
Project in Image Processing and Analysis (234329) - Stereo Camera

Yaniv Wolf (318173663)

June 27, 2022

Contents

1 Abstract 2

2 Background 2

3 My Implementation 3
3.1 Goal . 3
3.2 The Cameras . 3
3.3 Streaming . 4
3.4 Calibration . 4
3.5 HW Triggering . 5
3.6 Disparity calculation . 6

4 Validation 7
4.1 Comparison with Intel RealSense D415 . 7
4.2 Baseline size . 7

5 Future Work 8

References 8

A Appendix: Installing and running the program 9
A.1 Installations and preparation . 9

A.1.1 Installing Conda . 9
A.1.2 Cloning the repository and installing the conda environment 9
A.1.3 Installing Vimbapython . 10
A.1.4 Installing Cuda . 11
A.1.5 Installing PyTorch . 12
A.1.6 Installing Raft-Stereo . 12
A.1.7 Initial Run . 12

A.2 Running the program . 13
A.2.1 Repository structure . 13
A.2.2 Parameters . 15
A.2.3 Streaming . 16
A.2.4 Calibration . 18
A.2.5 Capturing . 19
A.2.6 Saving disparity maps and point clouds . 19
A.2.7 Viewing point clouds . 20

1

1 Abstract

While traditional cameras are constrained to two dimensional images, it is possible to utilize several cameras
to create systems capable of capturing three-dimensional images. Such systems are called stereo camera
systems, and are capable of capturing the depth of every point in the scene, using a stereo matching algorithm
and the distance between the cameras. In this project, I created a stereo camera from scratch, which includes
wiring the cameras for synchronized hardware triggering, and building an interface capable of streaming and
capturing depth images, generating and viewing point clouds, and interactively performing internal and
stereo calibration of the camera array.

Keywords: Stereo-Alignment, Calibrated Stereo, Uncalibrated Stereo, Stereo Matching, Disparity, Rota-
tion, Translation, Rectification, Epipolar Lines.

2 Background

Three-dimensional cameras are at the core of numerous important applications such as autonomous driving,
3D scanning, and augmented reality. The basic concept of stereo vision is inspired by the depth perception
of human eyesight: given two stereo-aligned images (all identical points between the images share the same
y coordinates), it is possible to create a depth map of the image using calibrated stereo - That is, for each
point in one image, find the corresponding point in the second image and calculate the difference in their
x coordinates (since the y coordinates are the same because of the alignment). This difference is called the
disparity. Using a disparity map, the depth of each point can be found given the intrinsic parameters of
the camera and the relative position between the cameras.

However, it is nearly impossible to stereo-align cameras physically, since that would require precision crafting
a stand for them, which would be prone to physical changes. Similarly to the calibrated stereo problem,
the problem of stereo imaging without alignment is called uncalibrated stereo. To solve this harder
problem, it would be helpful to first convert it into the calibrated stereo problem. This is a process known
as rectification and it involves several steps:

1. An intrinsic calibration of each camera on its own. During this calibration, the intrinsic matrix of the
camera is discovered, as well as the distortion coefficients. The intrinsic matrix of a camera is a 3× 3
matrix consisting of the focal lengths of the camera in the x and y directions (fx and fy respectively),
as well as the zero origin coordinates in the x and y directions (cx and cy respectively):fx 0 cx

0 fy cy
0 0 1


The calibration is performed using a set of known points in the image, such as corners in a chessboard.
By taking several images of the chessboard, in various positions and angles, the parameters of the
camera can be extracted using a constrained Least Squares approximation: Given the coordinates in
the image and the real world coordinates (which are known since the chessboard is of known size), it is
possible to build a system of equations to extract a 3× 4 projection matrix. The intrinsic parameters
can then be extracted from this matrix using QR decomposition.

