = 0.1.

In addition, each batch contained 10 shapes tuples
(P,K,R). In this perspective, K is the prior element for each
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variant:

K =

Q FTP (ours) or Towards precise [11]
∅ 3D-CODED [10]
{A1, A2, ..., AN} FTMP (ours)

(2)

Finally, all the input shapes were centralized such that their
corresponding full shapes center of mass is aligned with the
origin.

4 Experiments
To compare the difference between all sampling method and
the architectures, we trained all the single prior architectures,
namely FTP (ours), Towards-precise [11] and 3D-CODED
[10] on all of the different datasets that described on [Table
1]. Additionaly, we split the each dataset to be actor aligned,
That is, the validation, test and train sets contained different
actors. On other words, the test set comprised only from un-
seen actors that did not appear on the validation, nor the train-
ing set, and also all the actors that appear on the validation
set were not included on the training set. Moreover, in order
to test the sampling methods without pose manifold bias, we
always used the FPS sampling method for the validation and
test sets [Table 2]. Finally, we used 10K,1K,1K as our data
split for the train, validation and test set respectively.

Train Validation Test
males random MR MF MF
males fps MF MF MF
females random FR FF FF
females fps FF FF FF

Table 2: Different sampling methods datasets splits. First
charterer refer to the dataset actors gender (namely, male or
female) and the second to the sampling method e.g. Random
or FPS.

4.1 Evaluation metrics
In attempt to evaluate each experiment performance, we cal-
culated several metrics that demonstrated the completion
quality. ln mean point-wise distance errors [Equation 3] for
p ∈ {1, 2,∞} refers to the mean of the ln norm between each
reconstruction point and its corresponding ground truth point.
In this respect, each point is always 3D and represent the point
coordinates in R3.

∀p ∈ {1, 2,∞} : Eln(G,R) =
1

N

n∑
i=1

∣∣∣∣∣∣∣∣gi − ri∣∣∣∣∣∣∣∣
p

(3)

Finally we compute the normalized quantities of the volume,
surface area and surface area to volume ratio (denoted here as
SVR) [Equation 4].

∀O ∈ {V ol, Area, SV R} : MO (G,R) =
|O(G)−O(R)|

O(G)
· 100 (4)

Figure 10: The diffrent segmentation elements colored on an
arbitrary pose (left) and on the template model T (right). Seg-
ments color coding : head (1), torso (2), left arm (3), right
arm (4), left leg(5), right leg (6).

To analysis the preciseness of each experiment in greater de-
tail, we also computed all of the metrics of the current section
on 6 different segments: (i) head, (ii) torso, (iii) left arm, (iv)
right arm, (v) left leg, (vi) right leg [Figure 10]. In this respect,
the volume computed after we closed each segment mesh by
appending predetermined faces to each mesh. Moreover, the
mean point-wise distance errors [Equation 3] average is taken
over the number of points for each segment i.e.

N = #Points in segment

FTMP evaluation metric

In order to evaluate the complexity for the completion task
we provide vertex cover metrics that aim to determined the
amount of information in each prior. As similar to the loss
calculation, To calculate the vertex cover metrics , we assume
that all the vertices correspondence is known. For N ∈ N+

prior point clouds, given the full prior A =
⋃N
j=1Aj and the

ground truth shape G, we can define the remaining unseen
vertices as R = G \ A. Therefore, the new vertices set the
prior supplement is N = A ∩R.

• Vertex cover 1 can be defined as VC1 = |N |
|R| ∈ [0, 1].

This definition represent the amount of new vertices on
A in relation to the remaining unseen vertices.

• Vertex cover 2 can be defined as VC2 = |P∪A|
|G| ∈ [0, 1].

This definition demonstrate the new vertices on the full
input, namely P ∪A in relation to the full vertex set G.

• Vertex cover 3 is the arithmetical mean of the definitions
above, i.e. VC3 = VC1+VC2

2 ∈ [0, 1].

On the special case that N = 0, we defined the VC1 =
VC2 = VC3 = 0.

