Drone project

Students

Ofir zeilig

Natan sela

Supervisors

PROJECT IDEA .ttt b e s b s eas s ab s s b s s ebb e e sbe s 3

USER IMANUAL ..ttt sttt e s e s sesaireese e e e s ssssaaaaasaeeessesssssssasanesesssssssssasanesesssensssrerenanessssnns 4
SITL = FLIGHT SIMULATOR .eeterissueeessssunesssssssessssssesssssasessessasesssssasesssssasssssssssesssssssssessssessessasessessasessessasesssssseesssssnessses 4
CONTROLLING SERVO .eeteuuuuuuiiireeresnssssiessseesssssssssssssteessssssissssessssssssssssstesssssssssssssttessssssssssseessssssssssssssessssssssssssssesssnnss 9
A 00 LU RN 13
DRONEKIT cetvreerennnnsseeenreerennsssiisnneeeeessssssessseeessssssssessseersssssssssssseeesssssssssssteesssssssssssseessssssssssssseeessssssssssseeensssssssssssees 14
HOW TO USE OUR PROJECT ceeuuuuuirreeeeennssssessseerssssssssessseesssssssssssssessssssssssssseessssssssssssseesssssssssssssesessssssssssseesssssssssssssees 15
REAL SENSE..iietuuuuuuniiinriermnnnnsiiinieeemmnnsssiesrsiemsssssssiiisseessssssssssssssssssssssssssssesssssssssssssesssssssssssssssssssssssssssssssnnssssssssssees 20
LIBRARIES THAT WE USED eeeuuuuuuiirreeernnnssssesrseessssssssssssseesssssssssssssssssssssssssssessssssssssssssesssssssssssssssssssssssssssssssnnssssssssssees 22
HARDWARE WE USED ..evveeeenessssssnneeennnnssssessseessssssssssssseesssssssssssssssssssssssssssessssssssssssssesssssssssssssssssssssssssssssssnnssssssssssens 24
EXPLANATION ABOUT THE PROJECT....cciiiiiiiiiiiiteieeeieinriiiinneeeessessssnsreneeesesssssssssnsasesessssssnssnranssessss 26
CREATING A FRAMEWORK FOR COMPUTER VISION ON A DRONEuuetetsssuressssssressssssnesssssssessssssesssssseessssssesssssssesssssssesssnes 26
DIFFICULTIES WE ENCOUNTERED AND INSIGHTS 1uvvtetttessssssnsnsesssssssssssnsssessssssssssssssssssssssss 30
WHAT HAVE WE LEARNT: teuuuiteenseeetennscstesnsssnesssisseasssssssssssssssssestessssstessssssessssssssssssssssssssssssssssssssessesssssssnssssssssssssannses 36
1V N) 1 46

Project idea

Drones can be used to various tasks and replace humans in many aspects in our
lives. Our goal was to create a system that will enable to control a drone using
computer vision that will enable it to fly autonomously. Eventually, we created a
framework that wraps all the parts that control the flight functionality of the
drone in a way that future projects could use it could focus only on computer
vision.

User manual

SITL = FLIGHT SIMULATOR
In order to test our code before trying to launch a drone we used the Silt flight
simulator.

SITL allows you to run ArduPilot on your PC directly, without any special
hardware. It takes advantage of the fact that ArduPilot is a portable autopilot that
can run on a very wide variety of platforms. Your PCis just another platform that
ArduPilot can be built and run on.

When running in SITL the sensor data comes from a flight dynamics model in a
flight simulator. ArduPilot has a wide range of vehicle simulators built in, and can
interface to several external simulators. This allows ArduPilot to be tested on a
very wide variety of vehicle types. For example, SITL can simulate:

« multi-rotor aircraft

o fixed wing aircraft

« ground vehicles

« underwater vehicles

o camera gimbals

« antenna trackers

« a wide variety of optional sensors, such as Lidars and optical flow sensors

Adding new simulated vehicle types or sensor types is straightforward.

A big advantage of ArduPilot on SITL is it gives you access to the full range of
development tools available to desktop C++ development, such as interactive
debuggers, static analyzers and dynamic analysis tools. This makes developing and
testing new features in ArduPilot much simpler.

The sitl architecture is:

uoP — UDP
ArduCopter or ArduPlane

Desktop Executable (elf) . .
o k=] O
5503

!

