Utilizing Prior Knowledge for Non-Rigid Shape Completion

Omer Ben-Hayun

Supervisor: Ido Imanuel

Shape completion applications

Images from left to right:

(1) https://topflightapps.com/ideas/computer-vision-in-medicine/,

(2) Andrey Suslov / Getty Images,

(3) Gaming in the metaverse by meta https://www.youtube.com/watch?v=5FwztKGQmd8,

(4) https://www.phonemore.com/news/how-to-3d-scan-an-object-with-your-phone/4291.

Goal:

shape completion of human shapes

SAL: Sign Agnostic Learning of Shapes from Raw Data (2020), Atzmon et al **AtlasNet**: A Papier-Mâché Approach to Learning 3D Surface Generation (2018), Groueix et al

Previous methods

Partial scan

Deformable Shape Completion with Graph Convolutional Autoencoders (2017) **FARM**: Functional Automatic Registration Method for 3D Human Bodies (2018)

Challenge:

Bridging the information gap

Completion idea - encoder

Completion idea - decoder

Completion idea – full picture examples

Completion idea

Completion idea

our method: FTS-NP (fixed template shape-no prior)

Completion idea

Encoding:

our method: FTS-NP (fixed template shape-no prior)

Completion idea

Experiment

Methods in compression:

- Towards Precise
- FTS
- FTS-NP

Tested on subsampled datasets from AMASS Dataset

(10 males, 50 samples for each actor)

The training set was sampled randomly.

Scans source: (Right) Amass dataset. https://amass.is.tue.mpg.de, (Left): SMPL+H rest pose

Evaluation metrics

 full body + Segments: head, torso , left arm , right arm , left leg, right leg.

• errors:

$$\forall p \in \{1, 2, \infty\} : \mathbb{E}_{l_n(G, R)} = \frac{1}{N} \sum_{i=1}^n \left\| g_i - r_i \right\|_p$$

$$\forall O \in \{Vol, Area\} : M_O(G, R) = \frac{|O(G) - O(R)|}{O(G)} \cdot 100$$

N = #Points in segment

		Segment						
Doculto		full body	head	torso	left arm	right arm	left leg	right leg
Results	\mathbb{E}_{l_1} Error [cm]							
	Towards Precise	0.240746	0.162363	0.166394	0.266586	0.270954	0.293877	0.303135
	FTS-NP (ours)	0.172014	0.117620	0.121781	0.198461	0.200176	0.193018	0.199039
	FTS (ours)	0.147619	0.097046	0.103619	0.166146	0.170752	0.172403	0.182553
	\mathbb{E}_{l_2} Error [cm]							
	Towards Precise	0.162575	0.109220	0.111560	0.179142	0.183097	0.200223	0.206027
	FTS-NP (ours)	0.116217	0.078855	0.081467	0.133859	0.135026	0.132671	0.135104
	FTS (ours)	0.099525	0.064675	0.069361	0.111625	0.115255	0.117476	0.124246
	$\mathbb{E}_{l_{\infty}}$ Error [cm]							
	Towards Precise	0.137028	0.091874	0.093337	0.150302	0.154346	0.170173	0.174576
	FTS-NP (ours)	0.097944	0.065986	0.068019	0.112450	0.113825	0.113498	0.114432
	FTS (ours)	0.083730	0.053837	0.057882	0.093691	0.097165	0.099761	0.105167
	Volumetric error	[%]						
	Towards Precise	46.854080	45.355503	44.622883	55.759094	57.923038	51.874989	52.759754
	FTS-NP (ours)	31.126259	32.397682	28.613161	39.795094	42.709961	32.265114	32.649700
	FTS (ours)	26.938036	24.644217	24.285990	32.891121	35.859035	29.393967	29.738489
	Surface area erro	r [%]						
	Towards Precise	30.000505	32.000538	27.276175	36.425770	39.768318	33.572063	34.273651
	FTS-NP (ours)	22.995281	22.502445	19.693295	29.450409	31.579748	22.296270	23.120274
	FTS (ours)	19.846867	16.847292	17.354050	24.950127	26.357685	19.766914	20.035872

Table 1: Comparison of Towards-precise, FTS-NP (ours) and FTS (ours) shape completion methods with respect to the described evaluation metrics on each segment. All the methods was trained on the high-variance males random (MR) dataset. The minimum value on each column appear in bold.

Results

- •Our completion methods outperform the existing state-of-the-art Towards Precise method across all segmentations and all errors.
- FTS method surpass FTS-NP method in all the same aspects as well, which imply the prior importance in shape completion.

How can we improve results?

 Hyper parameters tunning Dataset sampling Achieving similar results using weaker prior Our focus

AMASS Dataset

- 14 inner datasets
- 344 actors
- 11,265 animations, 17 million frames

AMASS – deep dive

- AMASS collected motion capture scans from existing datasets.
- Each scan was transformed into SMPL+H parametric body model.
- Finally, the feature vector is decoded into a synthetic body model.

