

Sefi Albo, Bar Albo

Supervisors: Yaron Honen, Boaz Sternfeld

Idea

FindIt is an HoloLens application for finding an object in home

environment. The idea is to help us find missing stuff at home

by tracking the objects around us and remember their

locations.

Introduction

We developed an HoloLens application using Unity 2017 – an

engine for developing games and application for variety of

different platforms.

HoloLens is an augmented reality headset developed by

Microsoft, that lets you see, hear, and interact with holograms

within an environment such as a living room.

Application User Guide

The app has 3 modes:

- Scan – scan the room to find objects.

- View – view the scan results and adjust.

- Find – find the objects and track changes.

Scan

This mode's purpose is to initialize the app knowledge about

the objects the users wants to track. The app is taking photos

which will later be processed by Object Detection Model to

detect the objects in the room. There are two ways to take

photos:

- The default one is saying: Take Photo

- By Saying "Change", we can use the second mode which is

Gazing. It means that every time the user gaze upon a

location for about a second, the App will take a photo.

View

This mode's purpose is to view the scanning results and adjust

them. In this mode, the user can see all the detected objects

and their location. When the users Tap on a box, it will tell the

user the object name.

If the object detection missed an object, the user can look at it

and say "Add <object name>". A new box will appear at spot

the user looked at.

Find

This mode is main usage of our App. When users say "Find

<object name>", the box will appear at the exact same location,

as the object. Also, a navigation system will guide the user to its

location.

Another important feature of Find is tracking. To change an

object location or remove it entirely, When the user is picking

up an object the HoloLens will track its position. If an object

was out of view for a long time, a message will say "<object

name> was removed". If the tracker detected a new position,

the message will be "<object name> location changed".

Implementation

Object Detection

In the “Scan” phase, the user can take photos by saying “Take

Photo” or by gazing for a second at the same location. When

the user says “Stop”, the HoloLens waits for the server to

process the images.

Each time the HoloLens takes a photo, it also provides two

different matrices: Projection matrix and World matrix that are

used to convert any 2D position in the image to a 3D position

and vice versa.

Translating between 3D position to 2D position can be done

using only just these matrices (3D Math).

Translation between 2D position to 3D position is harder

because we can’t know the depth of the exact point, only the

direction. So, to know the exact location, we use Spatial

Mapping.

Object Detection – Spatial Mapping

The HoloLens can understand the world around him using the

Spatial Mapping component. This component creates an

invincible mesh that covers the entire room surfaces such as:

floor, tables, walls etc.

When the user gaze at a certain point, we can use the usual

Unity Ray Cast to hit the spatial mapping layer and get the real-

world 3D position the user gazed at (hit point).

Using 3D Math, we can translate 2D position in an image, to a

3D direction in space (not real position, because we can’t know

the depth). We then find the exact 3D location by using Unity

Ray Cast with Camera position as origin, and the direction we

found.

Spatial Mapping – Example:

Here we How the HoloLens sees the room in real Time.

Taken from the Device Portal.

Object Detection – Detector

We used YOLO V2 – Deep Learning architecture for object

detection. YOLO is running on a remote server, which is written

in Python.

The server receives series of images and then run YOLO on each

one. Then it sends back for each image, the list of boxes it

found. For each box we have the object’s name, 2D position in

the image and confidence.

When the HoloLens receives the boxes (from the detector), it

converts the 2D positions in the images to 3D positions (as we

explained) and places markers at these real-world positions.

YOLO V2 example

Object Detection – High Level Flow

Here we can see the flow:

When the user says "Take Photo" a new image is passed to the

YOLO, then we get bounding boxes for each object. After that,

we transform the center of boxes from 2D to 3D and the output

is the marker boxes on each of the objects.

Object Detection – Persistent Positions

Because every time we restart an app, the coordinate system

changes, there is a need to set a fixed location. We used World

Anchor Store to do that. Using world anchors, the objects will

stay the same place even upon restarting the HoloLens. We

also use the File System to save the list of objects we found.

Object Detection – View Mode

In the “View” mode, the user can see all the objects the app

found and click on each one. Clicking on a box will says its name

(for example: cellphone).

Because the object detection can sometime fail, we added an

option to add objects manually.

The user needs to gaze at the desired position and say “Add

<object name>”, then a box will appear at the gazed location.

