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The Problem  
 
During a sinus surgery, the surgeon needs to see the patient’s CT scan.  

To make it more convenient, the CT scan will be displayed as an STL 3D file in the correct 

location of the patient’s face using AR with Microsoft HoloLens 2.  

The surgeon will be able to see the CT scan aligned to the patient's face while looking at the 

patient during the operation.   

 

Suggested Solution  
 

Extracting the patient’s face while the surgeon is looking at him in real time stream using the 

HoloLens sensors. Doing registration between the CT scan and the real time face and 

visualizing the results on the HoloLens so the surgeon will be able to see it during the 

operation.  



General Architecture Explanation 
 

Our design is constructed from 4 main parts: 

A. Sensors to real time point cloud 

i. Sending the input data (as detailed in next section) to the remote server using a TCP 

communication. 

ii. At the remote server, using the HoloLens’ input data, constructing a point cloud. 

iii. Cropping the point cloud to consist only the patient’s face.  

 

B. Registration block 

i. Getting the CT scan’s point cloud and the face real time point cloud as inputs to the block. 

ii. Registration is done using several methods which are explained in detail at the Registration 

section. 

iii. Getting the transformation matrix as output. 

 

C. CT scan to triangle mesh (simulated by face scan) 

This part is only for creating facial data that is replacing the role of the CT scan, due to lack of real 

CT scan data (medical confidentiality reasons). 

i. Creating a point cloud of a face scan (an old scan using the HoloLens, not real time), same 

way as explained in part A. 

ii. Using the point cloud, we convert it to a triangle mesh for visualization at the device (the 

Unity app can't visualize only point cloud without meshing). 

The conversion is done by Poisson Surface Reconstruction algorithm (explained in the Surface 

Reconstruction section). 

 

D. Transforming the CT scan using the transformation matrix from part B and sending it back to the 

HoloLens for visualization aligned to the real time face. 

Sending back to the device is done by ZeroMQ server (external library based on TCP connection). 

 

 

• Parts A, B and D are occurring every 10-15 seconds for keeping the registration up to date. 

We must keep it updated because of the computation and drifting errors that occur due to  

the communication latencies and the movement of the device in the world.   

• Part C is only for simulating the CT scan, this should be replaced by a real 3D CT scan. 

 

  



General Flow Chart  
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The HoloLens Input Data – To a Face Point Cloud 
 

Using HoloLens’ Research Mode, we were able to use the device’s sensors and cameras to scan the 

patient’s face and extract a point cloud of it. 

For that we used: 

 RGB Part 

1. The camera’s intrinsic matrix allows us to transform the 3D coordinates to 2D coordinates on 

an image plane using the pinhole camera model. The values 𝑓𝑥 and 𝑓𝑦 are the pixel focal 

length and are identical for square pixels. The values 𝑜𝑥 and 𝑜𝑦 are the offsets of the principal 

point from the top-left corner of the image frame. The values are expressed in pixels. 

𝐾 = [
𝑓𝑥 0 𝑜𝑥

0 𝑓𝑦 𝑜𝑦

0 0 1

]  

2. The camera’s extrinsic matrix - the extrinsic parameters denote the coordinate system 

transformations from 3D world coordinates to 3D camera coordinates.  

a. The extrinsic matrix consists of a unitless rotation matrix (R) on the left and a column 

vector translation (t) on the right.  

3. The PV camera’s (Photo Video) frames and timestamps. 

4. The transformation matrix from the camera to the world. 

a. Rig -> World  

b. Rig -> Camera – using extrinsic matrix 

c. A and b allow us to compute Camera -> World transformation.  

  



Depth Part 

5. LUT – Look Up Table, HoloLens Research Mode output for extraction of xyz from the depth 

data.  

a. When multiplying the pgm image with the lut we get the 3D points in the camera’s 

space. 

6. The camera’s location in the world’s coordinates system. 

7. The AHAT – Articulated HAnd Tracking data, one of the depth sensors (effective range: 0-1 

meters). 