2. Once the intrinsic parameters are known, the next step is to perform the stereo calibration. This
means finding the rotation and translation matrices that transform the coordinates of one camera
to the coordinates of the other. This is done again using a set of known points in both images, and
solving a constrained Least Squares problem to find the fundamental matrix that transforms from one
coordinate system to the other. From there, the rotation and translation can be extracted using the
intrinsic parameters of the cameras and SVD.

3. Once the rotation and translation matrices are known, the next step is to rectify the images, meaning
project them onto a common plane, to achieve stereo-alignment. This is done by converting the rotation
and translation matrices into a 3 × 3 rectification matrix, that will act as a linear transformation on
the image. Later, the images are warped to fix the distortion. At this stage, the images are rectified.

2

Figure 1: Visualization of the stereo rectification process [2].

As can be seen in figure 1, once the images are stereo-aligned, the problem becomes that of calibrated stereo,
which was mentioned earlier. The naive solution for calibrated stereo is to segment one image into blocks,
and using some similarity metric, for each block, find the corresponding block on the other image that is
the most similar to the given block (this involves searching a single line (called epipolar line) rather than
the whole image due to the rectification). The current state-of-the art solutions work using neural networks,
and in this project we will use the RAFT-Stereo model [1][4] as the stereo matching algorithm.

3 My Implementation

3.1 Goal

The goal of this project was to create a 3D stereo camera array and interface ”from scratch”, which will be
used to test new stereo algorithms later on. This includes building an interface that can:

• Stream live synchronized and rectified frames from all the cameras.

• Control the exposure for different lighting conditions.

• Perform intrinsic and stereo calibration using varying sizes of chessboards.

• Stream the resulting disparity images after calibration in real-time.

• Capture raw and rectified images, and create and view disparity maps and point clouds.

3.2 The Cameras

The camera sensors were from Allied Vision, model Alvium U-507c [3]. These cameras were fitted with
2.5mm lens, and they were mounted on a 3D-printed rig, capable of rotating in the x and y directions. The
distance between two adjacent cameras was 20cm. There are two cables connected to each camera: One is
the USB cable that connects the cameras to a computer for frame acquisition, and the second is a serial
cable used for the HW trigger mechanism to ensure that all cameras trigger at the exact same time.

3

Figure 2: The camera array.

3.3 Streaming

The first challenge was to understand how to use these new cameras, which were never before used in the
lab. I downloaded the official Python library for these cameras, called VimbaPython [5]. I based my frame
acquisition on an example for multithreaded frame acquisition from multiple cameras at the same time. The
general idea is to have a main thread which spawns a producer thread for each camera and a single consumer
thread that displays all the acquired frames from a shared queue. The cameras work in such a way that there
is no configuration file saved onboard, but instead the settings are loaded each time the camera connects.
There are several options for triggering the cameras, and at first I used the default option which was just
sending a signal from software and letting the cameras take frames freely and queue them. This turned out
to be a bad idea, which will be discussed later on in section 3.5.

3.4 Calibration

After achieving a steady stream from the cameras, the next step was to perform calibration. As mentioned
earlier, there are two types of calibrations needed to create a stereo camera:

• Intrinsic calibration, individual per camera. This calibration is used to determine the intrinsic param-
eters of each camera, which compose the intrinsic matrix. It also computes the distortion coefficients.

• 3D stereo calibration, which is performed on all cameras simultaneously. This calibration is used to
determine the location of one camera relative to another camera, and compute the rectification matrix.
Using this matrix, it is possible to rectify images and project all of the frames to a common plane.
This ensures that the horizontal lines in each image contain the same parts of the scene, thus reducing
the stereo matching to a linear search rather than searching the entire image.

In order to calibrate the cameras, a chessboard is used.

For the first stage of calibration, 15 images are taken from each camera, while moving and tilting either the
chessboard or the cameras, to achieve a wide variety of angles. While experimenting, I discovered that fewer
images lead to a bad calibration since there wasn’t enough data, and too many images won’t necessarily
improve the calibration, and only cost more resources and time (also, it increases the chance of a having a
bad image in the set of images which can damage the entire calibration). Once the images are obtained,
the program extracts the corner locations using the OpenCV findChessboardCorners() method, and given
prior knowledge of the dimensions of the chessboard, it calculates the intrinsic matrix and the distortion
coefficients using the OpenCV calibrateCamera() method.