GCS (Mission Planner)
or MAVProxy
on APM Console

MAVProxy on
Telemetry Port

How to use:

First, you need to setup the simulator using the guides that are provided by the
framework. Then, to start your simulator open Cygwin64 and type:

Cd ~ardupilot
Then:

.JTools/autotest/sim_vehicle.py -v ArduCopter --map --console --
out=tcpin:0.0.0.0:14552

And the following screens should appear:

Defaut Al Home Location
20 Lat 363
Lon
AlL {adn|
AUTO Asars, P OKs (10 500 Radio; - INS MAC AS RNG AriS
,c DAL B9%/12.IVI92A Lirk 1 OK 100.0% (16065 phts, 0 lost, 0,005 delisy}
“THdg272/275 Alt19m AGL24m/23m AlrSpeed&mys GPSSpeedam/s Thr37 Roll0 PReh-18 Wind —f
W _WAYPOINT 00 00 00 2.0 Bwps Oistance97m Bearing277 AltErroctL AspdEror0.0H FlightTime 045 ETR1:26
WAYPOINT D 0 0.0 00

Command
W WAYPOINT

PM: Arming motor
W_WAYPORT 0 2 00 Qb ISt MAVLn msg COMMAND_ACK {command ; 400, result :)
ARMED

5
.
.
B
B
B

5

¢

Cot MAVLInk msg COMMAND_ACK {command : 11, result 1 0j
waypoint 1

Mode AUTO

APM: EKF2 IMUO i fEight yaw alignment complet

APM: EXF2 IMU1 infiight yaw algnment complete

If the map isn’t available, press view->service->googleMap

And now the drone is ready to fly,The way to control the drone is using MavProxy

which is a fully-functioning GCS for UAV's. The intent is for a minimalist, portable
and extendable GCS for any UAV supporting the MAVLink protocol (such as the
APM).

o Itisa command-line, console based app. There are plugins included in
MAVProxy to provide a basic GUI.
o Can be networked and run over any number of computers.

6

« It's portable; it should run on any POSIX OS with python, pyserial,
and select() function calls, which means Linux, OS X, Windows, and others.

o The light-weight design means it can run on small netbooks with ease.

« It supports loadable modules, and has modules to support console/s, moving
maps, joysticks, antenna trackers, etc

Tab-completion of commands.

Mavproxy offers various commands which controls the vehicle:

MAVProxy Cheetsheet (V 1.5.7)

Manual mode mode manual
Link Fly to specific location made quided
List all links link list LAT LON ALT
Set link n to primary set link N

_ , Relays

Add new link link add X
Remove link link remove N Set relay relay set N [8]1]

Set output servo servo set N PWM
Map
Show waypoinis wp list .

, Terrain

Show fence fence list
Enable geofence fence enable Get terrain height at location terrain check
Disable geofence fence disable LAT LON
Arming
Arm Vehicle arm throttle
Disarm Vehicle disarm
Farce disarm (heli) disarm force
AUTO Flight
Set current wp wp set N
Engage auto mode auto
Override auto speed (mys) setspeed N
Parameters
Get param value param show X
Set param param set X N
Download param defns param download
Get param help param help X

Flight modes

Loiter mode mode loiter

Return to Launch mode rtl

Refrence:
http://ardupilot.github.io/MAVProxy/html/ static/files/MAVProxyCheetsheet.pdf

The last thing you need in order to control the simulator using a code is the
connection string that is required to send to the dronekit command: connect.

connect(tcp:127.0.0.1:14552, wait_ready=True) and a vehicle will return that is
ready for instructions.

http://ardupilot.github.io/MAVProxy/html/_static/files/MAVProxyCheetsheet.pdf

CONTROLLING SERVO WITH UP-BOARD USING PINS

Servomotor

A servomotor is a rotary actuator that allows for precise control of angular
position, velocity and acceleration. It consists of a suitable motor coupled to a
sensor for position feedback. It also requires a relatively sophisticated controller,
often a dedicated module designed specifically for use with servomotors.

A servomotor is a closed-loop servomechanism that uses position feedback to
control its motion and final position. The input to its control is a signal (either
analogue or digital) representing the position commanded for the output shaft.

Pwm Signal

Pulse-width modulation (PWM), is a modulation technique used to encode

a message into a pulsing signal. Although this modulation technique can be used
to encode information for transmission, its main use is to allow the control of the
power supplied to electrical devices, especially for motors.

