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1. Introduction 

In the field of histopathology, slices of tissue samples are typically stained and examined under 
a microscope for diagnosis of cancer and other diseases, and for analysis of different properties 
of the diseases. In recent years, the use of whole slide imaging technology for digital scanning 
of glass slides has rapidly increased, allowing the employment of artificial intelligence (AI) 
methods to improve the analysis and prediction abilities in computational histopathology. 
Scanning of a glass slide results in a scan known as a whole slide image (WSI), a gigapixel 
image of a tissue sample constructed from multiple different magnification resolutions. 
Performing analysis of WSIs using deep learning algorithms poses multiple challenges, for 
example due to the large size of the images, and due to the lack of availability of local 
annotations.  

In this project, we implemented and assessed the potential of methods in weakly supervised 
and self-supervised deep learning to perform analysis and predict clinical outcomes from 
Hematoxylin and Eosin (H&E) stained WSIs of patients with breast cancer. We proposed and 
evaluated ways to deal with the challenges that arise when working with WSIs and applied 
our methods to WSI dataset for classification of hormone receptor status information. 

Throughout the report, we will provide a background of related work in the field of 
computational histopathology, describe the methods we implemented, discuss the experiments 
performed and their results, and finally suggest possible limitations in the suggested solutions 
and propose improvements or possible continuation directions.  

1.1 Background and Related Work 

Previous works have shown the potential of using AI to predict clinical information from 
histopathology images [1], [2], [3]. Typically, a feature extractor CNN is learned in a supervised 
fashion for the classification of the desired attribute of the cancer, such as hormone receptor 
status information of ER, PR, and Her2. However, this supervision is only possible when local 
labels are available, i.e., a label for each image that is passed through the network. In the case 
of WSIs, usually only a single slide-level label is available, while the WSI cannot be processed 
in its entirety by the feature extractor due to its size. In addition, since the adoption of digital 
scanning technology in pathology is still ongoing, there is often a lack of labeled data in general 
for many different clinical tasks, while the existing data also varies between sources and may 
be affected by external factors. 

In recent years, many different architectures were proposed to deal with the challenges of 
WSIs. Examples for suggested methods can be found in [2], [3], [4], [5]. Researches employ 
various normalization and augmentation methods to deal with variability in the data and 
suggest weakly supervised or unsupervised components such as clustering to improve results 
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on WSI classification tasks. Other clinical tasks such as cancer survival prediction have also 
been of interest in computational histopathology [6], [7], [8]. 

During the first part of the project, we implemented a method of attention-based multiple 
instance learning (MIL) which will be expanded on in the following section. The MIL 
formulation has recently become a common approach to the WSI setting [9], [10]. As will be 
explained, when applying MIL to our problem, an aggregation mechanism for instance features 
or scores is required. Researchers in the field suggest different aggregation mechanisms, such 
as pooling or attention-based aggregations, which serve as the inspiration for this part. Solving 
the problem of feature or prediction aggregation in WSIs has been a focus of many recent 
works. It is an important step towards achieving slide-level information extraction at a 
pathologist’s level. The attention mechanism and the MIL formulation are both popular 
approaches to dealing with this issue, and we will reflect on the results of them in this project 
to suggest future improvements. 

During the second part of the project, we examined the potential of a self-supervised learning 
(SSL) algorithm, using a contrastive learning approach. The goal of SSL in our case is to create 
a generic feature extractor for histopathology images, that can be used for multiple different 
downstream tasks, in an unsupervised manner. SSL is a rapidly growing field of machine 
learning, in which supervised pre-text tasks are created to allow training with unlabeled data. 
We focused on self-supervised contrastive learning approaches, where positive and negative 
sample pairs are chosen, and the pretext-task is defined as learning an embedding space in 
which positive samples are close to each other, while negative samples are far away. Relevant 
architectures in self-supervised contrastive learning include SimCLR [11] and MoCo [12], [13]. 
The application of SSL to histopathology is also an active research field and shows promising 
results in dealing with the challenges of WSIs [14], [15].   
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2. Methods 

A general pipeline for WSI processing and analysis typically contains the following stages: 
Foreground segmentation, patch extraction, patch feature extraction, and patch 
feature/classification aggregation to the slide level. We describe our architecture and algorithm 
choices for theses stages. For the feature extraction and classification tasks, our work in the 
project can be divided into two parts, where we implemented and evaluated two different 
approaches to deep learning for analysis of histopathology WSIs, each suggested to deal with 
different challenges of the input data. 

