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Introduction: 
With the invention of VR headsets available to the public at a reasonable 

price, the possibility of VR chat has become a source of interest for many 

people, allowing people to virtually meet, char, travel and experience this 

limitless world in a more immersive way. 

Making this world more immersive and life-like feeling can be done by 

scanning the user’s body and uploading it in real time to the VR application, 

allowing the user to show and see others as if they were right in front f 

them. 

There are many ways to address this issue, such as:  

• scanning the full body of the person from any direction, which 

requires an expensive and complex scanner. 

• using image processing to recognize the different moving parts of the 

user body and moving an avatar in the 3D space the same way by 

using a known movement model for humans, which could be 

problematic for representing things like hair and cloths that have no 

known movement model. 

In this project I chose a different approach to address this issue, by using 

precise completion of deformable 3D shapes. 

 

Precise completion of 3D shapes: 
In the shape processing field, 3D data acquisition is usually achieved with 

depth sensors, capturing scans done from only one point of view, resulting 

in a deformed and incomplete point cloud, and a completion algorithm is 

needed to reconstruct the 3D shape in its new position, as was analyzed 

from the partial scanned shape. 
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Background: 
This project was built from an existing project named "Towards Precise 

Completion of Deformable Shapes" which offers a solution to this problem 

using a Siamese PointNet network on a partial scan from a single view of a 

person in some pose P and a full shape of this person from a different pose 

Q, producing features, representing features of function F that transforms 

the point cloud Q to the full shape R which is the full scan of the person in 

seen in the point cloud Q.  after that the features output are sent with point 

cloud Q to a new network, representing the function F seen above. 
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Different shape representations: 
There are many ways of representing a 3D shape, with a very popular way 

known as point cloud. 

This method represents the shape in the closest way to the raw scan and 

has the advantage of being order invariant and can be converted easily to 

other representations.  

Another interesting way to represent 3D shapes is Signed Distance 

Function (SDF). An SDF is a function that gets a point in space and returns 

the shortest distance from the represented shape, with the sign of the value 

being whether the point is inside the shape or outside, having value 0 only 

on the surface of the shape.  

 

In this project I chose to use the SDF representation for 3D shapes. 

Why SDF? 
SDF has a natural smoothing effect, which might come in helpful in shape 

reconstruction. 

Another advantage of using SDF is how light it can be compared to big 

point clouds since it is a function representation of a shape and not a set of 

many points. This attribute might help speed up the training process of the 

net. 

Another reason is the good results of SIREN on fitting a point cloud to an 

SDF using periodic activation functions, which was a big inspiration for me 
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to fuse this network into my implementation.

 

 

 

My solution: 
My model is based on an encoder-decoder model. The encoder receives 

as an input a partial shape which is the shape we hope to complete.  

The encoder is a PointNet network, configured the same way as in 

“Towards Precise Completion of Deformable shapes” as would be 

discussed later. 

 

The output of the encoder is a 1024X1 latent, which is then sent as an input 

to the decoder. 

The Decoder is a SIREN network configured in a slightly different way. 

The decoder receives as an input the encoder's output along with a random 

sampling of the 3D space, resulting in an input of size 1027X1. 

The random sampling is a batch of random samples of the [-1:1, -1:1, -1:1] 

space with some, with some of the samples being randomly sampled from 

the ground truth point cloud (represents the shape’s surface and are used 

for the Loss calculation).  

All the samples are than forwarded to the decoder which return’s the 

matching SDF value for each sample. 

The chosen Loss function is the same used by SIREN, as would be 

specified later.  



6 
 

 

 

 

Chosen Configuration: 
For the Encoder part I am using a batch size of 1 shape, and for the 

Decoder part I am using a batch of 3000 samples containing both on-

surface samples from the ground truth and random samples from the 

space. 

I am running 40 epochs; each is running 1000 iterations. 

After each training epoch I am running a validation epoch with 50 iterations. 

The samples consist of 50% on-surface points from the ground truth up to a 

max of 80% of the points on the point cloud, the rest being random 

samples. 

For the viewing part I am using a resolution of 1283 for the 3D cube of SDF 

results transferred to the Marching Cubes Algorithm. 

I am using Adam algorithm for optimization with a weight decay of 0.001 

and a learning rate of 0.0001. 

 

Encoder’s Configurations: 
The encoder is the same as used for “Towards Precise Completion of 

Deformable Shapes” , a PointNet network with 5 Convolutional layers of 
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sizes (6, 64, 128, 256, 512, 1024), having Batch normalization and RELU 

activation function in between except for the last one having max pool, a 

Linear layer and RELU. 

 

 

Decoder’s Configurations: 
The decoder is using a F(φ)=Sin (α· φ) activation function, and after a few 

tests with SIREN I chose to keep the factor in the same value as used for 

SIREN implementation on git as α =30. 

For the Decoder’s initial weights, I am using the default normal distribution 

initialization. 