For the second stage of calibration, another 15 images are taken from all cameras simultaneously, and then
the stereo calibration is performed, using the intrinsic matrices and distortions calculated in the first stage,
with the OpenCV stereoCalibrate() method.

One important note, is that the program will only allow to take an image for calibration when all relevant
cameras have visible chessboards, all corners are detected and the reprojection error is low (the reprojection

4

error is calculated by taking the MSE between the set of points that were detected, and a projection of a
perfect grid to the image using the calculated intrinsic matrix with the OpenCV projectPoints() method).
To allow for more real-time performance, the OpenCV checkChessboard() method which is quicker is first
used to check if a chessboard exists in the frame before searching for points. These steps ensure as much as
possible that the reprojection error at the end of the calibration will also be low enough.

3.5 HW Triggering

However, after many attempts, the results of the stereo calibration were still poor and the resulting rectified
images were mostly blank, since the translation vector was large. Further investigation and experimenting
lead to the conclusion that the cause is the fact that the cameras were sending frames in an uncontrolled
manner, leading to differences of up to 100 milliseconds between images from different cameras (This was
checked using a screen with a running stopwatch, and comparing the time shown on the screen from each
camera after a capture was taken).

The first solution I tried was a software trigger mechanism that sent a single frame from each camera to the
computer every time it was called, instead of sending frames uncontrollably. This would solve the problem of
uncontrolled frames from the cameras, however since it was dependant on the fact that all signals arrive at
the same time to all cameras, this did not work out well (I even noticed that cameras which were connected
to adjacent USB ports on my computer were closer in synchronization than those connected on opposite
sides).

Therefore, I had to utilize the HW trigger mechanism mentioned earlier. This was done by using the Line0
port of the camera, and wiring all of the cables together to one pin, which could send a signal to all cameras
at the same time. This pin was connected to an Arduino Nano board, which was programmed to send a
short rising-edge signal once it receives a signal from the computer in control. This means that through one
signal from the computer (rather than multiple signals), all of the cameras will receive the signal at the same
time and send a frame. The program will then process those frames, and only then a new signal will be sent.
This ensures that no frames are discarded, and indeed the cameras were now synchronized.

Figure 3: Schematic drawing of the HW triggering mechanism.

When performing the same check with the stopwatch, the cameras all triggered at the same time:

Figure 4: Visualization of the HW triggering mechanism - All three cameras trigger at the same time.

5

3.6 Disparity calculation

After the cameras have been calibrated and the frames were rectified, it was possible to start the creation
of stereo images. For this project, the RAFT-Stereo network [1][4], trained on the Middleburry dataset [6]
was used, with a slight modification to improve stability: Since we are dealing with a stream of frames, and
not individual unrelated frames, we can use the previous disparity map as an initial guess for the current
one during inference. I edited the RAFT-Stereo code to allow that. When streaming disparity images in
real-time, it can be seen that after a few seconds, if the scene is static, the disparity map becomes more
stable and doesn’t change as much, a feature that would be less likely to happen with an initial guess of zero
at every frame.

The RAFT-Stereo network is composed of several stages:

• A CNN feature extractor, that passes the features to a correlation pyramid, which calculates a 3D
correlation matrix between pixels of the same height (hence the importance of rectification).

• A context encoder which extracts additional features and an initial hidden state for the RNN

• An iterative GRU RNN for disparity calculation and refinement. The number of iterations in the RNN
directly affects the runtime of the network, but also directly affects the quality of the resulting disparity
map. For real-time viewing of the disparity map inside the program, I used a faster implementation
with 8 iterations, and for saving the disparity maps post-recording, I used a slower but more refined
implementation with 32 iterations. Notice, that since I am passing the previous disparity map as the
initial guess while calculating the next disparity map while streaming, then if the scene is static, the
number of iterations accumulates between frames, and therefore after several static frames the quality
of the depth map will be better.