2.1 Preprocessing 

An average WSI contains an order of 100,000 × 100,000 pixels. In addition, large portions of 
the image are background areas that contain no tissue information. To apply common deep 
learning algorithms to WSI data, some preprocessing must be done. 

The first stage of preprocessing is foreground segmentation, where a segmentation algorithm 
is applied on the thumbnail image of the slide to find the areas containing tissue information 
and discard the background. This stage is done by thresholding the image and simply 
discarding the areas where the pixel values are under or above the threshold, although the 
choice of the threshold can be dynamic based on the image statistics, such as in Otsu’s method. 
We tried a few different options and parameters for thresholding, but small differences in the 
segmentation procedure are insignificant when compared to the scale of a WSI, and a few 
background patches should not affect the performance. 

The second stage is patch extraction, where a grid is constructed over the segmented 
foreground of the WSI, and image patches at a resolution suitable for a convolutional neural 
network (CNN) are extracted. We constructed a grid of 256 × 256 patches trivially, and 
extracted patches from the coordinates in the grid, allowing small random variations in the 
exact coordinate choice for the patches as a form of regularization, and with the goal of using 
as much of the data as possible. The patch extraction is done dynamically during training, 
and a collection of random patches is chosen from every slide in the dataset. A single slide can 
contain hundreds or thousands of extracted patches, although usually only a small portion are 
used in a single training epoch. 

There are further considerations when doing preprocessing of WSI data, but for the sake of 
the project we chose to use a dataset that has already been examined and reviewed, and as 
such there are less issues with artifacts in the images and unusable samples. Despite this, a 
large part of the work involved dealing with the technical challenges of WSIs and handling the 
data. 
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2.2 Attention Multiple Instance Learning 

In the first part of the project, the method we implemented and evaluated is an attention-
based MIL method. It was originally proposed in [9] and applied to histopathology WSIs in [8] 
and [10]. MIL is a form of weakly supervised learning, where the goal is to classify a label that 
is available for a set of multiple samples, referred to as a bag, instead of a label for every single 
sample.  

Formally, in the case of MIL for binary classification, training samples are a bag of instances, 
where 𝑀 is the bag size, that are drawn i.i.d. from the instance distribution. Each instance 𝑥  
has a label 𝑦 ∈ {0,1} associated with it, and a bag label 𝑌 is defined for bag 𝑋 such that it is 
positive if there exists at least one positive instance in the bag. This definition is equivalent to 
defining 𝑌 as the maximum label in the bag. Different approaches to MIL suggest ways to 
learn with bag labels. A trivial approach is simply assigning the input bag label to all samples 
in the bag and learning an instance level classifier using the assigned labels, followed by 
applying an aggregation mechanism to get a bag-level prediction. This trivial approach is also 
the baseline approach for WSIs that we compare our methods to. 

We claim that the MIL problem formulation fits the WSI setting, in which a slide is a bag of 
patches (instances), and the slide-level label is chosen to be the label associated with a bag of 
patches extracted from the slide. This is the assumption of the method we implemented. We 
employ an instance level feature extractor, a ResNet-50, to extract a feature space 
representation of input patches. The output features are then aggregated using one of multiple 
aggregation mechanisms, and passed through a classifier MLP head to produce a bag-level 
prediction of the slide label. 

There are several options for the choice of aggregation mechanism. In most previous works, 
pooling-based methods such as maximum or average pooling are used. These methods used a 
fixed aggregation and may not represent the correct combination of instance embeddings in a 
bag. Instead, we use an attention-based approach, where the bag aggregation is a weighted 
average: 

𝑧 = 𝑎 ℎ  

Where ℎ  are the embeddings in the bag, and 𝑎  are the normalized weights parametrized by 
a MLP attention head: 

𝑎 =
exp 𝑤 ⋅ 𝑡𝑎𝑛ℎ 𝑉ℎ

∑ exp 𝑤 ⋅ 𝑡𝑎𝑛ℎ 𝑉ℎ
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Where 𝑤 and 𝑉 are learned parameters. This approach allows weights attributed to 
embeddings in a bag to be learned during training. It also improves the interpretability of 
the model by allowing us to view the weights assigned to patches in a slide and determining 
which patches contained significant information to the prediction of the slide label. 

