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Abstract 
The Robotics Excellence Program in mechanical engineering 
department are trying to build a robotic arm that picks tin cans (as the 
picture on the right) from a clutter in a box and organize it for 
shipment.  

The robotic arm will use: 

1. Vacuum end point to pick up cans from above (from the 
“head” of the tin can). 

2. Linear end point (clamp like) to pick cans that are laying or in 
an angle. 

Above the box there is a static RGBD LIDAR camera. 

Our project was creating the “vision” part of the robot, meaning 
each time the robot wants to take the next can from the clutter – 
he sends a request to our program that is connected to the static 
camera.  

Our program thus accepts a request from the robot for the next 
tin can, takes a picture using the RBGD camera, process it with 
algorithm that will be explained and: 

1. Returns the location of 1 point on the top of the cans if it 
is standing. 

2. Returns 2 points which constitutes a straight line on the 
middle most upper part on the can (Examples below). 

 

 

 

 

 

 

  



Algorithm 
We’ll walk through the whole algorithm, shown in the diagram below: 

 

 
In each part we’ll make the part we are talking about in blue. 

Manager 
Firstly, the robot sends an HTTP request to the REST API of the algorithm. We choose to separate the 
robot and the vision algorithm itself as part of micro services view in mind, while the HTTP could be 
replaced in later versions for ZeroMQ for example. 

When accepting an HTTP request for getting the next can position, the program takes an RBGD 
picture using the camera, and sends it to the Mask RNN neural network for segmentation (will be 
explained further below).  

Mask RCNN 
Mask R-CNN is a CNN based neural network that is the state of the art in image and instance 
segmentation today. It is based on Fast R-CNN, which is region-based CNN. It gives bounding boxes 
as well. 

We took the TensorFlow version which is quite deprecated and hard to use (only works with old 
versions of TensorFlow and other libraries), and the checkpoint which is trained on the COCO 
dataset.  

The COCO dataset contains 88 classes. Cans are not one of them, but we hoped it might recognize 
the cans as bottles or other objects and we’ll ignore the class itself. 



 

 

 

 

 

 

(Some examples of how it performed) 

As you can see, it identified some of the cans quite well, and others poorly. Important to remind 
here – we only need to recognize one most upper can correctly – therefore even if the algorithm did 
not recognize all the cans correctly, one is enough.  

Important to note that in simpler scenarios it worked quite well. 

Because of the poor results, we had to train the Mask R-CNN with more data. 

After a survey in Fiverr, we choose some company in Kenya to help us. We took 1200 pictures asked 
them to create annotations of the pictures: 

 

 

 

 

 

 

And then trained the COCO checkpoint with the new dataset. 

Some results: 

 

 

 

 

 

 

In an environment containing only cans, the network identifies cans correctly in >90% of the cases. It 
does make a lot of false positives with other objects, but as our environment contains cans only, it 
was enough for us. 

 

 



 

 

 

 

It does make errors (for example – here we think it might make error because we didn’t train the NN 
on very large cans or that the configuration of mask r-cnn defines a maximum size for segmentation 
in the picture). 

 

3-D Most Upper Identifier 
Remember – we are after segmenting the picture and getting the masks for each can. 

Now, we firstly smooth each of the mask with Gaussian filter 𝜎 = 1. Afterwards, 

we want to get the most upper one. For each mask, we find the most upper pixel inside the mask. 
Then, we take the mask with the highest pixel of all those and mark it as the most upper one. It does 
give sometimes the second most upper due to camera noise (we’ll be explained in the next part), but 
mostly works quite well and can be improved easily with using percentiles in the Z dimension. 

Depth Camera Noise 
   

We found out quite late in the project 
that the depth camera is quite noisy. 
As can be seen in the diagram on the 
right, while looking at a standing can 
from above, there should be a 
difference in heights of less than 
1mm. In the actual data received from 
the camera, for a can standing in the 
middle there might be a difference of 
5mm, and for a can standing in the far 
end of the camera, there can a 
difference of up to 15mm.  

This is after adjusting the camera and 
validating it is perpendicular to the 
floor.  

We needed to find somehow a way to tell whether a can is standing or laying (because of the 
different ways to handle it). Thus we tried a couple of methods to differentiate between laying and 
standing can: 

1. Smoothing the Z matrix with Gaussian Filter, Uniform Filter, and Median Filter with different 
kernel sizes. 

2. Afterwards, using different algebraic measures as percentiles in the matrix – check whether 
the difference between different percentiles is always lower in standing vs laying cans 



3. Using the 1st and 2nd derivatives of the Z matrix. The 1st derivative of standing can should be 
0, as the 2nd one. They both in a laying can should be very different than 0. 