Figure 5: The RAFT-Stereo network [1]

This network was shown to improve the benchmark results on the Middleburry dataset [1].

After calculating the disparity map, a point cloud can be created using the OpenCV reprojectTo3D()
method. Details about how to save and view pointclouds, including cropping and outlier removal, can be
found in appendix A.2.6 and appendix A.2.7.

6

4 Validation

4.1 Comparison with Intel RealSense D415

Below are point clouds of the same scene, taken by the Intel RealSense D415 camera and my camera:

Figure 6: Left: Point cloud from my camera, with outlier removal. Right: Point cloud from Intel RealSense
D435 camera.

As can be seen, while the Intel camera has faster real-time capabilities, the resulting point cloud is noisy
and has many holes, compared to the point cloud created by my camera.

4.2 Baseline size

The baseline, or the distance between the two cameras, can affect the quality of the resulting stereo image.
There is a trade-off between the amount of common space between the two images (more common space
works better for closer objects), and the ability to calculate depth for objects farther away (where the more
common space, the worse it’ll be since it’s equivalent to the cameras being at the same spot). Since we have
three cameras, we can try creating the same disparity image from different pairs of cameras:

Figure 7: Left: Point cloud from 20cm baseline, with outlier removal. Right: Point cloud from 40cm baseline,
with outlier removal.

7

As can be seen, for closer objects, a smaller baseline gives better results.

5 Future Work

This project creates an infrastructure for testing new stereo algorithms. It is built in a modular way, such
that for example, the algorithm that calculates the disparity map can be swapped with ease. It also includes
three cameras instead of two. This opens up new possibilities:

1. Use three cameras instead of two for the stereo image calculation - The larger baseline will be better
for detecting depth of farther away objects, and the smaller baseline will be better for closer objects.
Building a model that merges information between different pairs of images can improve the overall
quality of the resulting stereo image.

2. Improve real-time capabilities of the model, for faster streaming of stereo images.

3. Improve depth calculation of texture-less flat surfaces such as blank walls.

References

[1] Lahav Lipson, Zachary Teed, and Jia Deng. “RAFT-Stereo: Multilevel Recurrent Field Transforms for
Stereo Matching”. In: arXiv:2109.07547 [cs] (Sept. 2021). arXiv: 2109.07547. url: http://arxiv.org/
abs/2109.07547 (visited on 06/02/2022).

[2] Image rectification. en. Page Version ID: 1083286715. Apr. 2022. url: https://en.wikipedia.org/w/
index.php?title=Image_rectification&oldid=1083286715 (visited on 06/02/2022).

[3] AlliedVision Alvium1800 U-507c Datasheet. url: https://www.alliedvision.com/fileadmin/pdf/
en/Alvium_1800_U-507c_Closed-Housing_C-Mount_Standard_DataSheet_V1.6.0_en.pdf.

[4] RAFT-Stereo Github Repository. url: https://github.com/princeton-vl/RAFT-Stereo.

[5] VimbaPython Github Repository. url: https://github.com/alliedvision/VimbaPython.

[6] vision.middlebury.edu/stereo/data. url: https://vision.middlebury.edu/stereo/data/ (visited on
06/02/2022).