When applying attention MIL to a WSIs, there exists the consideration of constructing the 
bags. We implemented two main alternatives for this, a single-bag method, where a fixed 
number of patches from each slide is chosen at each epoch and passed through the network as 
a single bag, and a multi-bag method, where multiple bags can be extracted from the same 
slide. It is also possible to change the bag size dynamically, however this was not necessary in 
our case, and we found that it is generally enough to sample a relatively small number (order 
of 10) of patches using the single-bag method from each slide, and coverage of the slides is 
achieved by randomization of patch choices between epochs. 

Another improvement to the MIL architecture that we implemented was the replacing of the 
conventional Cross-Entropy classification loss with Focal Loss, which attempts to deal with 
imbalanced data and improve stability. We evaluated the use of Focal Loss for our tasks. 

2.3 Self-Supervised Learning 

While MIL is a possible solution to the slide-level labels issue. We look to the domain of SSL 
as a solution for cases where not enough data is available, to overcome variability, and to 
make use of unlabeled WSIs or ones that are annotated for different clinical tasks. 

We attempted to overcome further challenges of histopathology WSIs using ideas from 
contrastive self-supervised learning. The adoption of technology for digital analysis of tissue 
samples is still ongoing, and as such data and specifically labeled data are often scarce. In 
addition, there are evident differences in colors, image quality, and scan formats, between 
WSIs obtained from different medical centers or using different digital scanners. SSL has been 
shown to achieve state-of-the-art results on image processing tasks in the recent years, and as 
such we suggest this approach as a solution to these issues. 

The application of SSL to our problem can be divided into 2 stages. First, the pre-training 
stage, where a feature extractor, which in our case is a ResNet-50, is trained on a dataset of 
WSIs, or a combination of such datasets, to perform a contrastive pre-text task that makes no 
use of the slide labels. The pre-training stage usually requires many training samples, but this 
is not an issue as they do not need to be labeled. We therefore combine multiple datasets of 
WSIs, potentially with different labels for multiple classification tasks, discard the labels, and 
train on patches extracted from the slides. Next, supervised classifier training is performed 
with the pre-trained feature extractor, on a relatively small dataset for the target downstream 
task. 



 

7 
 

When training the classifier on the downstream task, there are multiple options for how the 
pre-trained feature extractor is used. One possibility, which is the common choice in SSL 
research, is linear classifier fine-tuning, when the weights of the pre-trained feature extractor 
are frozen, and a linear classifier layer is trained with full supervision for the downstream task. 
Another option is using the weights simply as an initialization for the downstream training, 
and propagating gradient weight updates to the entire network. We provide a comparison 
between these options, as well as regular supervised training from scratch on the target dataset 
in the results section. 

We implemented the MoCo-v2 contrastive SSL architecture [12], [13]. In this architecture, as 
well in other architectures such as SimCLR [11], the contrastive learning pretext-task is defined 
as follows. For each training sample (in our case, a patch from a WSI), two separate views are 
generated, using random augmentations on the image. The two views are then considered a 
positive sample pair. In contrast, the views of different samples are considered negative. Each 
training batch then contains an anchor sample (the first view of the input image), its positive 
pair (the second view), and 𝐾 negative samples (views of other images in the batch). The 
network is trained using one of a variety of contrastive loss functions, to minimize the 
embedding distance between the original image to its positive second view, while maximizing 
the distance to negative samples.  

In MoCo, encoded samples are stored in a dictionary managed as a queue and used as negative 
samples in future passes through the network the contrastive task. In addition, the contrastive 
loss function that is used is InfoNCE, which is given by: 

ℒ = − log
exp (𝑞 ⋅

𝑘
𝜏 )

∑ exp (𝑘 ⋅
𝑘
𝜏 )

 

Where 𝜏 is a temperature hyper-parameter, 𝑞 is an encoded sample regarded as a query for 
the dictionary, 𝑘  is the encoded positive sample, regarded as a positive key, and 𝑘  are the 
encoded negative samples, also regarded as keys for the dictionary lookup. This loss function 
can be interpreted as the loss of a classifier with the goal of classifying the query as the positive 
key, as opposed to the negative keys.  

