
1	
	

KeyMoji	
Daniel	Ohayon	&	Oren	Afek,	supervised	by	Elad	Richardson	

November	17,	2017	
	 	

2	
	

Table	of	Contents	
1				List	of	Figures ... 3

2				Abstract .. 4

3				Introduction ... 5
3.1	Motivation	“An	emoji	is	worth	a	thousand	words” .. 5
3.2	App	Demo .. 6

4				Theoretical	Background	&	Algorithm ... 7
4.1				Image	Processing	and	Action	Units ... 7
4.2				Machine	learning	–	random	forests .. 7

5				Software	Implementation ... 8
5.1				General	Project	Progress	-	Project	stages: .. 8

5.1.1				Image	Processing:	Introduction	and	working	with	OpenCV	and	OpenFace	
projects.		 	...	8
5.1.2				Application	Backbone:	Android	native	development. .. 9
5.1.3				Application	Backbone:	Android	keyboard	service	development. 9
5.1.4				Tuning	Level:	Machine	learning	algorithms	study	and	incorporation. 10
5.1.5				Android	camera	and	service	incorporation. .. 10
5.1.6				Final	integration	and	deployment. .. 10

6				Difficulties .. 11
6.1				Choosing	the	classifier	and	integrating ... 11
6.2				Cleaning	the	dataset .. 11

6.2.1				Analyzing	the	classifier’s	behavior .. 11
6.2.2				Conclusions	from	classifier’s	behavior	analysis .. 12
6.2.3				Analyzing	the	AUs	and	the	images .. 12
6.2.4				Conclusion	from	AUs	and	the	images	analysis .. 13

6.3				Final	classifier	analysis ... 13

7				Further	Work ... 15
7.1				Improving	the	classifier	by	making	continually	learning .. 15
7.2				Making	better	emoji	suggestions	based	on	the	user’s	preferences 15

8				Summary .. 16

9				References ... 17
	
	 	

3	
	

1				List	of	Figures	

1				emojis	usage	in	past	years .. 5

2				keyboard	usage	without	permissions ... 6

3				keyboard	usage	with	permissions .. 6

4				Another	example	of	keyboard	usage .. 6

5				A	List	of	AUs	and	their	interpretation ... 7

6				Image	to	AUs .. 8

7				Heuristic	approach	for	AUs	to	emotion .. 8

8				Overview	of	the	process	we	use	to	predict	an	emoji ... 9

9				In	detail	breakdown	of	the	emoji	predicting	process .. 10

10				Classifier	results	for	an	80/20	split	of	the	dataset ... 11

11				Classifier	results	for	an	80/20	split	of	the	dataset	with	percentages 12

12				Example	of	an	overexposed	image ... 13	

13		Classifier	results	for	an	80/20	split	of	the	new	dataset 13

14		Classifier	results	for	an	80/20	split	of	the	new	dataset	with	percentages 14
	

	
	 	

4	
	

2				Abstract	

Humans	have	always	been	communicating	nonverbally	using	their	body	movements	
and	facial	expressions.	Those	gestures	tend	to	deliver	the	speaker's	message	and	
feelings	much	more	effectively	than	the	words	spoken.	Nowadays,	with	instant-
messaging	becoming	the	common	way	of	communication,	those	traditional	gestures	
are	represented	by	tiny	faces	called	emoji.	Each	sent	emoji	represents	the	sender's	
emotion	or	state	of	mind.	Those	emojis	are	manually	selected	by	the	sender.	We	
offer	a	new	advanced	automated	way	of	using	emojis.	By	supplying	a	fully	
functioning	Android	keyboard	that	captures	a	shot	of	the	sender's	face	at	a	given	
time,	analyzes	his	expression	and	state	of	mind,	we	can	offer	an	emoji	represents	his	
feeling.	
	 	