8

http://arxiv.org/abs/2109.07547
http://arxiv.org/abs/2109.07547
https://en.wikipedia.org/w/index.php?title=Image_rectification&oldid=1083286715
https://en.wikipedia.org/w/index.php?title=Image_rectification&oldid=1083286715
https://www.alliedvision.com/fileadmin/pdf/en/Alvium_1800_U-507c_Closed-Housing_C-Mount_Standard_DataSheet_V1.6.0_en.pdf
https://www.alliedvision.com/fileadmin/pdf/en/Alvium_1800_U-507c_Closed-Housing_C-Mount_Standard_DataSheet_V1.6.0_en.pdf
https://github.com/princeton-vl/RAFT-Stereo
https://github.com/alliedvision/VimbaPython
https://vision.middlebury.edu/stereo/data/

A Appendix: Installing and running the program

A.1 Installations and preparation

A.1.1 Installing Conda

Go to https://docs.conda.io/en/latest/miniconda.html and install the appropriate Miniconda3 instal-
lation. Don’t change the default destination folder, and take note of it:

In the advanced options, add the Miniconda3 PATH variable:

A.1.2 Cloning the repository and installing the conda environment

Go to the destination folder for the repository, and clone the repository into that folder. Open a command
prompt at the root of the repository, and run:

1 conda env c r e a t e −f environment . yml

This should take several minutes. If there are any conflicts, solve them by editing the environment.yml file
according to the message, then running

1 conda env remove −n s t e r e o

and then re-running

1 conda env c r e a t e −f environment . yml

9

https://docs.conda.io/en/latest/miniconda.html

A.1.3 Installing Vimbapython

Go to https://www.alliedvision.com/en/products/vimba-sdk/#c1497 and install the Windows instal-
lation. Open the installer:

Take note of the target folder. Next click Custom Selection, and make sure that ALL check-boxes are
selected, including these:

Click OK and then Start. Once the installation is finished, make sure the following is marked:

10

https://www.alliedvision.com/en/products/vimba-sdk/#c1497

Press Exit and follow the installation directions.

Once that is finished, go to the previously noted target folder, and enter the VimbaPython sub-folder. Enter
the Source sub-folder, and open a command prompt there. Activate the conda environment with:

1 conda a c t i v a t e s t e r e o

Then, run the command

1 python −m pip i n s t a l l .

If there is an error regarding something with SSL, this can be solved by going to the Miniconda3 folder
(which was previously noted in step 1), and copying the following files from Miniconda3/Library/bin to
Miniconda3/DLLs:

A.1.4 Installing Cuda

Go to https://developer.nvidia.com/cuda-10.2-download-archive?target_os=Windows&target_arch=
x86_64&target_version=10&target_type=exenetwork And install the base installer and patches. Follow
the instructions within each installation.

11

https://developer.nvidia.com/cuda-10.2-download-archive?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exenetwork
https://developer.nvidia.com/cuda-10.2-download-archive?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exenetwork

A.1.5 Installing PyTorch

Copy the following command to a command prompt with the conda environment activated:

1 pip i n s t a l l torch==1.9.0+cu102 torchaudio t o r c hv i s i o n −f https : // download . pytorch . org /whl/
t o r c h s t a b l e . html

A.1.6 Installing Raft-Stereo

Inside the repository, go to Stereo Camera Project/code/RAFT Stereo main/sampler, open a command
prompt inside the folder with the conda environment activated and run the following command:

1 python setup . py i n s t a l l

This should take a while to finish and output a lot of logs while installing. This step is slightly problematic
and requires Cuda 10.2, otherwise it won’t work.

A.1.7 Initial Run

Open the root of the repository with VSCode, and select the python interpreter By typing Ctrl + p:

Open Stereo Camera Project/code/stereo/stereo stream.py, and run it using Ctrl + f5.
If there are errors, open a command prompt with the environment activated and run the following commands
line-by-line:

1 pip i n s t a l l −U numpy
2 pip i n s t a l l −U Pi l low
3 pip i n s t a l l −U matp lo t l i b
4 pip u n i n s t a l l s c ipy
5 pip i n s t a l l s c ipy

Afterwards, try running again.

12

A.2 Running the program

A.2.1 Repository structure

The repository contains the following files:

Root

code

stereo

stereo stream.py

disparity.py

RAFT Stereo main

Recordings

Recording YYYY MM DD HHMMSS

Depth

Program Parameters.json

angle 1

camera 1 name

1.png/1.pcd
...

...

...