4. Smoothing the 1st and 2nd derivatives and using different algebraic measures as comparing 
averages, summing and difference in percentiles with or without removing outliers. 

Unfortunately, we failed in finding a golden rule that works for all cans and scenarios. 

Checking If can is Standing 
By empirical means of trial and error, we found that for 𝜖 = 6 ∗ 10!"𝑚 = 𝑚𝑚, the difference 
between the 50 percentile and the 10 percentiles is smaller than that 𝜖.  

Thus, if the condition: 

𝑑#$ − 𝑑%$ ≤ 6𝑚𝑚 

Holds, it is classified as standing can, otherwise not. Important to note that in some edge cases 
where the cans are on the far right/left the condition does not hold. 

  



Bits Identifier 
Motivation 
When a can is standing, we want to return a point (𝑥, 𝑦, 𝑧) where the robotic arm can pick it up 
using a vacuum gripper. 

If the can has a smooth surface, we can grip it from the center of the can: 

 

But, if there is a can openner, which we will call “bit”, the vacuum gripper cannot lift the can from 
the center, since the bit is interferes and letting the air to get out from the side. 

Therefore, we need to return a farther point. For example: 

 

For that, we need to first identify the bit and then find the mid point between the center and the 
point on the circle (The geometric calculation will be detailed later) 

  



Finding the bit 
First, we take the given masked image. 

 

Then, we isolate and process the image to grayscale image. 

 

Then, we find the bits. 

Naïve solution 
We have tried to use circle Hough Transform (CHT). 

CHT is a basic feature technique used in digital image processing for circles detection in a 2D image. 

We can see the problem in the following image: 

 

We get a lot of false positives from the image. 

  



The Next Step – Hyperparameters Tweaking 
Hough Transform algorithm uses edge detection (with canny). When we use the CHT, we can tweak 
the hyperparameters of the canny algorithm. 

We found the best hyperparameters. 

But, even then, we got some problematic cases that recognize few circles on the top of the can. 

 

Final Step – Choosing Correct Circle 
Since after tweaking CHT hyperparameters there are still some false positives, we decided to run 
CHT multiple times with different hyperparameters and use heuristics to choose the correct bit circle 
from the given ones. 

The heuristics includes the most reoccurring circle, the circle closest to the mean circle, distance 
from center (which should be ~ "

&
𝑟, when 𝑟 is the radius of the can) and number of close circles. 

 

Calculating the “Sweet Spot” 
After we found the circle of the bit, we can calculate the “sweet spot” – the point where the vacuum 
gripper can lift the can from. 

To find the “sweet spot”, we used simple geometric calculations: 

Some definitions: 

𝑏𝑖𝑡_𝑐𝑒𝑛𝑡𝑒𝑟 ∶= (𝑥' , 𝑦')	
𝑐𝑎𝑛_𝑐𝑒𝑛𝑡𝑒𝑟 ∶= (𝑥( , 𝑦()	
𝑐𝑎𝑛_𝑟𝑎𝑑𝑖𝑢𝑠 ∶= 𝑟(  

We will find the line that goes through the of the can and the bit: 

𝑚 =
𝑦' − 𝑦(
𝑥' − 𝑥(

	

𝑦 = 𝑚 ⋅ 𝑥 +𝑚 ⋅ 𝑥' + 𝑦'	
𝑐 ∶= 𝑚𝑥' + 𝑦' ⇒ 𝑦 = 𝑚𝑥 + 𝑐 

Now we will find the intersections with the can circle: 

The circle equation of the can is: 

(𝑥 − 𝑥()) + (𝑦 − 𝑦()) = 𝑟()	
𝑦 = 𝑚 ⋅ 𝑥 + 𝑐	
⇒ (1 +𝑚)) ⋅ 𝑥) + (2𝑚𝑦( + 2𝑚𝑐 − 2𝑥() ⋅ 𝑥 + 𝑥() + 𝑦() + 𝑐) − 2𝑦(𝑐 − 𝑟) = 0 



And we can find 𝑥: 

𝑥 ∶= 𝑥%, 𝑥)	
⇒ 𝑦 = 𝑦%, 𝑦)	

Now, we find the farther point from the bit: 

𝑓𝑎𝑟𝑡ℎ𝑒𝑟_𝑝𝑜𝑖𝑛𝑡 = max
|(,!,.!)|"