To achieve this formulation in practice, the MoCo implementation is comprised of two identical 
CNNs, 𝑓  and 𝑓 , serving as the query and the key encoders respectively. The key encoder 
network is updated from the query encoder parameters using a momentum update: 𝜃 ←

𝑚𝜃 + (1 − 𝑚)𝜃 , where 𝑚 is a hyper-parameter. The momentum update enables the encoded 
keys in the queue to remain relatively consistent for as long as they remain in the queue, due 
to the parameters of their encoder evolving in a smoother manner. 

Further technical details of the architecture are described in the original papers. In our method, 
we used most of the practices suggested by the authors, and mainly worked on the adaptation 
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of the architecture to our tasks of interest. This includes changes in the data processing pipeline 
during training, variations of the backbone CNN model, different choices for the augmentations 
applied to input samples (which in the original paper were suggested for natural image 
classification), and further adjustments.  

 



 

9 
 

3. Experiments, Statistical Evaluation and Results 

The MIL experiments were conducted on the HEROHE dataset. HEROHE is a dataset that 
was published as part of a digital pathology challenge. It contains 350 train and 160 test 
WSIs, annotated for binary classification at the slide-level of the expression of the HER2 breast 
cancer hormone receptor status. We trained our network architecture on the training set and 
evaluated it on the test set. 

For measuring performance, we used many statistical metrics throughout the project. Since 
the problem is binary classification, the main metrics we used were patch classification 
accuracy, as well as the slide-level classification AUC value and the associated ROC curve. 
Depending on the experiment, we performed further statistical evaluations such as balanced 
accuracy, and Positive Predictive Value (PPV) and Negative Predictive Value (NPV) graphs. 

We conducted experiments comparing different variations of the attention MIL architecture. 
Variations include the bag size, the number of bags extracted from each slide, the loss function, 
architecture hyperparameters, and more. We compared the variations of the architecture 
between themselves, as well as evaluated the performance of MIL when compared with the 
naïve supervised learning approach of attributing the slide-level labels to each patch in the 
slide. The following is a sample of some of the results from the experiments. 

 

Figure 1: Attention MIL training loss convergence over 
100 epochs. 
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In terms of classification accuracy, the better experiments resulted in a classification 
accuracy in the range between 65% and 70%. 

 

 

Figure 2: Slide-level classification ROC curve and AUC of MIL variations. Top left to bottom right – Single bag size 50 max 
pooling with class weighting, Single bag size 50 max pooling with different first conv stride, Single bag size 50 max pooling, 

Single bag size 50 avg pooling. 

Figure 3: PPV-NPV plots for single bag size 50 with max pooling. Balanced class weighting and unweighted. 
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Unfortunately, while some attention MIL variations performed better than others, the overall 
performance of end-to-end training of MIL were sub-par compared to the performance of 
supervised training. We attribute the poor performance to reasons such as instability of the 
bags, the i.i.d. assumption, overfitting, and difficulties relating to the optimization and 
computation process. Further discussion of the problems, limitations and possible 
improvements of MIL is featured in the next section. 

Although the results of the MIL architecture were not ideal, we are able to make multiple 
conclusions. First, the use of focal loss did not significantly improve results over standard 
cross-entropy. In addition, using a relatively small bag size, of 10-50 instances, and selecting 
only a single bag per slide, seems to be a better and sufficient choice for the dataset. Selecting 
multiple bags per slide proved to be even less stable and lead to poor performance. Other 
conclusions include max pooling aggregation performing better than mean pooling, as well as 
balanced class weighting improving performance. 

Using the SSL MoCo implementation, we performed unsupervised pre-training of the feature 
extractor on a combination of datasets of WSI from patients with breast cancer available in 
the lab. After the pre-training stage, we performed supervised fine-tuning of a classifier using 
two different strategies. The first strategy is regular fine-tuning, where the feature extractor 
weights are frozen, and only a classifier MLP head is trained on the target dataset. The second 
strategy is using the pre-trained weights as an initialization for supervised learning. The fine-
tuning was performed on two target datasets, HEROHE as explained above, and another small 
dataset of an order of 150 WSIs for classification of the Oncotype breast cancer score. We 
compared the performance of both fine-tuning strategies to supervised training from scratch 
on the target dataset. 
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As can be observed, while the performance of fine-tuning still has room for improvement, the 
experiments show the potential of contrastive SSL for use on WSI analysis tasks. We note that 
since fine-tuning only involves training a small classifier over the learned features from pre-
training, the results show that the learned features are capable of generalizing to multiple 
different downstream tasks. In addition, using the features from SSL pre-training often 
outperforms simple supervised training from scratch, further suggesting the potential of this 
approach for further use. Both target datasets are relatively small when compared to the 
dataset used for unsupervised pre-training, meaning that SSL also allows improving 
performance on smaller dataset using a larger, unlabeled one. 