Raw - same as Depth without pcd file

Rectified - same as Depth without pcd file

Calibration Parameters.json Program Parameters.json log.txt

...

Calibrations

Calibration YYYY MM DD HHMMSS

overlapping

camera 1 name

1.png
...

...

separate - same as overlapping

Calibration Parameters.json Program Parameters.json log.txt

...

environment.yml Calibration Parameters.json Program Parameters.json

save depth.py view pcd.py

13

In the root directory:

• environment.yml : The environment file for Conda.

• Calibration Parameters.json: The latest calibration results. This file will be used to get the calibration
parameters when running the program.

• Program Parameters.json: The program parameters, to be changed by the user. See section A.2.2.

• save depth.py : Script to save disparity maps and point clouds from existing recordings. See section
A.2.6.

• view pcd.py : Script to view a point cloud file in 3D. See section A.2.7.

There are also three sub-directories:

1. Recordings: Contains a folder for each new recording. The folder names are in the following format:
”Recording YYYY MM DD HHMMSS”. Each folder has three sub-directories:

• Depth, containing disparity images and point clouds.

• Raw, containing raw images before rectification

• Rectified, containing rectified images.

The images are saved within each sub-directory, such that each camera has its own folder. In addition,
the calibration parameters, program parameters and log of the specific run are saved in the recording
folder as well. The program parameters file used when saving point clouds is also saved inside the
Depth directory.

2. Calibrations: Contains the images used in a speccific calibration. There are sub-directories for the
first part of the calibration (separate) and the second part (overlapping). The calibration and program
parameters, as well as the log, are also saved.

3. code: Contains the code for the program. It contains two folders:

• stereo: The folder containing the code for most of the interface: stereo stream.py contains most of
the code, and disparity.py contains the code for computing the disparity image given two images.

• RAFT Stereo main: The folder containing the library of the network used to calculate the dis-
parity.

14

A.2.2 Parameters

• LEFT CAMERA ID : The ID of the left camera.

• MIDDLE CAMERA ID : The ID of the middle camera.

• RIGHT CAMERA ID : The ID of the right camera.

• MAIN CAMERA ID : The ID of the camera that will be the reference point in the calibration process.

• ID TO NAME : A mapping between camera ID and the camera name.

• LEFT STEREO : The ID of the camera that will be the left camera in the stereo algorithm. Usually
the same as the main camera.

• RIGHT STEREO : The ID of the camera that will be the right camera in the stereo algorithm.

• FRAME WIDTH : The width of the frame (maximal size these cameras support is 2464).

• FRAME HEIGHT : The height of the frame (maximal size these cameras support is 1944).

• INITIAL DOWNSIZING FACTOR: The initial percentage to downsize the images being displayed, to
better fit the screen (doesn’t affect the size of saved images).

• RECTIFICATION CROP PERCENTAGE : The percentage of the image to crop after rectification, to
avoid blank parts in the edges of the image.

• GPU SERVER IP : The IP address of the GPU server. If the local machine has a GPU, write ’local’
as the IP address.

• FAST LOCAL STREAM : Set to true for more real-time disparity calculation. Lower quality disparity.

• USB THROUGHPUT : Might differ between computers, but it’s super critical because otherwise the
stream might get stuck. Default is 150000000, might need to be 50000000 in some computers.

15

A.2.3 Streaming

When running the program, the main screen opens:

First, start the GUI using the Start button:

Once all camera streams are up, adjust the exposure to an adequate level, and position the camera array in
front of the scene being captured. There are several important check-boxes:

• Sync Exposure: Syncs the exposure between all cameras. When this is marked, moving any exposure
slider moves all exposure sliders together. It is recommended to always leave this marked.

• Add Lines: Adds horizontal lines to all images to check if the rectification worked well.

16

• Rectified Images: Shows the rectified images instead of the raw images. Note that the cameras need
to be calibrated for this to work, see section A.2.4.