The term duty cycle describes the proportion of 'on' time to the regular interval or
'period’ of time. a low duty cycle corresponds to low power, because the power is
off for most of the time. Duty cycle is expressed in percent, 100% being fully on.

https://en.wikipedia.org/wiki/Message
https://en.wikipedia.org/wiki/Pulse_(signal_processing)

50% duty cycle

il
T UL

25% duty cycle

T T

Pwm pins

Using an up-board we have 40 pins connected to our board, some of them
support pwm. Each pwm pin has a physical number and a pwm number. For
example, the pin we used is physical pin 32 which is pwm pin 0
UP - Pinout
000000 DDO0DODODDDODDODO OO
00000000000 DODDO O©O©O© O

© GPIO0/I2C_SDA © GPIO1/12C1_SCL

© Ground © GPIOZ/ADC-input © GPIO15/UART_TX © GPIO16/UART_RX

0 s 0 s
@ GPIO7/SPI_MISO @ GPIO21/SPI_CSON

@ GPIO25 © GPIO14 @ GPIO26/125_DATAIN © Ground @ GPIO27/12S_DATAQUT

Color Color Color
Pin | Signal Scheme | Scheme Scheme
Number, Name 1 2 3
(Futaba)| (JR) (Hitec)
1 Ground Black Brown Black

5 Power Red Red Red or
Supply Brown
Control . Yellow or

3 Signal White | Orange White

Servo connection Color Coding

The pins we used are: 1 for Power supply, 6 for ground, and 32 for pwmO.

10

How to Control a servo via PWM on Ubuntu

Exporting a pin

Before sending any command, we need to open a new connection on whatever
pin we’ve chosen. To do that, chose a pin supporting pwm, then through terminal
write the pin number to a file named export situated in the pwm directory

e echo <pwm number> > /sys/class/pwm/pwmchipO/export

after exporting the pin, a new directory will be created named pwm<pwm number>

containing several files.

Unexporting a pin

At the end, when the pin is not needed anymore, it need to be unexported.

e echo <pwm number> > /sys/class/pwm/pwmchipO/unexport

Setting pin’s Direction

To begin using the pin, we first need to set it direction i.e. do we want to use the
pin for sending information or for receiving it. Notice that after exporting the pin
a new directory was created named pwm<pwm number> (for example pwmO in our
case) containing several files. One of those files is named direction and need to be
set to out

e echo out > /sys/class/pwm/pwmchipO/pwm<pwm num>/direction

Setting Period time and Duty Cycle

11

As explained, a pwm pin is controlled with the period time and duty cycle of the
sent signal.

To set both values, use the same commands we have used so far,

e echo <value> > /sys/class/pwm/pwmchip0/pwm<pwm num>/period
e echo <value> > /sys/class/pwm/pwmchip0/pwm<pwm num>/duty_cycle

Enable the pin

Now that the pin is configured, the last thing to do is start sending the signal, to
do that, we need to enable the pin —send 1 to the file “enable” located at the
new directory that were created after exporting the pin.

® echo 1 > /sys/class/pwm/pwmchip0/pwm<pwm num>/enable

Weriting Permission

While writing to these files they may be some permissions problems, to solve that
you can set the permission correctly with chmod (note that after exporting the
pin, new files will be created with permissions issues) or simply use these
commands as root with sudo.

Working with our python class

We offer a new class named Pwm, which manage all pwm setting-up.

e def __init_ (self, p=0): - create a new pwm controller with pin number p.
e def setupPin(self , enable=True): - setup all needed
o def turnTo(self, degree): - turn the servo to angle degree.

There are more specific functions that do every step mentioned before, but all of
them are hidden in those methods.

12

ARDUPILOT

Ardupilot is the most advanced, full-
featured and reliable open source
autopilot software available. It has been
developed over 5+ years by a team of
diverse professional engineers and
computer scientists. It is the only autopilot
software capable of controlling any vehicle system imaginable, from conventional
airplanes, multirotors, and helicopters, to boats and even submarines. And now
being expanded to feature support for new emerging vehicle types such as quad-
planes and compound helicopters.

Installed in over 1,000,000 vehicles world-wide, and with its advanced data-
logging, analysis and simulation tools, Ardupilot is the most tested and proven
autopilot software. The open-source code base means that it is rapidly evolving,
always at the cutting edge of technology development. With many peripheral
suppliers creating interfaces, users benefit from a broad ecosystem of sensors,
companion computers and communication systems. Finally, since the source code
is open, it can be audited to ensure compliance with security and secrecy
requirements.