8. PGM (Portable Gray Map) grayscale frames that show depth for each pixel in the frame. 

9. Projecting the RGB image on the 3D points. 

10. Saving the point cloud using Open3D. 

We extracted the point cloud from the depth data (pgm format) using the LUT. 

We matched a point from the point cloud to correspondent pixel in the RGB image (PV camera) 

using the camera parameters (intrinsic, extrinsic, Rig to World and Rig to Camera matrices and 

sensor’s locations). The dependencies between pixel (2D) and the world (3D) are as follow (we 

used thresholding for finding the nearest closest point between those two sensors). 

 

 

 

 

 

 

 

We cropped the point cloud to consist only the patient face. We are doing it by masking all the 

points which their projections on the PV frame are outside the face. We can find the borders of 

the face at the PV frame by face detection (explained in the Face Detection section). 

 

 

 

 

 

 

 

  



 

Face Detection Section 
 

We wanted to create a point cloud that contains only the patient’s face. 

So, we used OpenCV’s Cascade Classifier to detect the face in the RGB frame from the HoloLens’ 

camera and mask the RGB image and the depth image. 

This algorithm was first introduced by Paul Viola and Michael Jones in their paper, "Rapid Object 

Detection using a Boosted Cascade of Simple Features" in 2001. 

It is a machine learning based algorithm that uses HAAR feature as the convolutional kernel of the 

network. 

 

The algorithm used AdaBoost using 6000 features (like in the examples above) as the “weak” 

classifiers for the AdaBoost. 

Instead of applying all 6000 features on a window, the features are grouped into different stages of 

classifiers and applied one-by-one – a Cascade of Classifiers. 

This method for combining increasingly more complex classifiers in a “cascade” allows background 

regions of the image to be quickly discarded while spending more computation on promising object-

like regions (the eyes for example). 

 

 

  



Registration Section  
 

The registration block in our project is based on a few known algorithms, at this section we will 

explain each part in the registration flow chart. 

Next section, at the Registration Algorithms Explained we will explain in detail the main algorithms we 

used at the registration block. 

The inputs for this block are 2 objects : 

1. The patient’s face in real time as a point cloud - destination. 

2. The patient’s CT scan as a point cloud - source. 

There are 3 main steps in the registration block. 

A.  

First step, those 2 inputs objects must be prepared for the main algorithms later in this pipeline, and 

the preparation is done using 4 main actions. 

1. Transform those point clouds from Open3D coordinate system (runs using python on the 

remote server) to Unity coordinate system (runs on the device). 

Open3D coordinate system is right-handed coordinate system, in contrast to Unity left-

handed coordinate system. Transformation between those two systems will inverse the z-axis 

direction. 

 

 

 

  

 

 

 

 

 

2. Down-sample the point clouds using Voxel down-sampling, this down-sampling operates in 

two steps: 

a. Points are bucketed into voxels. 

b. Each occupied voxel generates exacty one point by averaging all points inside. 

3. Estimating the normal at each point in the point clouds, the estimation at each point is by 

using the neighbors’ points in some defined neighborhood.  

4. Fast Point Feature Histogram – a feature extractor we are using on each point in the point 

clouds. This will be used as a descriptor for finding the matching point pairs between the two-

point clouds. The algorithm and the thoughts behind choosing it will be explained in detail in 

the Registration Algorithms Explained section. 

  



 

B. 

The next step after the preparation is to calculate a rough registration, this information will lie in an 

affine transformation matrix (4X4 matrix that act as a transformation operator for each of the 

source’s points). 

 

We are using Global RANSAC based on feature matching algorithm for this part. This is an iterative 

algorithm using random samples selection for improving the solution at each iteration. The algorithm 

and the thoughts behind choosing it will be explained in detail in the Registration Algorithms 

Explained section. 

C. 

The transformation matrix that we got by the last step will act as an initial solution for the last step. 