The decoder is built from 5 Linear layers of sizes (1027,512,256,128,64,1) 

with the Sine function in between except for the last layer. 

 

Data Preprocessing: 
The network’s input is a point cloud of the full shape Q and a point cloud of 

a partial scan P, both are represented as a set of XYZ and normals 

respectively. 

The way SIREN works, it expects to be trained on samples of a const 

range of values, and it could not be trained on the same shape with 

different ratios (for example, one shape is twice the size of the other). This 

condition is derived from the way SDF is only defined for a specific range of 

the 3D space as the shortest signed distance from the surface of the 

shape. 

In our case I chose to normalize the shapes to the range of [-1:1,-1:1;-1:1]. 
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Dataset: 
I am using FAUST dataset as used in the implementation of “Towards 

Precise Completion of Deformable shapes”. 

 

Loss: 
The used Loss function is: 

 

The above function is the same used for the SIREN model. 

It consists of several losses: 

1. The distance of the network’s gradient absolute value from 1 for all 

samples. 

2. The distance from the decoder’s output on all on-surface points to 

zero. 

3. The distance of the network’s output on all on-surface point’s gradient 

from the ground-truth normals. 

4. 𝜓(𝑥) = exp(−𝛼 ⋅ |𝜙(𝑥)|) for 𝛼 ≫ 0, the chosen one is 𝛼 = 100, for the 

decoder’s output on all points not on the ground truth’s surface, used 

to panelize the distance of the SDF output of points not on the 

surface from zero. 

The overall Loss is calculated as the weighted sum of those 4 losses 

with factors of 50, 3000, 100, 100 respectively. 

 

 

Viewing Result 
In order to convert from the SDF result on a specific scan to a point cloud 

we can see and understand, I uniformly sample the space [-1:1,-1:1;-1:1] 

and send it as input to the decoder, and send it to the decoder as input 

while using several batches of 323 samples each time. 
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I then we use the Marching Cubes algorithm on the full 3D cube of SDF 

values from the decoder to get the verts and faces, using them to create a 

ply file. 
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Results: 
For this part there are several ways to test the quality of our reconstruction: 

1. Compering SIREN’s lowest loss value on the reconstructed shape in 

the same normalized space, since our network uses SIREN as the 

decoder and uses the same loss function, therefore the best loss 

result we can get is also SIREN’s loss best result. 

2. After transforming the final SDF to a point cloud we can use a simple 

L2 loss function from the ground truth using nearest neighbor. 

I chose to compare the loss to SIREN’s loss and in addition have a 

visual comparison between the transformed SDF and the ground truth 

point cloud. 

 

Experiments: 
1. Ignoring the encoded partial scan (passing zeros as input to the 

decoder) and using a single shape as the training and testing set.  

The results of this experiment are as expected from the SIREN based 

Decoder with about the same Loss as the SIREN net on its own with 

loss of around 15-20. 

 

 

 

 

 

Our output Ground Truth 
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2. Ignoring the encoded partial scan as before, but now using a single 

shape for a few iterations (300) and then passing to a new shape, 

each epoch having 4000 iterations in total. 

This experiment was showing fast fitting to the shape. 

When switching to a new shape, it showed a rise in the loss at the 

start but then it lowered again and fitted to the new shape with the 

expected loss of around 15-20, showing that once the network was 

fitted to a single shape, it was easier for it to fit to a new shape of 

similar size and over all shape but with a different pose. 

The results of this experiment are interesting because it shows the 

potential of this net to represent a new shape from a previous fitted 

shape. 

 

3. using the encoder's output and having a single scan in the data set 

resulted in a meaningless shape that has no resemblance to any 

human form: 

 
 

A possible conclusion from the above results is that the network does 

not have the ability to distinguish between the first part of the input 

(xyz) and the rest (encoded shape), otherwise we would assume the 

network would ignore the encoder’s output by zeroing the weights of 

the layers related to those features and only look at the random 

samples like SIREN does, but it did not happen. 
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4. Trying the same above experiment again but setting the encoders 

output to be const nonzero (tensor of ones) resulted in similar result. 

 

Conclusion: 

Although the network failed to use the data from the encoded partial scan, I 

do see potential in this kind of representation for shapes as SDF and 

especially the use of SIREN's loss function for it's agility in moving from 

representing one shape to the other, the smoothing affect to the fitted 

shape that is derived from representing the picture as a continues function 

and how well and fast the shape is fitted using the sine activation function. 

 

Future work 
Looking at the network from the paper “Towards Precise completion of 

Deformable Shapes” an interesting idea for the future could be learning 

only the transition function F that transforms the full shape template Q 

using the feature from the encoder on P and Q. 

A simple first experiment can be using a constant Q for the training and 

representing it as an SDF (a map from xyz to the SDF value) for the 

transition function F. 

Using this method the network only needs to learn the transition function 

which might be easier to learn than a full shape for every partial scan. 
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