5	
	

3				Introduction		

3.1 Motivation “An emoji is worth a thousand words”

In	recent	years,	the	main	form	of	long-distance	communication	in	the	advanced	
world	has	shifted	from	letters	to	phone	calls	to	texts	and	emails	today.	In	addition	
thanks	to	this	form	of	electronic	communication	we	can	send	small	emojis	in	
addition	to	the	text	we	write	to	communicate	feelings.	
As	you	can	see	below	the	usage	of	emojis	has	increased	significantly	and	radically	in	
recent	years	and	only	keeps	increasing.	[1]	

	 	
Figure	1:	emojis	usage	in	past	years	

	
Yet	the	only	way	to	use	emojis	is	still	to	change	to	a	different	keyboard	and	search	
the	right	one	for	you	among	the	100’s	of	emojis	in	there.		
Our	goal	in	this	project	was	to	make	the	process	of	finding	the	emoji	the	user	would	
like	to	use	for	him	and	displaying	it	to	him	in	the	same	keyboard	thus	making	the	
whole	process	seamless.	
	 	

6	
	

3.2 App Demo

When	you	first	install	the	app,	the	keyboard	asks	for	permission	to	use	the	camera	
and	until	you	give	it	permission	it’s	just	work	like	a	normal	keyboard	and	display	a	
short	message	where	the	emojis	would	be	suggested.	
	

	
Figure	2:	keyboard	usage	without	permissions.	

	
When	you	do	give	the	keyboard	permission	the	keyboard	will	start	suggesting	emojis	
based	on	your	facial	expression.	

	
Figure	3:	keyboard	usage	with	permissions.		

	
Figure	4:	Another	example	of	keyboard	usage.	 	

7	
	

4				Theoretical	Background	&	Algorithm		

4.1 Image Processing and Action Units

The	first	stage	in	our	project	is	to	take	the	image	from	the	front-facing	
camera	and	analyze	the	facial	expression.	The	Facial	Action	Coding	System	
(FACS)	developed	by	Ekman	and	Friesen	[2]	is	the	most	commonly	used	
system	for	facial	behavior	analysis.	Based	on	FACS,	the	facial	behavior	is	
decomposed	into	46	Action	Units	(AUs),	each	of	which	is	anatomically	related	
to	the	contraction	of	a	specific	set	of	facial	muscles.	Although	they	only	
define	a	small	number	of	distinctive	AUs,	over	7,000	different	AU	
combinations	have	been	observed	so	far	[2].	Therefore,	FACS	is	
demonstrated	to	be	a	powerful	means	for	detecting	and	measuring	many	
facial	expressions	by	virtually	observing	a	small	set	of	muscular	actions.		
	
Table	1	summarizes	a	list	of	commonly	occurring	AUs	and	their	
interpretations		
	

Figure	5:	A	List	of	AUs	and	their	interpretation	
	
4.2 Machine learning – random forests

	
After	retrieving	the	Action	Units,	we	need	to	deduce	the	emotion	they	
represent	them.	In	order	to	do	such,	we	used	a	Random	Forest	Classifier.	A	
Random	Forests	"grows"	many	classification	trees	during	the	training	phase	
with	a	random	selection	of	variables	and	cases	for	each	tree.	To	classify	a	
new	object	from	an	input	vector,	put	the	input	vector	down	each	of	the	trees	
in	the	forest.	Each	tree	gives	a	classification,	and	we	say	the	tree	"votes"	for	
that	class.	The	forest	chooses	the	classification	having	the	most	votes	(over	
all	the	trees	in	the	forest).		
	 	

8	
	

5				Software	Implementation		

5.1 General Project Progress - Project stages:

5.1.1 Image Processing: Introduction and working with OpenCV and

 OpenFace projects.