Image : pose-Conditioned Joint Angle Limits for 3D Human Pose Reconstruction Scan : Amass dataset. https://amass.is.tue.mpg.de

 $\Theta_{pose} = (\theta_1, \theta_2, \theta_3, \theta_4)$

$$\Theta_{pose} = (\theta_1, \theta_2, \theta_3, \theta_4)$$

\bigcirc	$\Theta_{pose} = (\theta_1, \theta_2, \theta_3, \theta_4)$	(30,30,90,90)	(90,90,90,90)	(110,0,45,135)
	Model pose			

0 0

SMPL+H Parametric body model

AMASS Dataset

- 14 inner datasets
- 344 actors
- 11,265 animations, 17 million frames
- **Problem:** Heavily biased towards rest poses.

Testing the bad classifier Cat

- biased testing set of (99% cats, 1% dogs) leads to false evaluation of the model.
- However, testing with unbiased dataset of (50% cats, 50% dogs) will reveal the problem.

 Important Conclusion: the testing set should be as unbiased as possible.

Problem - AMASS is heavily biased towards rest poses Aspect 1: Several animations for an actor:

Problem - AMASS is heavily biased towards rest poses Aspect 2:3D PCA projection of for an actor: PyVista 2 Rest pose Centroíd! 1.50 color 2.00 2.50

Our solution: FPS sampling (farthest point sampling)

• We propose the FPS sampling methodology in order to sample subset of points that are farther away from each other.

Our solution: FPS sampling (farthest point sampling)

• We sample the frames using FPS sampling **over the shape vector** θ_{shape} on SMPL+H, resulting unbiased pose manifold with high variably.

FPS result for n = 4 on actor from BMLmovi dataset

Our solution: FPS sampling (farthest point sampling)

Algorithm 1: FARTHEST POINT SAMPLING (FPS)

Data:

 $N \in \mathbb{N}^+$ the number of frames of a given actor. $n \in \{1, 2, ..., N\}$ the number of frames to be sampled. $\Theta^{\text{body pose}} = \{\theta^{\text{body pose}}\}_{i=1}^{N}$ the body pose vectors for each frame. **Result:** selected frames $S \subseteq \{1, 2, ..., N\}, |S| = n$ **Function** $FPS(N, n, \Theta^{body\,pose})$ sample randomly: $s \leftarrow \mathcal{U}\{1, 2, ..., N\}$ $S \leftarrow \{s\}$ $S \leftarrow \{s\}$ $U \leftarrow \{1, 2, ..., N\} \setminus S$ while |S| < n do $\left| \forall i \in U : d_i^{min} = \min_{j \in U; j \neq i} \left\| \boldsymbol{\theta}_j^{\text{body pose}} - \boldsymbol{\theta}_i^{\text{body pose}} \right\|_2$ $s \leftarrow \arg \max_{i \in U} d_i^{min}$ $S \leftarrow S \cup \{s\}$ $U \leftarrow U \setminus \{s\}$ return S

Sampling Experiment

Names:

Splits:

	Males		Females			
Random	high-variance n	nales random (MR)	high-variance female	high-variance females random (FR)		
FPS	high-variance n	nales fps (MF)	high-variance females fps (FF)			
		-				
		Train	Validation	Test		
males rar	ndom	MR	ME ME			
males fps	5	MF	ME ME			
females random FR		FR	FF_	FE_		
females fps		FF	F <u>F</u>	FE		

Unbiased dataset

pnts.

Remember, we want to test with

Results

Results

\mathbb{E}_{l_2} Error [cm]	FTS (ours)	FTS-NP (ours)	Towards precise
males random	0.0977	0.1142	0.1584
males fps (ours)	0.0390	0.0474	0.0908
imrprovement factor	2.505	2.409	1.744
females random	0.0786	0.0715	0.1399
females fps (ours)	0.0348	0.0363	0.08244
imrprovement factor	2.258	1.969	1.696

significant performance improvement factor: at least 1.5, across all cases.

Implications

How can we improve results?

 Hyper parameters tunning Dataset sampling Achieving similar results using weaker prior Our focus

Scans source: Amass dataset. https://amass.is.tue.mpg.de

Improve results – utilize weaker prior

What if we don't have the full prior?

Bridging the information gap

Scans source: Amass dataset. https://amass.is.tue.mpg.de

Improve results – utilize weaker prior

What if we don't have the full prior?

