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Motivation

In recent reality, people are looking for new ways to connect
with each other.

Virtual reality can be the new meeting ground for people all
around the world

Capturing a person to view in VR is limited by equipment and
capture location

We want to achieve a simple setup to enable everyone to
participate in this new frontier.
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Project statement

® Further investigating issues with the base paper “Towards
precise completion of deformable shapes”

® Improving the network performance in those cases, by
changing the base loss functions, architecture, and data
processing pipeline
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Introduction Training - Geometric Processing &
Shape Analysis

Yertex normals

Triangular Mesh Surface Normal Vertex Normal

. CMU’s Keenan Crane and MIT’s Justin Solomon
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Visualizing Triangular Meshes

Plotting face normals Plotting the surface



RM.. STk
FAUST data set

® Contains 300 real, high-resolution human scans of 10 different subjects in 30
different poses

® Each scanis a fully corresponding, high-resolution, triangulated mesh
acquired with a 3D multi-stereo system.
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Dynamic FAUST data set

® Contains 10 subjects, each in a different
number of starting poses, captured at 60 fps.

® Extends the FAUST dataset to dynamic 4D
data.

®128 animation sequences

® 40952 total frame count
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Previous work

"PointNet: Deep Learning on Point Sets for 3D
Classification and Segmentation”

"Towards Precise Completion of Deformable Shapes”
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PointNet: Deep Learning on Point Sets for 3D
Classification and Segmentation

Point clouds are data structures of irregular shape
Deep Learning on point clouds using the popular methods is inefficient

® Other architectures involving basic 3d convolution or RNNs prove inadequate
as well

® The paper proposes a novel type of neural network that directly consumes
point clouds, which respects the permutation invariance of points in the input.
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PointNet: Deep Learning on Point Sets for 3D
Classification and Segmentation
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Towards Precise Completion of Deformable
Shapes

Applications require precise completion of incomplete point clouds

The paper addresses the new problem of matching a partial scan to the
whole while reconstructing the new pose from its partial observation

The proposed model does not require a consistent vertex labeling at
inference time

It can be used on unorganized point clouds as well as on triangular meshes

p i
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Baseline Results Summary

Stage Completion to GT Vertex | Mean L1 Completion to GT
MSE Volume Deformation [%]
Train 0.03735 5.278
Validation 0.03879 8.09
Test 0.04319 9.373
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Static Results
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Animations

50002_punching 50004_knees 50004 _shake_hips 50009_hips

K
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Our Solution

v . V

Le

Loss function modifications: Network architectural Changes:

To handle the spatial deformations
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Loss function modifications — Signed
Volumetric Loss

We define it as such: Volume = v, - (v, X v3)

let f € F where F is the Faces of the mesh. v,

let Vyx(f) be the signed volume of the face in the completion,
and Vy (f) the signed volume in the Ground Truth

Lyotumetric = Z| Vx (f) - VY(f)l% U3

fEF

By applying the tetrahedral volume of each triplet of points,
we try and add a term that will push the network to preserve
mesh volume (per face). -
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Volume Loss

Modifying the loss function to handle spatial deformations

Using Segmentation maps, "choose" on which body part to calculate volume
deformation

Use said volume to calculate the L2 Error of that specific body part

We ran the following experiments:

Full body volume loss
Right arm volume loss
Left arm volume loss

Both arms volume loss

19
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Errors Compared across Experiments

Full Volume Normalized Error [%]

— Baseline with Right Arm Volume Loss Train = Baseline with 2 Arms Volume Loss Train = Baseline with Left Arm Volume Loss Train
== Baseline with Full Body Volume Loss Train = Baseline Train == Baseline with Right Arm Volume Loss Validation == Baseline with 2 Arms Volume Loss Validation

== Baseline with Left Arm Volume Loss Validation - Baseline with Full Body Volume Loss Validation == Baseline Validation
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Errors Compared across Experiments

Right Arm Normalized Volume Error [%]

— Baseline with Right Arm Volume Loss Train = Baseline with 2 Arms Volume Loss Train = Baseline with Left Arm Volume Loss Train
== Baseline with Full Body Volume Loss Train = Baseline Train == Baseline with Right Arm Volume Loss Validation == Baseline with 2 Arms Volume Loss Validation
== Baseline with Left Arm Volume Loss Validation - Baseline with Full Body Volume Loss Validation == Baseline Validation
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Errors Compared across Experiments