OpenCV	is	an	open	source	library	for	implementing	Computer	Vision	
algorithms,	hence	its	name.	This	library	supplies	the	most	basic	infrastructure	
for	implementation	of	real-time	computer	vision	algorithms	and	applications.		
The	open	source	OpenFace	project	that	uses	OpenCV	infrastructure	to	
implement	landmark	detection,	head	pose	estimation,	eye-gaze	algorithm,	
facial	action	unit	recognition	and	more.	
Upon	a	capture	of	the	user's	face,	we	use	OpenFace	to	extract	the	Action	
Units	(AU's)	[as	explained	in	the	previous	section].	OpenFace	takes	a	shot	as	
input	and	supply	a	vector	of	AU's	recognition	estimation	and	the	accuracy	
rate	of	this	estimation.	For	example:	
	

 	
	

	 Figure	6:	image	to	AUs	
	

By	using	the	Facial	Action	Coding	System	(FACS)	a	simple	map	between	the	
AU's	recognized	and	the	emotion	expressed	is	easily	made:	

	
Figure	7:	Heuristic	approach	for	AUs	to	emotion	

	
At	first	glance,	it	seems	that	the	work	has	come	to	an	end,	but	after	
repeatedly	testing	this	methodology,	the	results	on	the	ground	has	taught	us	
differently,	as	the	correlation	wasn't	sufficiently	accurate	for	us.	The	problem	
relays	on	two	factors:	

o This	heuristic	is	discrete	–	it	ignores	the	estimated	rate	of	the	AU's	in	
the	shot.	

AU01_r	 AU02_r	
…	

AU01_c	 AU02_c	
…	

0.4109	 0.3948	 0	 	גכג	0
OpenFace	

9	
	

o The	heuristic	doesn't	take	into	consideration	the	inherent	differences	
between	facial	expression	of	different	population	and	origins.	

Those	two	problems	have	made	us	think	of	the	incorporation	of	a	tuning	
layer	between	the	AU's	extraction	and	the	direct	mapping.	This	tuning	level	
will	be	formed	by	a	machine	learning	classifier	later	in	this	work.	
At	this	time	of	the	project,	we've	decided	to	work	on	the	following,	
independent	parts	at	once,	balancing	between	the	two,	and	intertwining	
them	both	in	the	end.	
	

5.1.2 Application Backbone: Android native development.

The	Android	SDK	is	focused	on	developing	application	only	in	java.	As	
OpenFace	and	OpenCV	are	naturally	written	in	native	code	(C++),	its	
integration	into	the	application	with	the	main	Java	code	is	done	by	using	the	
Android's	Native	Development	Kit	(NDK)	and	the	Java	Native	Interface	(JNI).	
As	this	solution	suffices,	it	enlarges	significantly	the	application's	size	and	
runtime.	Future	work	should	address	this	issue.	

5.1.3 Application Backbone: Android keyboard service development.

The	whole	process	(of	capturing,	processing	and	analyzing	the	facial	
expressions)	is	done	in	the	background	and	unknowingly	to	the	user.	The	only	
interface	between	the	app	and	the	user	is	the	final	output	of	the	application	
–	the	suggested	emoji.	In	order	to	allow	the	user	to	work	normally	without	
interference,	we	supply	the	user	with	an	android	keyboard	that	functions	like	
every	other	keyboard,	but	with	the	addition	of	our	emoji	suggestion.	The	
creation	of	android	keyboard	and	their	customization	is	uncommon	or	rarely	
well	documented.	This	has	made	us	get	into	a	series	of	technical	research	and	
experiments,	ending	with	the	desired	keyboard	
The	communication	application	can	be	viewed	as	follows:	
	

	
									

	
	
	
	
	
	
	
	
	 Android	Keyboard	Service	

(Java)	

NDK	

OpenFace	Native	Code	
+		

		Tuning	Level	(Machine	Learning)	

NDK	

Android	Camera	

Figure	8:	Overview	of	the	process	we	use	
to	predict	an	emoji	

10	
	

	
	

5.1.4 Tuning Level: Machine learning algorithms study and incorporation.

With	the	problems	mentioned	above	have	risen,	we've	tried	to	use	machine	
learning	to	finely	tune	the	mapping	between	the	AU's	and	the	reactions.	
Finding	the	right	tool	and	technique	was	a	handful.	After	several	tries,	the	
best	and	efficient	model	was	using	are	Random	Decision	Trees	(RDT).	At	first,	
we	intended	to	create	a	dynamic	model	that	enriches	itself	upon	each	emoji	
being	suggested.	This	solution	would	have	probably	given	us	the	most	
accurate	results	but	involves	an	additional	heavy	computation,	which	in	turn	
would	slow	down	the	phone	every	time	the	user	would	like	to	use	the	
keyboard.	Eventually,	after	a	lot	of	hard	work	we've	created	a	statically	
trained	classifier	which	we	trained	with	images	from	datasets	we	found	and	
then	cleaned	(more	on	this	in	the	difficulties	section)	which	had	much	better	
results.		
	