8



4.2 Comparing sampling methods

El2 Error [cm] FTP (ours) 3D-CODED [10] Towards precise [11]

males random 0.0977 0.1142 0.1584
males fps (ours) 0.0390 0.0474 0.0908

imrprovement [%] 250.5 240.9 174.4

females random 0.0786 0.0715 0.1399
females fps (ours) 0.0348 0.0363 0.08244
imrprovement [%] 225.86 196.96 169.69

Table 3: l2 mean point-wise distances error, i.e. El2 computed
both on fps and random sampling techniques for male and fe-
male datasets [Table 2] across three shape completion meth-
ods.

Figure 11: Comparison of different sampling methodologies
in terms of training loss convergence for FTP method on high
variance male datasets. The loss term is the addition of the
minmum square error (MSE) of the coordinates and the MSE
error of the corresponding normal vectors multiplied by 0.1

4.3 Shape reconstruction comparison
[Table 4] provides the results obtained from the analysis of
the different shape completion methods on the high-variance
males dataset.

4.4 FTMP multiple priors reconstruction
For this experiments we used a bigger variant of the AMASS
[17] dataset: We choose all the actors that contained at least
10K frames from 5 different AMASS datasets: KIT [18],
BMLrub [24], CMUa [6], EyesJapanDataset [16] and BML-
movi [24]. The final stage was to sample from each actor
1K samples using Farthest point sampling (FPS) [Algorithm
1]. [Figure 12] shows the summary statistics for our FTMP
method for different types of prior cases for N ∈ {0, 1, ..., 8}
partial prior point clouds.

Figure 12: FTMP El∞ error with respect to VC3 and the
number of point clouds N . The full prior A =

⋃N
j=1Aj was

obtained from the same actor as G but differ in two different
scenarios. Blue samples represents the case that all partial
point clouds in A taken from the same pose as P . Red sam-
ples describe the case that all the partial point clouds inAwas
taken from a specific pose that differ from G. Green sample
represents the N = 0 case; in other words, in this case we do
not use any priorA = ∅, this completion method is equivalent
to 3D-CODED [10].

5 Discussion

5.1 Comparing sampling methods

The first set of analyses examined the impact of the FPS sam-
pling methodology [Algorithm 1]. It can be seen from the
data in [Table 3] the FPS sampling method increased the per-
formance significantly across various shape completion mod-
els on both gender cases. What is striking about the results
in this table is that the performance improvement is at least
150% across all cases. This is a remarkable result. Moreover,
[Figure 11] indicate a major difference between the sampling
methods during the training phase. While the model that train
on random sampling method is over-fitting, the same model
that trained on FPS sampling demonstrated much higher gen-
eralization capabilities. These interesting findings might be
explained by the fact that the FPS sampling methodology re-
sulting high variability pose space with small bias. It repre-
sents the neutral human pose space more accurately unlike
the random sampling methodology that is keeping the under-
lying bias [Figure 4] of the original sampled dataset in the
terms of pose manifold. In future investigations, it might be
possible to use a different machine-learning scenarios like
noise-reduction or image classification, in which this sam-
pling methodology could increase the performance of existing
models.
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Segment
full body head torso left arm right arm left leg right leg

El1 Error [cm]

Towards precise 0.146208 0.102846 0.115495 0.144648 0.153006 0.193752 0.200084
3D-CODED 0.078359 0.067634 0.061843 0.074011 0.082207 0.096085 0.099974
FTP (ours) 0.066677 0.054331 0.049950 0.066002 0.063711 0.091557 0.091371
El2 Error [cm]

Towards precise 0.098178 0.068907 0.077451 0.096660 0.102748 0.131054 0.134588
3D-CODED 0.052263 0.044773 0.041285 0.049226 0.055014 0.064134 0.067086
FTP (ours) 0.044519 0.035908 0.033397 0.044215 0.042241 0.061283 0.061720
El∞ Error [cm]

Towards precise 0.082236 0.057631 0.064776 0.080546 0.086051 0.110618 0.112889
3D-CODED 0.043444 0.036744 0.034373 0.040831 0.045964 0.053414 0.056166
FTP (ours) 0.037056 0.029499 0.027834 0.036889 0.034887 0.051279 0.052105
Volumetric error [%]

Towards precise 30.423622 33.110760 25.966375 39.425831 41.843704 43.813766 41.952892
3D-CODED 9.939109 15.763901 9.738126 22.458927 27.767376 16.987247 18.243286
FTP (ours) 13.418878 12.206391 10.964217 18.980408 24.697559 15.907495 17.564968
Surface area error [%]