In total, while there are still improvements to be made in both research directions we explored 
in the project, we conclude that the results indicate potential for using both for WSI analysis. 
As a follow up to this project, we intend to work on multiple improvements and other 
suggestions for architectures inspired by our work here, as discussed in the following section. 

  

Figure 4: MoCo v2 self-supervised pre-training on a combination of WSI 
datasets. Contrastive loss convergence over 1000 epochs. 

Table 1: Slide classification AUC score comparison of using the pre-trained feature extractor from 
MoCo as opposed to performing supervised training from scratch. 
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4. Limitations and Future Work 

As observed in our experiments, end-to-end training of the attention-based MIL architecture 
did not achieve our expected results and was often outperformed by supervised training from 
scratch on HEROHE. We suggest several explanations for this. First, it is possible that the 
choice of bag size and sampling algorithm for patches in a bag has a more significant effect 
than we attributed to it, meaning that further experiments and modifications to these aspects 
can still improve results. Second, and likely more importantly, we propose that the MIL 
assumption, in its original form, raises multiple problems when applied to WSIs. 

In the MIL formulation, as previously explained, instances in a bag are assumed to be sampled 
i.i.d. from the instance distribution, and a positive bag label implies the existence of a positive 
instance in the bag. However, both assumptions are not necessarily the case in our setting. 
When pathologists examine WSIs, their diagnosis is usually affected by a combination of 
attributes in different areas of the slide, in such a way that the conclusion made from a single 
patch might depend on the contents of other patches. This means that patches in a WSI are 
inherently correlated when making a slide-level prediction, in contradiction to the i.i.d. 
assumption. In addition, we speculate that randomly sampling an order of 10 patches from a 
WSI, may result in a bag that does not contain a single patch that is of any indication of the 
slide label. Such sampling can then lead to noisy and unstable bags during training, and 
eventually hurt performance. This problem is not easily solvable by simply increasing the bag 
size, as too many instances in a bag can also encourage instability and increase the complexity 
of the data. 

We suggest two possible research directions to improve on the original attention MIL 
architecture, both of which we are now actively working on. The first is reducing the use of 
the attention MIL mechanism to a fine-tuning stage. We can perform supervised training from 
scratch and then fine-tune the classifier portion of the model using the attention-based 
aggregation trained with the MIL assumption. This has already shown initial results of 
improving performance outside the scope of the project. The second improvement is replacing 
the attention mechanism with self-attention and making use of the Transformer architecture. 
Self-attention does not require the i.i.d. assumption, as the correlations between instances in 
the bags can be learned during training and considered when making predictions. Self-attention 
also possesses many desirable properties that are likely to improve results as has been shown 
in recent research papers. 

Regarding the SSL part of the project, we see the outcome as a good initial result suggesting 
the potential of using SSL to improve performance for multiple tasks in histopathology. We 
propose that there are multiple improvements to be made in both the pre-training and fine-
tuning stage of the architecture. Such improvements include further examining of the 
augmentations used on histopathology data, modifications to the selection process of positive 
and negative samples during pre-training, for example by making use of the existing partial 
labels and metadata, and another potential idea of combining MIL and contrastive learning 
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by attempting to learn similarity of slide-level representations. The last suggestion can also be 
combined with the use of self-attention as mentioned in the previous paragraph. 
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5. Conclusion 

Throughout the project, we implemented multiple methods and architectures in the attempt 
of dealing with the difficult challenges of using deep learning to analyze histopathology WSIs. 
We evaluated our proposed methods for prediction of clinical outcomes from WSIs, suggested 
and examined possible improvements to our solutions, and analyzed the results. Finally, we 
reflected on the results of our experiments to find various limitations to our methods and 
suggested possible future research directions. We intend to use conclusions and experience 
from this project in our current and future research, in the hopes of further progressing the 
capabilities of digital WSI analysis. 
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