In the last step we are using ICP – Point to Plane algorithm, the ICP must have an initial solution and it 

is an iterative algorithm. Every iteration the solution will be improved till some threshold. The 

algorithm and the thoughts behind choosing it will be explained in detail in the Registration 

Algorithms Explained section. 

 

 

 

  



Registration Block Flow Chart  
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Registration Algorithms Explained 
 

Fast Point Feature Histogram – FPFH  
 

The FPFH is an algorithm for getting features which describes any point in a point cloud. The result is 

descriptor to a point, that helps us find differences between different points in the point cloud. Using 

that, we can match pairs of points from the source and the target point clouds.  

FPFH works as follows: 

i. For each query point 𝑝𝑞, a set of tuples 𝛼, 𝜙, 𝜃 between the point and its neighbors are 

computed as described below (Simplified point feature histogram SPFH that is a part of the 

point feature histogram PFH): 

 

A PFH representation is based on the relationships between all the points in the k-

neighborhood and their estimated normals.  

The SPFH is the part that computes relative difference between two points 𝑝𝑠 and 𝑝𝑡 and 

their associated normals 𝑛𝑠 and 𝑛𝑡. We will define a fixed coordinate system at one of the 

points. 

𝑢 = 𝑛𝑠  

𝑣 =  𝑢 ×
𝑝𝑡−𝑝𝑆

||𝑝𝑡−𝑝𝑠||2
  

𝑤 = 𝑢 × 𝑣  

 

 

Therefore, 

𝛼 = 𝑣 ⋅ 𝑛𝑡 , 𝜙 = 𝑢 ⋅
𝑝𝑡−𝑝𝑠

𝑑
, 𝜃 = arctan (𝑤 ⋅ 𝑛𝑡 , 𝑢 ⋅ 𝑛𝑡) 

Where d is the Euclidean distance 𝑑 = ||𝑝𝑡 − 𝑝𝑠||2. 

The computational complexity of SPFH to a specific point is 𝑂(𝑘) 

(The final PFH descriptor is computed as a histogram of relationships between all pairs of 

points in the k-neighborhood, thus the computational complexity of PFH of all the n points of 

the point cloud is 𝑂(𝑛𝑘2)). 

  



ii. Now, after calculating SPFH for each point, we will use the neighboring SPFH values to weight 

the final histogram of 𝑝𝑞 as follows: 

𝐹𝑃𝐹𝐻(𝑝𝑞) = 𝑆𝑃𝐹𝐻(𝑝𝑞) +
1

𝑘
∑

1

𝑤𝑖
⋅ 𝑆𝑃𝐹𝐻(𝑝𝑖)

𝑘
𝑖=1   

Where 𝑤𝑖 represents the distance between 𝑝𝑞 and 𝑝𝑖  in some metric space (Euclidean space 

in our case). 

The computational complexity for all the n points is 𝑂(𝑛𝑘). 

  

 

 

 

 

 

 

 

 

 

 

 

 

The reasons for choosing FPFH: 

• We had to find some feature space that is fast enough to calculate in a real time application 

and still can catch most of the discriminative power of the PFH (which known as a powerful 

feature descriptor for 3D point clouds). The computation is on the down-sampled point clouds. 

• FPFH is a good and simple algorithm for description of a local geometric property of a 3D 

point. 

• FPFH has an easy and comfortable implementation within the Open3d library. 

• A nearest neighbor query in this feature space can return points with similar local geometric 

structures, therefore we can use it for matching 2 points from the source and the target point 

clouds. 

Cons 

• FPFH does not fully interconnect all neighbors of 𝑝𝑞 , and thus missing some value pairs which 

might contribute to capture the geometry around  𝑝𝑞. 

 



Global RANSAC based on feature matching algorithm 
 

RANSAC (Random sample consensus) is an iterative method to estimate parameters of a 

mathematical model from observed data. Therefore, we can use this method as a registration 

method where our observed data is the source, and the mathematical model will be the 

target. 