The software suite is installed in aircraft from many OEM UAV companies, such as
3DR, jDrones, PrecisionHawk, AgEagle and Kespry. It is also used for testing and
development by several large institutions and corporations such as NASA, Intel
and Insitu/Boeing, as well as countless colleges and universities around the world.

Ardu pilot documentation can be found here

13

http://ardupilot.org/

DRONEKIT
DroneKit-Python allows developers to create apps that run on an
onboard companion computer and communicate with the ArduPilot flight
controller using a low-latency link. Onboard apps can significantly enhance the
autopilot, adding greater intelligence to vehicle behaviour, and performing tasks
that are computationally intensive or time-sensitive (for example, computer
vision, path planning, or 3D modelling). DroneKit-Python can also be used for
ground station apps, communicating with vehicles over a higher latency RF-link.

The APl communicates with vehicles over MAVLink. It provides programmatic
access to a connected vehicle’s telemetry, state and parameter information, and
enables both mission management and direct control over vehicle movement and
operations.

API features

The API provides classes and methods to:

« Connect to a vehicle (or multiple vehicles) from a script

« Get and set vehicle state/telemetry and parameter information.

« Receive asynchronous notification of state changes.

o Guide a UAV to specified position (GUIDED mode).

« Send arbitrary custom messages to control UAV movement and other
hardware (GUIDED mode).

o Create and manage waypoint missions (AUTO mode).

o Override RC channel settings.

A complete API reference is available here.

14

http://python.dronekit.io/automodule.html#api-reference

HOW TO USE OUR PROJECT

Run the project

In order to start the project one will need to run the following commands:

e Open a simulator —SITL (you can just run the commands in the file

sitl_lunch.py — not run the script! A python shell must be open with the
simulator in it)

e Optional — Open a map module (In case you didn’t succeed downloading

the official map simulator) python MapScriptListener.py
e Python __main.py

Problems...

e While trying to run the project, you can encounter few problems. To solve
them try running the help script broneRequiements.sh

e Opening an ssh connection might not work, the first line of the
DroneRequiements.sh script might do the work.

__main__

To run our project, after lunching the simulator, you should run the main script
with a simple python command.

The main script consists of setting up all the project, and letting him run by
himself. For that few things are created on the main script:

e A config file is read, from which we can receive thee wanted connection
string and additional parameters.

e Aflight object is created — any object inheriting from Flight module i.e.
implements addSafeCommands and run methods, would do it. In our case,
we use DKFlight (Dronekit) which connect and control the vehicle using
dronekit library.

e An HLC object is created which is responsible for translating high level
instructions received from the controller and prepare the real commands
for the Flight module in a way that would be threads safe.

15

e Finally, the controller is created and the main call the controller’s method
run which will start the entire process and make it works.

Flight

The flight module is the one responsible for talking to the drone consistently. Any
object inheriting from Flight module must implements the following methods:

def run(self):
this method will automatically start the thread life, and make the drone begin

flying.

DKFlight

The DKflight control the drone using dronekit library, that means it connect to the
drone or simulator using dronekit connect function and control the drone using
Mavlink messages.

A

Flight loop

After the method run is called, the new thread is created the thread begin and do
3 things sequentially:

e Taking off — the Flight will ask from the drone to take off to a certain height
and maintain the hight.

16

e Flightloop — During this loop the Flight module will look up for the recent
command in the shared safe command variable and send it via Mavlink to
the drone and ask it for telemetry data which it will put in the safe
Response shared variable so that the HLC could ask for the recent
telemetry data anytime without waiting.

e Land-the Fight module will ask the drone to return to the home location
and land.
After those three missions are done, the Flight thread will end.

HLC

The HLC module is responsible of receiving High level instructions (such as ‘left’,
‘right’, etc), preparing the real direction for the Flight module (as vector direction)
and send it to him thread safely. To use correctly the HLC module one must use
the following methods:

e Takeoff — with parameter wait which indicate whether the method will wait
for the vehicle to take off or not.
e hasTakenOff - returns whether the vehicle has finished taking off or not

e gotoDirection —receive a high level direction as specified and send it to the
Flight thread.

o getTelemtry — get the most recent telemetry data.

e Finish —when the controller want to finish the flight and land, it should call
HLC’s Finish method.

