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Motivation

In recent reality, people are looking for new ways to connect 
with each other.

Virtual reality can be the new meeting ground for people all 
around the world

Capturing a person to view in VR is limited by equipment and 
capture location

We want to achieve a simple setup to enable everyone to 
participate in this new frontier.
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Project statement

• Further investigating issues with the base paper ”Towards 
precise completion of deformable shapes”

• Improving the network performance in those cases, by 
changing the base loss functions, architecture, and data 
processing pipeline
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Introduction Training - Geometric Processing & 
Shape Analysis

Triangular Mesh Surface Normal Vertex Normal

CMU’s Keenan Crane and MIT’s Justin Solomon
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Visualizing Triangular Meshes

Plotting face normals Plotting the surface
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FAUST data set

•Contains 300 real, high-resolution human scans of 10 different subjects in 30 
different poses

•Each scan is a fully corresponding, high-resolution, triangulated mesh 
acquired with a 3D multi-stereo system.
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Dynamic FAUST data set

•Contains 10 subjects, each in a  different 
number of starting poses, captured at 60 fps.

•Extends the FAUST dataset to dynamic 4D 
data.

•128 animation sequences

•40952 total frame count
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Previous work

“PointNet: Deep Learning on Point Sets for 3D 
Classification and Segmentation”

“Towards Precise Completion of Deformable Shapes”
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PointNet: Deep Learning on Point Sets for 3D 
Classification and Segmentation

• Point clouds are data structures of irregular shape

• Deep Learning on point clouds using the popular methods is inefficient 

• Other architectures involving basic 3d convolution or RNNs prove inadequate 
as well

• The paper proposes a novel type of neural network that directly consumes 
point clouds, which respects the permutation invariance of points in the input.
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PointNet: Deep Learning on Point Sets for 3D 
Classification and Segmentation

Transformations

Classification Decoder

Segmentation Decoder
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Towards Precise Completion of Deformable 
Shapes
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• Applications require precise completion of  incomplete point clouds

• The paper addresses the new problem of matching a partial scan to the 
whole while reconstructing the new pose from its partial observation

• The proposed model does not require a consistent vertex labeling at 
inference time

• It can be used on unorganized point clouds as well as on triangular meshes



Towards 
Precise 
Completion 
of 
Deformable 
Shapes
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Towards 
Precise 
Completion 
of 
Deformable 
Shapes

𝐿 = 

𝑣∈𝑉

𝑣𝑥 − 𝑣𝑦 2

2

𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝐿2 𝑙𝑜𝑠𝑠

+ 𝜆 ⋅

𝑣∈𝑉

𝑉𝑁𝑋 𝑣 − 𝑉𝑁𝑌 𝑣 2
2

𝑣𝑒𝑟𝑡𝑒𝑥 𝑛𝑜𝑟𝑚𝑎𝑙 𝐿2 𝑙𝑜𝑠𝑠
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Baseline Results Summary

Mean L1 Completion to GT 
Volume Deformation [%]

Completion to GT Vertex 
MSE

Stage

5.2780.03735Train

8.090.03879Validation

9.3730.04319Test
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Static Results
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Animations
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Our Solution

Loss function modifications: 

To handle the spatial deformations

Network architectural Changes:
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Loss function modifications – Signed 
Volumetric Loss

We define it as such:

𝑙𝑒𝑡 𝑓 ∈ 𝐹 where 𝐹 is the Faces of the mesh.

𝑙𝑒𝑡 𝑉𝑋(𝑓) be the signed volume of the face in the completion, 
and 𝑉𝑌(𝑓) the signed volume in the Ground Truth 

𝐿𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 = 

𝑓∈𝐹

𝑉𝑋 𝑓 − 𝑉𝑌 𝑓 2
2

By applying the tetrahedral volume of each triplet of points, 
we try and add a term that will push the network to preserve 
mesh volume (per face). 𝑣1

𝑣2

𝑣3

𝑉𝑜𝑙𝑢𝑚𝑒 = 𝑣1 ⋅ 𝑣2 × 𝑣3
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Volume Loss

• Modifying the loss function to handle spatial deformations

• Using Segmentation maps, "choose" on which body part to calculate volume 
deformation

• Use said volume to calculate the L2 Error of that specific body part

• We ran the following experiments:
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Full body volume loss

Right arm volume loss

Left arm volume loss

Both arms volume loss
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GT Part Comp TP

GT Part Comp TP

GT Part Comp TP

GT Part Comp TP

GT Part Comp TP

GT Part Comp TP

Results



Errors Compared across Experiments
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Full Volume Normalized Error [%]

Right Arm Normalized Error [%]

Vertex MSE



Errors Compared across Experiments
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Full Volume Normalized Error [%]

Right Arm Normalized Error [%]

Vertex MSE



Errors Compared across Experiments
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Full Volume Normalized Error [%]

Right Arm Normalized Error [%]

Vertex MSE



Volume Errors per specific Experiment
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Baseline + Full Body Volume Loss

Baseline + Right Arm Volume Loss



Volume Errors per specific Experiment
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Baseline + Full Body Volume Loss

Baseline + Right Arm Volume Loss
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Baseline + Left 
Arm Volume Loss