	
	

	
	

	
	
	
	
	
	

	

Figure	9:	In	detail	breakdown	of	the	emoji	predicting	process		
	 	
5.1.5 Android camera and service incorporation.

Due	to	the	app's	purpose	of	concealing	the	entire	process	from	the	user,	the	
app	must	run	as	a	service	(and	not	as	a	common	Android	application).	This	
technical	change	has	faced	us	with	a	set	of	challenges,	as	it	is	uncommon	to	
use	the	camera	in	the	background.	Furthermore,	the	Android	Camera	API	
isn't	meant	to	fully	function	without	an	activity.		The	camera	must	be	either	
running	or	disabled	with	respect	to	the	keyboard	current	status	(live	or	runs	
in	the	background).	0.410933	0.39483	

5.1.6 Final integration and deployment.

In	the	final	stage,	after	having	all	the	application's	basic	components,	heavy	
integration	and	further	fine-tuning	had	to	be	made.	The			

	

	

AU01_r	 AU02_r	
…	

AU01_c	 AU02_c	
…	

0.4097	 0.9654	 0	 0	

11	
	

6				Difficulties	

6.1 Choosing the classifier and integrating

Choosing	the	appropriate	model	was	challenging	but	it	wasn't	the	only	one.		
At	first,	we	used	Tensor	flow	and	SK-learn	libraries,	merely	to	get	a	proof	of	
concept	of	the	ml	use.	Afterwards,	we	tended	to	work	with	OpenCV's	
machine	learning	libraries	because	they	were	available	to	us	in	the	OpenCV	
NDK.	Unfortunately,	they	were	probably	poorly	designed	because	the	results	
they	simply	had	a	low	success	rate	when	we	tested	them.	To	get	around	this	
problem	we	decided	to	work	with	SK-learn	which	is	a	world-renowned	
machine	learning	library.	But	adding	it	to	our	keyboard	would	make	it	too	
slow	so	instead	we	after	training	the	classifier	on	our	computer	we	used	an	
external	library	to	export	the	classifier	into	a	long	sequence	of	“if’s”	written	
in	C++	which	was	later	"pasted"	into	our	code.		

	
6.2 Cleaning the dataset

6.2.1 Analyzing the classifier’s behavior

After	getting	all	of	this	done	we	still	wanted	to	improve	our	success	rate	so	
we	made	extensive	research	on	how	to	properly	train	a	random	forest	for	the	
best	results.	Initially,	we	used	a	dataset	of	images	called	Extended	Cohn-
Kanade	[4]	which	was	already	classified	into	our	desired	categories.	To	get	
this	dataset	we	contacted	the	creators	and	asked	them	for	it	for	academic	
use.	In	addition,	we	used	images	we	collected	from	friends	which	we	
classified.	We	used	these	classified	images	to	train	our	random	forest	in	SK-
learn	which	had	pretty	good	results	but	we	wanted	better.	So,	we	started	
with	making	a	statistic	analysis	with	training	data	and	testing	data.	We	got	
the	following	data	from	an	80/20	split	of	our	data	into	training	and	testing.	

Figure	10:	Classifier	results	for	an	80/20	split	of	the	dataset	

	
*	E.g.	for	five	images	that	have	been	pre-classified	as	Angry	was	predicted	by				
			the	random	forest	to	be	surprised	

	
The	success	rate	here	is	72%		

12	
	

In	addition,	by	fining	the	success	rate	of	each	emotion	(column	and	row)	we	
can	distinguish	new	knowledge	of	our	classifier.	