• Disparity Images: Shows two streams: The main camera rectified stream, and the disparity image
stream:

Important note: The stream must always be stopped using the Stop button before closing the program,
otherwise all cameras have to be unplugged and plugged again.

17

A.2.4 Calibration

On the first time the program is opened, or whenever a Calibration Parameters.json file is missing or partial,
the program will ask to perform a calibration. This involves several steps:

1. First, open the GUI, press Start, and make sure all cameras are properly connected, the exposure
is synced and lighting conditions are adequate (not too bright but not too dark. This can be easily
adjusted during the first calibration). Make sure the chessboard is visible and in focus in all relevant
cameras (currently being calibrated, marked by a red/green border), and takes up most of the frame.
Enter the chessboard dimensions in the GUI, before pressing Calibrate. Note that the dimensions are
according to how many inner points exist in the chessboard, and not how many squares there are in
each direction. The cell size is in mm.

2. Once everything is ready, click Calibrate to start the calibration. At first, the internal calibration is
performed, and a red/green border will appear around the camera/s being calibrated:

The border is red when the chessboard isn’t visible, or when the reprojection error is too high. On the
right-hand side of the screen, there is a progress bar with the remaining amount of images to take. On
the bottom right, there is a button for capturing images for calibration. Note that the button will only
work when all relevant borders of cameras being calibrated are green. Move the camera/chessboard,
such that a variety of angles and locations of the chessboard are achieved, and that the chessboard has
appeared in most of the frame. Repeat this process for each camera.

3. Once the internal calibration is performed, the stereo calibration is performed. This involves a similar
process to the previous step, except this time the images are taken from all of the cameras at the same
time, meaning that all of the cameras need to have a green border around them for the capture to
work.

After performing the stereo calibration, a new Calibration Parameters.json file will be saved in the root
directory, as well as a new calibration directory in the Calibrations folder. There will be a message saying
that the calibration was completed successfully. At this stage the GUI can be safely closed and reopened for
stereo imaging use.

18

A.2.5 Capturing

Start streaming as before. By default, all captures are saved in a folder called angle 1. Pressing the Capture
button will save a new capture. Pressing the Angle button will add a new angle folder to the recording and
start saving images there. Note that an angle folder has to contain at least one image before creating a new
angle folder.

A.2.6 Saving disparity maps and point clouds

Disparity maps and point clouds are saved post-recording via a script called save depth.py in the root of the
repository. The script is to be opened, and the relevant folders of recordings can be selected using the GUI,
as follows:

Select OK and wait patiently.

19

A.2.7 Viewing point clouds

Point clouds can be viewed using the view pcd.py script in the root directory. Running the script, the
following windows opens up:

The following settings are available:

• Display original color : If checked, displays the pointcloud with the color from the original RGB image,
otherwise displays with a heatmap.

• Outlier removal : Removes outliers from the point cloud. If checked, the radius and the number of
points inside the radius must be specified.

• Crop by Z value: Crops the pointcloud based on the Z value of the point (useful for taking a 3D image
of a specific object for example). If checked, the Z value must be specified.

• Browse: Browse for the desired .pcd file. The filename will appear in the following row.

• View : View the pointcloud.

Once the file and settings are chosen, click view and the point cloud will open in 3D. pressing Shift+Left
click on a point in the point cloud prints the coordinates of the point and leaves a marker, and Shift+Right
click on an existing marker removes it.

20

	Abstract
	Background
	My Implementation
	Goal
	The Cameras
	Streaming
	Calibration
	HW Triggering
	Disparity calculation

	Validation
	Comparison with Intel RealSense D415
	Baseline size

	Future Work
	References
	Appendix: Installing and running the program
	Installations and preparation
	Installing Conda
	Cloning the repository and installing the conda environment
	Installing Vimbapython
	Installing Cuda
	Installing PyTorch
	Installing Raft-Stereo
	Initial Run

	Running the program
	Repository structure
	Parameters
	Streaming
	Calibration
	Capturing
	Saving disparity maps and point clouds
	Viewing point clouds