{(𝑥%, 𝑦%), (𝑥), 𝑦))}	

𝑓𝑎𝑟𝑡ℎ𝑒𝑟_𝑝𝑜𝑖𝑛𝑡 ∶= M𝑥0 , 𝑦0N 

Then, finally, we can find the “sweet spot” which is the midpoint between the farther point and the 
center of the can: 

𝑠𝑤𝑒𝑒𝑡_𝑠𝑝𝑜𝑡 = P
𝑥0 + 𝑥(
2

,
𝑦0 + 𝑦(
2 Q 

Here’s an example: 

 

 

After we found the “sweet spot” we can return the (𝑥, 𝑦, 𝑧) values back to the robotic arm. 

  



Finding Surrounding Rectangle 

 

Motivation  
When the can is not standing, we want to find the rectangle surrounding the can. 

After finding this rectangle, we can cancel some noise of the mask, and more importantly, we can 
take the midpoints of the rectangle and this will be our curve. 

Solution – PCA 
PCA is a method to transform data to orthogonal vectors that describes the variance of the data. For 
example, in the following scatter, the variance of the data can be descried as the vector presented as 
arrows: 

 

And more specifically, for our needs, we can describe this mask: 



 

 

As these vectors, which are orthogonal: 

 

After these vectors are found, we can use the new coordinates system to find the final rectangle: 

 

  



Finding the Curve 
Motivation 
After Finding that the can is not standing, and finding the surrounding rectangle, we want to find the 
curve that is returned to the robotic arm. 

To do that, we should find two points that describe the curve. 

Finding Curve 2D Coordinates 
The first step after finding the surrounding rectangle, is to use the mid points of the rectangle. 

 

If the can is laying fully down, theses points describe the curve itself, and they are the points that will 
be returned. But, for tilted cans, we need to first find the most upper point on the curve between 
the two midpoints: 

 

After finding the most upper point on the “mid curve”, the final curve should be the curve between 
the upper point and one of the midpoints on the rectangle.  

Choosing curve 
To choose the correct curve, let’s consider the next scenario: 



 

Given the two blue curves, we want our curve to be the right curve in this scenario. 

If we take the 2nd derivative of the depth camera, the left curve’s derivative should be ~0, but the 
right curve’s derivative should not. 

This is how we can distinct between the curves. 

Finally, we return the final curve in a form of two points (𝑥, 𝑦, 𝑧). 

  



Pix to CM 
Motivation 
The coordinates for the curve or the “sweet spot”, are given in ([𝑝𝑖𝑥𝑒𝑙𝑠, 𝑝𝑖𝑥𝑒𝑙𝑠, 𝑐𝑚)]. 

But, in the physical world the robot needs the points given in 𝑐𝑚. 

Therefore, we need to convert 𝑝𝑖𝑥𝑒𝑙𝑠 to 𝑐𝑚. 

The Conversion 
We found that the ratio between 𝑝𝑖𝑥𝑒𝑙𝑠 and 𝑐𝑚 is linear in the distance from “ground” (the bottom 
of the box). 

Empirically, we found that this ratio is: 

𝑟𝑎𝑡𝑖𝑜 = 	−0.22 ⋅ 𝑑𝑖𝑠𝑡_𝑓𝑟𝑜𝑚_𝑓𝑙𝑜𝑜𝑟 + 23.6 

Using this equation, we can find the ratio and therefore find the coordinates in cm instead of pixels. 

  



Results 
Experiment setup 
In the experiment we had a cardboard painted white. The depth camera is located about 60 cm 
above the ground and there were few different scenarios with: standing cans, laying cans, tilted cans 
and clutters. 

 

Results 

 

Success 
About 73 percent of the scenarios were recognized successfully and returned the correct 
point/curve. 

Wrong Side 
About 20 percent of the scenarios found the mask successfully, but return the wrong side in the 
calculation of the curve  

 

  



Mask failure 
About 7 percent of the scenarios found the wrong mask. This could happen because a can was too 
big or too close to the camera. 

 

Z Error 
We found that because of the inaccuracies of the camera, The z result was inaccurate. 

According to our measurements, we can see the inaccuracies in the next plot: 

 

Suggested Improvements 
  - Less noisy camera / not based on LIDAR 

  - Working on reducing camera noise with algorithmic approach 

  - Training the Mask R-CNN on more data and more various data 

  - Converting the whole program into custom NN with tailor made loss function 