Figure	11:	Classifier	results	for	an	80/20	split	of	the	dataset	with	percentages		

	
6.2.2 Conclusions from classifier’s behavior analysis

Firstly,	what	can	be	learned	is	that	the	classifier	has	a	strong	tendency	to	
predict	surprised.	We	can	see	that	from	the	fact	that	in	only	59%	of	the	times	
it	guessed	surprised	the	correct	classification	was	indeed	surprised	when	it	
also	correctly	predicted	that	all	of	the	people	who	are	surprised	were	actually	
surprised.		
In	addition,	we	can	see	that	it	has	a	hard	time	understanding	when	people	
are	actually	sad	because	in	only	42%	percent	of	cases	where	people	were	sad	
it	correctly	predicted	that	they	were	indeed	sad.		
	
In	order	to	understand	the	classifier's	mistakes,	we	made	an	extensive	
research	which	led	us	to	our	first	conclusion.	Our	data	wasn't	fully	balanced,	
we	found	that	37%	of	all	classified	images	were	classified	as	surprised	which	
explained	why	it	tended	to	predict	surprised.	In	addition,	we	found	that	only	
15%	of	our	images	were	classified	as	sad	which	explained	why	it	had	a	hard	
time	classifying	sad	pictures.		
	
To	overcome	this	problem,	we	balanced	our	training	set	to	have	exactly	25%	
images	of	each	emotion.		

6.2.3 Analyzing the AUs and the images

This	improved	our	results,	but	we	still	wanted	to	improve	them	so	we	
decided	to	have	a	deeper	look.	We	researched	the	AU’s	the	classifier	was	
training	on	instead	of	the	pictures	the	AU's	came	from	and	we	discovered	
that	a	not	insignificant	amount	of	AU	vectors	only	had	a	few	active	action	
units	or	even	none.	This	begged	the	question	why	because	an	average	
expression	usually	consists	of	a	number	of	active	action	units.	When	checking	
the	images,	who	produced	a	very	small	amount	of	AU’s	we	discovered	they	
were	what	professional	photographers	call	“Over	Exposed”	which	means	the	
white	balance	when	taking	the	image	wasn’t	set	correctly	which	in	turn	leads	
to	the	loss	of	a	lot	of	detail	as	you	can	see	in	the	following	picture:	

13	
	

	
	
	
	
	
	
	
	
	

	
	

Figure	12:	Example	of	an	overexposed	image	
	

6.2.4 Conclusion from AUs and the images analysis

As	you	can	see	the	picture	has	no	observable	details	on	the	cheekbones	and	
the	forehead	and	nose	of	the	woman.	Which	in	turn	leads	to	the	Open	Face	
library	not	finding	any	AU’s	(if	it’s	unclear	why	read	again	the	theoretical	
background	on	image	processing	and	Action	Units	on	page	6).	
	
The	problem	with	training	a	classifier	with	these	overexposed	images	is	that	
it	gets	a	false	idea	of	what	a	sad	person	looks	like	which	in	turn	leads	to	poor	
predictions	on	correctly	exposed	pictures.	
	
Since	we	don’t	have	the	raw	images	and	only	the	jpgs	from	the	dataset	we	
can’t	fix	these	images.	So,	we	manually	scanned	the	dataset	and	removed	all	
of	the	overexposed	pictures.	

	
6.3 Final classifier analysis

After	making	these	two	main	improvements	we	got	a	dramatically	better	
classifier.	
The	new	classifier	had	the	following	results	with	an	80/20	split	of	the	dataset	
into	training	data	and	testing	data.	

	
										Figure	13:	Classifier	results	for	an	80/20	split	of	the	new	dataset	

	
The	success	rate	now	is	83%	which	is	an	11%	increase!	