Towards precise 19.716169 22.305054 15.056305 25.185989 28.640442 29.563946 28.295647
3D-CODED 6.657650 9.931189 6.170079 16.490198 19.626400 10.011135 11.033092
FTP (ours) 9.318895 7.568487 7.852102 13.054072 16.515900 9.097844 10.734350
Surface area to volum error [%]

Towards precise 28.587654 23.371700 24.144958 36.686630 38.859291 37.980103 40.409191
3D-CODED 4.852785 7.017126 4.835610 9.741541 13.645969 8.563823 8.851275
FTP (ours) 5.461816 5.458884 4.571476 9.236479 12.392942 9.308583 9.566586

Table 4: Comparison of Towards-precise [11], 3D-CODED [10] and FTP shape completion methods with respect to the
described evaluation metrics on each segment. All the methods was trained on the high-variance males fps (MF) dataset. The
minimum value on each column appear in bold.
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5.2 Shape reconstruction comparison

[Table 4] compare the results obtained from the shape recon-
struction comparison experiments across all the segments and
the entire shape. Each evaluation metric was carried out on
each segment in addition to the whole shape and appear on
separate panel.As can be seen from the table, Towards-precise
[11] method have much inferior preformance across all the
metrics and segments as well for the full shape, in compar-
ison to reset of the method. A possible explanation for this
result might be related to [11] architectural design that aims
to find the dense correspondence between each full shape G
and another arbitrary pose partial shape P while on the same
time approximate the completion shape for P . As a result,
it tries to solve much complecated problem than the origi-
nal shape completion problem.Closer inspection of the table
shows number of important differences between 3D-CODED
[10] and our method. Crosswise all the mean point-wise dis-
tance errors [Equation 3] and throughout all the segmenta-
tions and the full shape comperation , our method constantly
outpreform 3D-CODED method. Additionaly, there was un-
ambiguous difference between the methods when consider-
ing normalized quantities [Equation 4] across the diffrent seg-
ments. When considering the volumetric error and the surface
area error, 3D-CODED method achieved better results on the
torso segment and on the full body. However, our method sur-
pass 3D-CODED on the other segemts, e.g. head, arms and
legs. Taken together, these findings suggest a role for prior
partial shape P in promoting precie shape completion.

5.3 FTMP multiple priors reconstruction

[Figure 12] presents the breakdown of FTMP method El2 er-
ror according to number of point clouds N on the prior and
to the origins of this prior. For the case that all partial point
clouds in A taken from the same pose as G (which repre-
sented as blue samples), The scatter plot shows that there
has been a steady decrease in the El2 error for each point
for N ∈ {0, 1, ..., 5}. This is a somewhat reassuring result.
However, increasingN further causing an unwanted outcome:
the dimensionality of the input space is becoming bigger and
as a result, the error stop to decrease. As a generalization at-
tempt for FTP method, we also run the experiments with the
scenario that A taken from the different pose from G (which
represented as red samples). On this case, There was no sig-
nificant difference between the experiments with respect to
the error rate. It is difficult to explain this result, but it might
be related to the usage of the size shape descriptor compo-
nents sizes relation θ = [θpart, θA]. In our experiment, θ com-
prised of two vectors with same lengths |θpart| = |θA| = 512.
In future investigations of this scenario, it might be possi-
ble to use a different lengths for those components, such that
|θpart| > |θA| in which reflect the importance of the target
point could P related to the prior partial point clouds A.
Therefore, it is possible that for this case, these results do not
accurately reflect the true potential of the model and more re-
search on this model needs to be undertaken.

6 Conclusions
The main aim of the present research was to examine meth-
ods for accurate 3D shape completion. This study set out to
develop neural-network architecture for 3D prior based shape
completion method and evaluate it compared to existing meth-
ods.The current results highlight that precise shape comple-
tion can be achieved through utilization of prior data. On this
aspect, further studies are required to develop a deeper under-
standing of the prior based learning effectiveness in 3D shape
completion field. The research has also shown that choosing
samples from large datasets according to our new method-
ology significantly increase the performance of shape com-
pletion models. These findings have crucial implications for
the understanding of how the variance of the training dataset
could effect machine-learning models in various of applica-
tions. Finally, we provide two new visualization tools which
provides new ways to explore the shape and the pose mani-
folds of parametric body models and datasets.
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