Baseline + Right 
Arm Volume Loss

Baseline + Full 
Body Volume Loss

BaselineExperiment/metric

0.000270.0002610.00063210.0002581All Vertex MSE

0.000450.00042950.00080130.0002973Right Arm MSE

0.000310.00027930.0007720.0002709Left Arm MSE

5.5174.8271.0059.746
Full Body Volume 
Deformation [%]

12.7651.9161.95815.258
Right Arm Volume 
Deformation [%]

1.58511.0361.96715.138
Left Arm Volume 
Deformation [%]

Best Mean Test Scores
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Deep Dive – Right Arm Completion

28

Baseline +Full Body 
Volume Loss

Baseline +Left Arm 
Volume Loss

Baseline +Right Arm 
Volume Loss

Baseline

0.0026920.0005430.0007740.000388GT-comp Vertex MSE

0.0056670.0034690.0053960.002719Completion Volume

8.830433.37893.618247.7818
Volume Deformation 

[%]

GT Volume: 0.005207



Deep Dive – Full Body Completion 
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Baseline +Full Body 
Volume Loss

Baseline + Left  Arm 
Volume Loss

Baseline + Right Arm 
Volume Loss

Baseline

0.0017530.0017460.0015680.001797GT-comp Vertex MSE

0.0666830.0534620.0517630.058038Completion Volume

2.145521.546624.038714.8224
Volume Deformation 

[%]

GT Volume: 0.06814



Deep Dive – Left Arm Completion
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Baseline +Full Body 
Volume Loss

Baseline + Left Arm 
Volume Loss

Baseline + Right 
Arm Volume Loss

Baseline

0.0003690.0005460.0004740.000924GT-comp Vertex MSE

0.0060940.0063290.0040960.003650Completion Volume

3.94122.392635.436442.4609
Volume Deformation 

[%]

GT Volume: 0.006344



Analysis

• As can be seen, applying volume loss on a specific organ improves its 
volumetric error, while compensating for that by severing the other organs’ 
volume errors.

• Compensation is also evident compared to the other metric – adding the 
volume loss term minimizes the matching organ’s volumetric error, but
increases the vertex MSE.

• These results are also observed in the displayed examples.
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Quick Overview over "Implicit Neural 
Representations with Periodic Activation Functions"

• The problem of quickly encapsulating high frequencies and low frequencies 
at the same time, in a set number of parameters, is very difficult.

• Some approached this issue and attempted to solve it with positional 
encoding – essentially multiplying the data at input, with many different 
sine functions, with varying success
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Quick Overview over "Implicit Neural 
Representations with Periodic Activation Functions"

• Instead, the paper suggests that simply replacing our activations with 
sinusoidal activations, helps the network learn, and encode high frequencies 
and low frequencies, with greater ease
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Quick Overview over "Implicit Neural 
Representations with Periodic Activation Functions"
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Siren ReLU Pos. Encoding ReLU



Siren Based 
Architecture
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*Sinusoidal activations also go inside the MLP layers in the Decoder and                
Siamese Encoders

Sin

Sin



Vertex MSE
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Siren Architecture – Vertex MSE Improvement
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Deep Dive
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Baseline +Siren 
Architecture

Baseline

0.0002810.000388GT-comp Vertex MSE

0.0034740.002719Completion Volume

33.289847.7818Volume Deformation [%]

GT Volume: 0.005207



Deep Dive
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Baseline +Siren 
Architecture

Baseline

0.0014770.001797GT-comp Vertex MSE

0.0571550.058038Completion Volume

16.128514.8224Volume Deformation [%]

GT Volume: 0.06814



Deep Dive – High Resolution
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Baseline +Siren ArchitectureBaseline

0.00048770.0009404GT-comp Vertex MSE

Ground Truth Baseline Completion Baseline + Siren 
Completion



Additional Work

• We have attempted to improve the temporal smoothness by changing the 
architecture to LSTM

• As you will now see, this attempt succeeded far less then expected
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LSTM – Long Short-Term Memory Network

An advanced RNN which can 
learn order dependence in 

sequence prediction problems

LSTMs have feedback 
connections, that allow processing 

sequences of data

They manage to overcome the 
short-term memory problem 

of traditional RNNs
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About Sequentiallity

• Let’s Define 2 Terms which we will use:

• Window Size - How far in the past do we take each series 

• Stride - What size step do we take at each time step
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LSTM - Network architectural Changes

• We propose a new network architecture, of the following form:

Temporal sequence

Decoder

LSTM
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Vertex MSE
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--- validation                  train
Baseline
LSTM encoder window size 12, stride 8
LSTM encoder window size 12, stride 8, 0.1 coefficient for head volume loss
LSTM encoder window size 10, stride 8, 0.3 coefficient for head volume loss



Failures of the LSTM Architecture
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Conclusions

• In this project, we have implemented various changes to both network architecture and 
loss function

• Sadly, the temporal “smoothness” architecture changes didn’t succeed as expected

• However, we achieved significant improvements in the spatial domain, using various 
methods

• Loss function terms and modifications

• Architectural changes

• We performed experiments to validate our changes have the effect we desired, both in 
quantity and quality.
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Benchmarking & Monitoring tools

Experiments Reports Artifacts Tables Sweeps

experiment tracking, dataset versioning, and model management
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Challenges

Resource allocation

Online Servers logging issues

Memory leaks

Research Methodology

Defining reliable monitoring methods
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Questions?