 RANSAC works as follows: 

i. Randomly selecting 𝑛 source cloud points. 

ii. Finding the nearest neighbor within the target using the feature space (in our case the 

feature space based on the FPFH algorithm). 

iii. Estimating the transformation matrix based on 3 pairs of points. 

iv. Source cloud transformation using the estimated matrix. 

v. Counting the inliers ratio: 

• if inliers > threshold or other criteria than end. 

• Else, go back to i.  

RANSAC is known as a great non-deterministic algorithm for rough registration, the randomly 

choices of the points are useful for getting the source closer to the target by terms of 

translation, rotation, and scaling, still roughly though. 

The better the feature space (using the FPFH) is, the better RANSAC will be as it must match 

between the points. 

We also use pruning step that takes fast pruning algorithm to quickly reject false matches 

early. 

:RANSACThe reasons for choosing  

• We had to find initial alignment for the ICP algorithm (next algorithm in the pipeline), 

RANSAC provides some solution. This is not a sufficient quality solution though but a 

sufficient rough solution. 

• This method doesn’t deserve an initial solution of its own, due to its randomly choices 

nature, therefore it is a good idea for using it as an initial solution provider. 

• It is a fast-enough method (according to a chosen criterion for convergence) for a real-

time application. 

• RANSAC based on feature matching has an easy and comfortable implementation 

within the Open3d library. 

Cons 

• Non-deterministic algorithms are harder to debug, as every run the result might be 

different.  

• It might be difficult to decide on a sufficient convergence criterion. 

 



ICP Point-to-plane algorithm 
 

ICP (Iterative Closest Point) is an iterative algorithm to minimize the difference between two-

point clouds. Therefore, we can use this method as a registration method where we must 

minimize the difference between the source and the target. 

 It has been a mainstay of geometric registration in both research and industry for many 

years. The inputs are two-point clouds and an initial transformation that roughly aligns the 

source to the target, while the output is a refined transformation that tightly aligns the two-

point clouds 

ICP variations are using different objective function as explain below. 

ICP works as follows: 

i. Find a correspondent set 𝒦 = {(𝑝, 𝑞)} from target point cloud 𝑃 and source point 

cloud 𝑄 transformed with current transformation 𝑇 (𝑞 is the closest point to 𝑝). 

ii. Update the transformation 𝑇 by minimizing an objective function 𝐸(𝑇) defined over 

the correspondent set 𝒦 . 

iii. If converges criterion has been reached than end, else go back to i. 

The point-to-plane objective function 𝐸(𝑇) is: 

𝐸(𝑇) = ∑ ((𝑝 − 𝑇𝑞) ⋅ 𝑛𝑝)
(𝑝,𝑞)∈𝒦

2

 

Where 𝑛𝑝 is the normal of point 𝑝. 

:ICPThe reasons for choosing  

• ICP is famous and well-known algorithm for geometric registration. 

• Point-to-plane ICP assumes that the point clouds have some geometric structure with 

normal, which works well in our case. The 2-point clouds are face structures. 

• It is a fast-enough method (according to a chosen criterion for convergence) for a real-

time application. 

• ICP has an easy and comfortable implementation within the Open3d library. 

 

Cons 

• It might be hard to decide on sufficient convergence criterion. 

  



Surface Reconstruction 

 

To present the point clouds in the scene using Unity, we wanted to convert the 

point cloud into a triangle mesh. 

We used Michael Kazhdan’s “Poisson Surface Reconstruction” algorithm. 

For that we used the following steps 

1. Read the PLY file. 

2. The algorithm expects oriented normal for every point, so we used 

Open3D’s function that computes normal by finding adjacent points and 

calculating the principal axis of the adjacent points using covariance 

analysis. It implements it using a KD-Tree. 

3. The Poisson Surface Reconstruction solves a regularized optimization 

problem to obtain a smooth surface. 