Bridging the information gap

Improve results – utilize weaker prior

our method: FTS (fixed template shape)

Completion idea

Improve results – utilize weaker prior

our method: FTMP (fixed template multiple prior)

Completion idea

Experiment

FTMP with different multiple prior scenarios:

"Same pose"

• N Partial point clouds acquired from the same actor (as the partial scan) and the same pose (Multi-view stereo)

"Other pose"

• N Partial point clouds acquired from the same actor (as the partial scan), in another pose

P Partial scan

Multiple Prior

 $A = \{A_1, A_2, \dots, A_N\}$

The scenarios compared on extensive version of AMASS, over 250 actors with 1K frames each, across $N \in \{0, 1 \dots, 8\}$ partial point clouds.

Results

- Almost across all the cases, results with N
 > 0 were better than the no prior case N
 = 0.
- On the Same pose scenario:
 - Steady error decrease for $N \in \{1, ..., 5\}$
 - On larger *N*'s, the error stop decrease. (curse of dimensionality)
- On the Other pose scenario:
 - There was no significant difference between the experiments with respect to the error rate.
 - Might be related to the usage of the size of the shape descriptor components sizes relation $\theta = [\theta_{part}, \theta_A]$. In our experiment, θ comprised of two vectors with same lengths $|\theta_{part}| = |\theta_A| = 512$.

FTMP \mathbb{E}_{l_2} error for $N \in \{0, ..., 8\}$ **Partial** point clouds

Contributions visualization tools

1. We developed **strong visualization tools** to explore the shape manifold of parametric body models.

AMSS Pose manifold explorer

SMPL+H explorer

Contributions

3D shape completion algorithm

2. We developed **state-of-the-art** 3D shape completion algorithm for shape completion from single partial view and another complete view in another pose. The algorithm significantly improve existing methods.

Contributions

FPS sampling methodology

3. We show a **new methodology** for choosing samples from large datasets that decrease the dataset bias and leads to **significant performance improvement** factor **of at least 1.5**, **across all cases**. It is the **first time** FPS sampling is implemented on the pose domain of human body parametric models. This method can be used in another machine-learning scenarios.

FPS result for n = 4 on actor from BMLmovi dataset

Contributions

Non – rigid shape aggregation algorithm

4. We propose **new** architecture for shape completion from a single complete view and another set of multiple partial views.

Utilizing Prior Knowledge for Non-Rigid

Shape Completion

Omer Ben-Hayun Supervised by Ido Imanuel Electrical Engineering Department The Technion - Israel Institute of Technology Haifa 32000, Israel

March 2, 2022

Abstract

In recent years, researchers have shown an increased inter- non-rigid nature, and should be established upon more data in est in 3D human pose and shape estimation. Most studies in addition to the original scan. the field relies solely on completion from partial shape with- [11] lists two basic approaches currently being adopted in out additional information, resulting a limited models that research into shape completion of non-rigid shapes. One is cannot always reconstruct the partial shape precisely. The generative based method and the second is alignment based study utilized prior based approach for shape reconstruction method. Generative based approaches learn to approximate of human partial scans that significantly improved the per- the class distribution and achieved impressive results in shape formance of existing methods. Additionally, in this study we completion tasks, Yet, they suffer from notable methodologdeveloped and applied new technique for sampling from large ical weaknesses, i.e. they are limited in that they only condatasets resulting solid increase of the performance across all siders the partial shape during the completion time and does tested learning models. The sampling methodology presented not take into account additional information that derived from here has profound implications for future studies of machine- the object. Hence, they failed to demonstrate generalization learning models that relies on learning from large datasets. capabilities and cannot provide a accurate completion for un-Finally, we designed new visualization tools to explore the seen partial shapes. On the other hand, alignment based methshape and the pose manifold of parametric body models and ods aiming to fit a complete shape to a partial shape. Since datasets.

Keywords: 3D shape completion, Non-rigid geometry, FPS sampling, Single View Reconstruction.

1 Introduction

In recent years, major advances in computational capabilities the shape manifold of parametric body models. have arise a growing demand for creating and consuming 3D 2. We show a new methodology for choosing samples from content. However, professional scanning devices are too ex- large datasets that increase the performance of the learning e to be used for the typical user. As a result

geometry of the original partial shape. Therefore, they often cannot be based solely on symmetry properties due to their

they exploit additional data during the inference time, they have potential advantage in terms of generalization and precise completions. However, current alignment based methods can carry only moderate partiality and considered to be slow. This study set out to shine new light on shape completion tasks from several angles:

1. We introduce the design of visualization tools to explore

Future Work

- **FPS Sampling:** this sampling methodology could increase the performance of existing models in different scenarios: noise-reduction ,image classification, etc..
- **3D shape completion algorithm:** hyper-parameters tunning, improving the encoder-decoder architectures with newer point cloud learning shape encoders like PointNet++ .
- Non rigid shape aggregation algorithm: improve the hyperparameters , mainly $|\theta_{part}|$, $|\theta_A|$ in order to achieve better results.

Thanks