Vertex MSE
~— Baseline with Right Arm Volume Loss Train = Baseline with 2 Arms Volume Loss Train = Basline with Left Arm Volume Loss Train = Baseline with Full Body Volume Loss Train
— Baseline Train == Baseline with Right Arm Volume Loss Validation == Baseline with 2 Arms Volume Loss Validation == Baseline with Left Arm Volume Loss Validation
== Baseline with Full Body Volume Loss Validation == Baseline Validation
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Volume Errors per specific Experiment

Full Body Volume Loss - per Organ Normalized Volume Error [%)]
= Right Arm volume normalized error train == Right Arm volume normalized error validation = Full volume normalized error train
== Full volume normalized error validation = Left Arm volume normalized error train

== Left Arm volume normalized error validation
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Volume Errors per specific Experiment

Right Arm Volume Loss - per Organ Normalized Volume Error [%]
— Right Arm volume normalized error train == Right Arm volume normalized error validation = Full volume normalized error train
== Full volume normalized error validation = Left Arm volume normalized error train

== Left Arm volume normalized error validation
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Best Mean Test Scores

L Sik

Baseline + Full

Baseline + Right

Baseline + Left

Experiment/metric Baseline Body Volume Loss | ArmVolume Loss | Arm Volume Loss
AllVertex MSE 0.0002581 0.0006321 0.000261 0.00027
Right Arm MSE 0.0002973 0.0008013 0.0004295 0.00045
Left Arm MSE 0.0002709 0.000772 0.0002793 0.00031

Full Body Volume 6 100 35 )
Deformation [%0] 9-74 005 4027 2517
Right Arm Volume

T R— 15.258 1.958 1.916 12.765
HEEATI VIS 15.138 1.967 11.036 1.585

Deformation [%0]
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Vertex MSE Volume Deformation [%]
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Deep Dive — Right Arm Completion i

Ground Truth Partial View Template Baseline
y; Completion

&

\& t X

Baseline + Right Arm Volume Loss|Baseline + Leff Arm Volume Loss [Baseline + Full Body Volume Loss
Completion Completion Completion

NN

GT Volume: 0.005207

: Baseline +Right Arm | Baseline +Left Arm Baseline +Full Body
Baseline
Volume Loss Volume Loss Volume Loss
GT-comp Vertex MSE 0.000388 0.000774 0.000543 0.002692
Completion Volume 0.002719 0.005396 0.003469 0.005667
viellumis I?;:]ormatlon 47.7818 3.6182 33.3789 8.8304
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Deep Dive — Full Body Completion i

~ Ground Truth

Baseline
Completion

Partial View Template

4

4\

Baseline + Right Arm Volume Loss|Baseline + Left Arm Volume Loss [Baseline + Full Body Volume Loss
Completion Completion Completion

¥ \ 4
4 A4 4

A4

y
-

GT Volume: 0.06814

: Baseline + Right Arm | Baseline + Left Arm | Baseline +Full Body
Baseline
Volume Loss Volume Loss Volume Loss
GT-comp Vertex MSE 0.001797 0.001568 0.001746 0.001753
Completion Volume 0.058038 0.051763 0.053462 0.066683
Volume Deformation
(%] 14.8224 24.0387 21.5466 2.1455
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Deep Dive — Left Arm Completion i

Ground Truth Partial View Template Baseline
Completion
3\ Q
Baseline + %%rr]:\ Sg}%olume Loss|Baseline +(L:%f;n Aprlg}i\églume Loss [Baseline + E%Irgg%y;igglume Loss
W ‘ N GT Volume: 0.006344
| ‘J
‘1. [ v /
Baseline Baseline + Right Baseline + Left Arm | Baseline +Full Body
Arm Volume Loss Volume Loss Volume Loss
GT-comp Vertex MSE 0.000924 0.000474 0.000546 0.000369
Completion Volume 0.003650 0.004096 0.006329 0.006094
Volume Deformation
%] 42.4609 35.4364 2.3926 3.9412
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Analysis

® As can be seen, applying volume loss on a specific organ improves its
volumetric error, while compensating for that by severing the other organs’
volume errors.

® Compensation is also evident compared to the other metric —adding the
volume loss term minimizes the matching organ’s volumetric error, but
increases the vertex MSE.