	
	
	

14	
	

	
	

And	in	the	statistical	analysis:	

	
Figure	14:	Classifier	results	for	an	80/20	split	of	the	new	dataset	with	

percentages	
	

We	can	see	that	it	doesn’t	have	the	same	bad	tendencies	of	predicting	
surprised	too	much	and	now	correctly	predicts	the	classification	of	sad	
pictures.	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

15	
	

	
	
	
	

7				Further	Work	

7.1 Improving the classifier by making continually learning

The	next	step	would	be	to	make	our	classifier	adaptive.	We	can	do	this	
because	the	of	the	way	it’s	built.	Every	time	a	user	selects	an	emoji	from	the	
suggested	ones	we	know	the	classifier	has	made	the	correct	prediction	and	
we	can	use	the	image	it	extrapolated	the	prediction	from	and	add	it’s	AUs	
and	the	user	verified	prediction	to	the	data	set.	By	doing	this	our	keyboard	
will	be	constantly	improving	with	an	ever-growing	training	set	which	would	
make	the	user	experience	better	and	better	over	time	by	providing	him	with	
better	emoji	suggestions.	

	
7.2 Making better emoji suggestions based on the user’s preferences

In	addition,	instead	of	recommending	the	same	5	surprised	emojis	every	time	
the	user	is	surprised	we	can	try	to	understand	what	are	the	5	most	common	
surprised	emojis	the	user	uses	from	the	native	emoji	keyboard	(this	will	be	
done	by	pre-separating	all	the	emojis	into	categories).	 	

16	
	

8				Summary	

In	this	project,	we've	created	a	Real-Time	emotion	recognition	keyboard	for	Android.	
The	keyboard	uses	the	front-facing	camera	while	the	user	is	typing	to	take	a	picture	
of	his	face	and	then	deduce	his	current	emotion	while	typing.	With	this	information,	
the	keyboard	recommends	the	user	the	appropriate	emojis	that	fit	his	current	
emotion	right	above	the	text	so	he	wouldn't	have	to	change	to	the	emoji	keyboard	
to	type	them.		
	
This	whole	project	was	an	exciting	adventure	for	us.	We	got	to	learn	so	much	from	
researching	online	about	real-time	facial	expression	analysis	and	machine	learning	
because	we	wanted	our	project	to	work	really	well	and	not	only	some	of	the	time.	
We	now	have	a	much	deeper	understating	of	machine	learning	algorithms	and	of	
real-time	image	processing	algorithms.		
In	addition,	we	learned	so	much	about	working	with	Android	because	we	needed	to	
create	first	a	working	keyboard	which	was	a	task	in	itself.	Then	it	wasn’t	easy	
incorporation	camera	access	into	the	keyboard	service.	This	is	because	a	service	is	
different	from	an	activity	and	much	more	limiting	but	eventually	after	truly	a	lot	of	
research	and	experimenting	we	managed	to	get	everything	to	work	together.	We	
also	had	to	incorporate	the	Open	Face	and	OpenCV	libraries	which	were	in	C++	into	
our	application	using	an	NDK.			
	
As	you	can	probably	understand,	this	project	required	us	to	learn	deeply	in	an	
extensive	set	of	areas.	It	was	challenging,	but	the	final	product	is	absolutely	worth	it.	
Even	the	long	hours	of	debugging,	with	very	specific	crash	reports	that	only	a	hand	
full	of	people	have	ever	dealt	with.	Nevertheless,	upon	searching	for	those	crashes,	
it	regularly	seemed	that	almost	no	documentation	or	discussions	had	existed	online.	
Many	late	nights	spent	and	many	coffees	was	spilled,	so	we	could	learn	that	much	
and	achieve	the	great	satisfaction	of	successfully	completing	this	amazing,	original	
and	cool	piece	of	work.	
	
	 	

17	
	

9				References	

[1]:	Emoji,	the	new	language	of	the	internet,	is	improving	the	way	we	communicate	online	by	
thenextweb.com		
	
[2]:	P.	Ekman	and	W.V.	Friesen,	Facial	Action	Coding	System:	A	Technique	for	the	Measurement	
of	Facial	Movement.	Consulting	Psychologists	Press,	1978.		

[3]:	K.	Scherer	and	P.	Ekman,	Handbook	of	Methods	in	Nonverbal	Behavior	Research.	Cambridge	
Univ.	Press,	1982.	

[4]:	The	Cohn-Kanade	AU-Coded	Facial	Expression	Database	is	for	research	in	automatic	facial	
image	analysis	and	synthesis	and	for	perceptual	studies.			

	