Object Detection – Find Mode and Navigation

In the “Find” mode, the user can say “Find phone” and then an

arrow will appear that points to the phone’s location.

Using the camera position and the object’s position, we can

calculate the direction and projects it on the screen panel.

Object Tracking

Object Tracking is one of the key features of this App.

We use Object Tracking to track objects in real time to adapt to

changes in the room.

For example, the user has picked an object and move it to

somewhere else or removed it entirely from the room.

Tracking an object consists of various stages. The first stage,

“Trigger” is done by the HoloLens.

First, we need to determine which object do we track. So using

the spatial mapping, we can see if the user gazes at an object. If

the user gazes at an object for couple of frames, and is closed

to it, we assume he is going to pick it. Then we start tracking

that object and “Trigger” stage is over.

Although this condition isn’t sufficient to determine if user is

indeed picking up an object, it can save a lot of unnecessary

computation. For example, the user can’t change the phone

location if he is far away from it.

After the Trigger found an object to track. We take the first

picture and converts the object 3D position in space into a 2D

position.

We then send the 2D position and the first image to the server

Object Tracking – High Level Flow

- Trigger - looks for a new object to track by tracking the

user’s position and nearby objects.

- Pre Tracking - takes the first picture, converts the object 3D

position in space into a 2D position in the first picture and

sends it to the server.

- Init Tracker - initialize the tracker using the 2D position and

the first image.

- Main Stage - takes pictures and sends them to the server.

- Tracker - The server updates the tracker with the images it

received and sends back the object’s new 2D position

according to the tracker.

- The HoloLens converts them into 3D coordinates and

updates its state machine accordingly.

Object Tracking – Init Tracker

The tracker algorithm needs to be initialized with a bounding

box of the object we want to track.

Therefore, when the server receives the 2D position, it tries to

find a bounding box that is close to this position to initialize the

tracker.

To find the closet bounding box we first find the contours in the

image using OpenCV.

Example:

Object Tracking – Tracker

Two of many difficulties of implementing the tracker:

HoloLens can only take pictures in a very low frame rate (about

5 FPS), so images suffers from motion blur and “instant”

movements of objects.

Our tracker also needs to be a good reporter. Some trackers

track the object very well, but they can’t say when the object is

leaving the view.

We tried many different trackers and we found CMT to do well

with both these challenges.

CMT was implemented using OpenCV on the server.

Object Tracking – Main Stage

The tracking – In the following pictures, we send the picture

and save the matrices for later. In order to increase FPS, each

time we take a picture, it’s pushed to a queue.

Then an external thread process this pictures, sends them to

server and wait for a response. That’s how the communication

doesn’t interfere with the App.

The server receives an image, update the tracker and sends

back the center of the bounding box the tracker found. If no

bounding box is found, it can mean two things: Object is out of

view, or the tracker just fail to detect it in the image. Either

way, the returned point is (0,0).

Object Tracking – Main Stage – State Machine

(1) – the object position must change from its initial position by

some threshold.

(2) - the user must be closed to the object and the last positions

haven’t changed (meaning it’s not moving anymore) so a new

position is set for the object.

(3) – the object was out of view for some frames, but it wasn’t

moving so tracking is done and the object is “Idle”.

(4) – the object was moving but suddenly became out of view

for enough frames, so we assume the object was removed.

In all the states: Idle, Remove, Change the tracking is done, and

we go back for searching for a new object to track.

How to Install:

1. Install Python 3.5

2. Install OpenCV 3

3. Follow instruction to get YOLO:

https://github.com/AlexeyAB/darknet

4. Download the project:

https://drive.google.com/file/d/1PjCLk5Gyj676IpHLmCKh

5eE4QTcOf6xl/view?usp=sharing

5. Replace the yolo_changed_files with the real files

6. Rebuild YOLO (darknet_no_gpu.exe)

7. In server folder, run server.py and logger.py (change IP

address to your IP)

8. Open findit.unitypackage on Unity and Deploy on

HoloLens.

https://github.com/AlexeyAB/darknet
https://drive.google.com/file/d/1PjCLk5Gyj676IpHLmCKh5eE4QTcOf6xl/view?usp=sharing
https://drive.google.com/file/d/1PjCLk5Gyj676IpHLmCKh5eE4QTcOf6xl/view?usp=sharing