It defines a 3D indicator function 𝜒 (defined as 1 at points inside the object, 

and 0 at points outside), and then obtains the reconstructed surface by 

extracting an appropriate iso-surface. 

The gradient of the indicator function is a vector field that is zero almost everywhere (since 

the indicator function is constant almost everywhere), except at points near the surface, 

where it is equal to the inward surface normal. Thus, the oriented point samples can be 

viewed as samples of the gradient of the model’s indicator function. 

We will denote this vector field as �⃗� . 

So, we want the vector field to be as close as 

possible to the indicator’s function’s gradient, so 

our problem is: min𝜒 ||∇𝜒 − 𝑋 ||. We can now apply 

the divergence operator and get the Poisson 

problem: ∆𝜒 ≡  𝛻 · 𝛻𝜒 =  𝛻 · �⃗� . 

Now all is needed is to solve the Poisson problem 

and get 𝜒 and from it to get the reconstructed 

object. 

  



Challenges & Solutions 
 

 

 

Challenge Solution 

The transformation was incorrect in the 
Unity’s coordinates system. 

Applied the transformation on the object and 
sent the object using ZeroMQ. 

Slow internet for sending data. Used our own designated router. 

Complex HoloLens sensors. Chose AHAT depth sensor for short distance 
depth. 

No good example CT scan model file.  Used the HoloLens to scan a face and create 
a model to be used as a CT scan. 

HoloLens 2 is still developing and not very 
popular among many developers. 

Ongoing Google searching, GitHub. 

 

  



Conclusion and future work 
 

We suggested a solution to the problem that is algorithmic and engineering solution as well. 

Our solution is autonomic and doesn’t require surgeon's intervention, except manual 

configuration at the beginning of the operation. Quick configuration for the communication 

between the device and the remote server (entering the IP addresses). 

We still see error and inaccuracy at the visualization on the device, due to the 

communication latencies and the drifting errors. The HoloLens 2 is still a pretty new device, 

because of that, bugs might pop up and there is a lack of the documentation online. Updating 

the project to a newer version of the device (when it will be released) might improve it 

significantly.  

Future work might find our architecture convenient and improve it using other 

communication methods. As well, different rigid registration problems can be solved using it. 

As an example, we have an implementation for the Long Throw sensor (other depth sensor 

instead of AHAT sensor), which might be helpful for rough objects registration at a longer 

range (effective range: 1-6 meters). 

 

 

 

Our Code 

https://github.com/nir6760/HL2proj 

 

  

HoloLens 2 visualization 

 

https://github.com/nir6760/HL2proj


Resources 

 
1. HoloLens’ Research Mode 

https://docs.microsoft.com/en-us/windows/mixed-reality/develop/advanced-

concepts/research-mode 

2. Intrinsic & matrices in Apple developer website. 

https://developer.apple.com/documentation/avfoundation/avcameracalibrationdata/288113

5-intrinsicmatrix 

3. OpenCV’s Cascade Classifier 

https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html 

4. Rapid Object Detection using a Boosted Cascade of Simple Features  

https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf 

5. Open3D’s Poisson Surface Reconstruction 

http://www.open3d.org/docs/latest/tutorial/Advanced/surface_reconstruction.html#Poisson

-surface-reconstruction 

6. Poisson Surface Reconstruction Paper 

https://www.cs.jhu.edu/~misha/MyPapers/SGP06.pdf 

7. Camera Calibration 

https://www.mathworks.com/help/vision/ug/camera-calibration.html 

8. Global Registration 

https://www.comp.nus.edu.sg/~lowkl/publications/lowk_point-to-plane_icp_techrep.pdf 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.3035&rep=rep1&type=pdf 

http://www.open3d.org/docs/release/tutorial/pipelines/global_registration.html 

9. HoloLens 2 for CV 

https://github.com/microsoft/HoloLens2ForCV 

10. Stream Recorder 

https://github.com/microsoft/HoloLens2ForCV/tree/main/Samples/StreamRecorder 
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