® These results are also observed in the displayed examples.
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Quick Overview over "Implicit Neural
Representations with Periodic Activation Functions"

® The problem of quickly encapsulating high frequencies and low frequencies
at the same time, in a set number of parameters, is very difficult.

® Some approached this issue and attempted to solve it with positional

encoding — essentially multiplying the data at input, with many different
sine functions, with varying success
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Quick Overview over "Implicit Neural
Representations with Periodic Activation Functions"

® Instead, the paper suggests that simply replacing our activations with
sinusoidal activations, helps the network learn, and encode high frequencies
and low frequencies, with greater ease
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Quick Overview over "Implicit Neural

Representations with Periodic Activation Functions"

Siren ReLU Pos. Encoding RelLU
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Siren Based
Architecture

\

Stamese Encoder

wlp (64,128,1024)
Ay
P nx1024
partial | Wxé \ lsharcd
shape
1024 1024
\ | shared weights
max  linear 6 gQ)
wlp (64,128,1024) WhoLE
@ nwx1024
whole | wxé Isharcd
shape \
(AT
-_ ov/ﬁfzu) \ Decoder )
HEN (2~ wlp (2054,1024,512,256,128,128,128,128,3) F?;(
@ ; X
whole tanh| | <2
shape e \ I shared L
i | —

*Sinusoidal activations also go inside the MLP layers in the Decoder and

Siamese Encoders
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Vertex MSE

L Sk

= Baseline Vertex MSE Train

= Siren Vertex MSE train

== Baseline Vertex MSE Validation

== Siren Vertex MSE Validation

Step
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Siren Architecture —Vertex MSE Improvement
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Il Baseline [ Siren Architecture
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Ground Truth Partial View

Baseline Baseline Siren Architecture
Completion Completion

¥ 1 ¢

Template

.

GT Volume: 0.005207

Baseline Baseline +Siren
Architecture
GT-comp Vertex MSE 0.000388 0.000281
Completion Volume 0.002719 0.003474
Volume Deformation [%6] 47.7818 33.2898
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¢ 9 W
4 |
‘ (
P { v
/‘/ﬁ\ ,(@ ' GT Volume: 0.06814
Baseline Baseline +Siren
Architecture
GT-comp Vertex MSE 0.001797 0.001477
Completion Volume 0.058038 0.057155
Volume Deformation [%] 14.8224 16.1285
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Deep Dive — High Resolution . i

Baseline + Siren

Ground Truth Baseline Completion )
Completion
Baseline Baseline +Siren Architecture
GT-comp Vertex MSE 0.0009404 0.0004877
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Additional Work

® We have attempted to improve the temporal smoothness by changing the
architecture to LSTM

® Asyou will now see, this attempt succeeded far less then expected

41
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LSTM — Long Short-Term Memory Network

An advanced RNN which can LSTMs have feedback They manage to overcome the
learn order dependence in connections, that allow processing short-term memory problem
sequence prediction problems sequences of data of traditional RNNs

42
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About Sequentiallity

® Let’s Define 2 Terms which we will use:

® Window Size - How far in the past do we take each series

® Stride - What size step do we take at each time step
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LSTM - Network architectural Changes

® We propose a new network architecture, of the following form:

Stamese Encoder

max linear
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\\\\

Step

250k

--- validation — train

Baseline

LSTM encoder window size 12, stride 8

LSTM encoder window size 12, stride 8, 0.1 coefficient for head volume loss
LSTM encoder window size 10, stride 8, 0.3 coefficient for head volume loss
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Failures of the LSTM Architecture

50009_hips 50026_shake_arms
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Conclusions

In this project, we have implemented various changes to both network architecture and
loss function

Sadly, the temporal "smoothness” architecture changes didn’t succeed as expected

However, we achieved significant improvements in the spatial domain, using various
methods

® Loss function terms and modifications

® Architectural changes

We performed experiments to validate our changes have the effect we desired, both in
quantity and quality.
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Benchmarking & Monitoring tools

experiment tracking, dataset versioning, and model management

‘ Weights & Biases

S B &

Experiments Reports Artifacts Tables Sweeps
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Challenges

Resource allocation

Online Servers logging issues
Memory leaks

Research Methodology

Defining reliable monitoring methods
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