Controller

The Controller module is the one controlling the flight. It’s flight decisions can be
based on input coming from the user (keyboard) or sensors (camera). It is an
abstract class, i.e. there is no any instance of controller in the project but a lot of
classes inherits from controller and are implemented.

The controller init method first of all receive an HLC object so it could control the
flight and send flight directions using it.

Any class inheriting from controller should implement init as it needs and receive
the needed modules (such as camera, servo controller, etc.) and must implement
the following method:

17

def start(self):
The method will automatically start the flight and after taking off start compute
and send the wanted directions.

Hard Coded Controller

The hard coded controller is a demo controller which only take off, send 4 simple
direction commands, and land.

Keyboard Controller

The keyboard controller is a controller which make its decisions based on user
input. After taking off, the controller waits for user input and send flight
commands according to the received direction.

CV Controller
This is a stab controller, i.e. it is not ready to use and must be implemented!

while True:
frames = self.camera.getFrames()
sk s e s e e e e e e s e s e e s s s e e s e R e s s e e e s e e s s s e s s
HHARHHHHHHRHHHHHHHRRIEHRHHRA Insert your code here #HHHHHHHHHAAH AR HAHHHHBHHHHHHHRAIH
sleep(2) # do some image processing

B B B L e s e
B B B L e s e

#send directions

direction = 'stay’
self.hlc.gotoDirection(direction)

This Controller is ready to implement while the only missing code is given recent
frames, after image processing, decide the next flight direction and other
commands (such as rotating the camera for example.)

18

Safe Command and Safe Response

These are two class representing a thread protected variable i.e. a variable that
when accessing it, the Safe class is re sponsible of acquiring a lock before and
releasing it after it.

Camera Handler

This class is an abstract class responsible of connecting to a camera and receiving
frames from it. Any class inheriting from Camera Handler must implement the
following method:

def getFrames(self):

in which the inheriting module will ask for frames from the camera and return
them as cv matrices.

RSCamera

The RSCamera is a module connecting to a realsense 2 camera. To do that, the
module open a connection with the camera and when asked for, it get the three
recent frames — color frame, I.R frame, Depth frame.

PWM

This class knows how to control servos using pwm signals. It assumes the
connected servo is a 180-degree servo. To more information about controlling
servos via PWM pins look up for Controlling Servo with Up-Board using pins

19

REAL SENSE

Intel RealSense Technology, is a D435
suite of depth and tracking
technologies designed to give
machines and devices depth
perceptions capabilities that will
enable them to “see” and
understand the world. There are
many uses for these computer
vision capabilities including
autonomous drones, robots,
AR/VR, smart home devices
amongst many others broad
market products. RealSense
technology is made of Vision
Processors, Depth and Tracking Modules, and Depth Cameras, supported by an
open source, cross-platform SDK called librealsense that simplifies supporting
cameras for third party software developers, system integrators, ODMs and
OEMs.

The D435 Camera

By introducing the Intel® RealSenseTM Depth Camera D435 into the Intel
RealSenseTM product lineup, Intel continues our commitment to developing
cutting-edge new vision sensing products. Placing an Intel module and vision
processor into a small form factor results in a combined solution ideal for
development or productization. Lightweight, powerful, and low- cost, this
complete package pairs with customizable software to enable the development of
next-generation sensing solutions and devices that can understand and interact
with their surroundings.

For more information about Pyrealsense enter here

Pyrealsense library

20

https://realsense.intel.com/

To use the intel realsense camera programmatically, we use the library
Pyrealsense.

The library allows depth and color streaming, and provides intrinsic and extrinsic
calibration information. The library also offers synthetic streams (pointcloud,

depth aligned to color and vise-versa), and a built-in support for record and
playback of streaming sessions.

For more information about Pyrealsense enter here.

21

https://pypi.org/project/pyrealsense/

LIBRARIES THAT WE USED

Dronekit:

DroneKit-Python allows developers to create apps that run on an

onboard companion computer and communicate with the ArduPilot flight
controller using a low-latency link. Onboard apps can significantly enhance the
autopilot, adding greater intelligence to vehicle behaviour, and performing tasks
that are computationally intensive or time-sensitive (for example, computer
vision, path planning, or 3D modelling). DroneKit-Python can also be used for
ground station apps, communicating with vehicles over a higher latency RF-link.

The APl communicates with vehicles over MAVLink. It provides programmatic
access to a connected vehicle’s telemetry, state and parameter information, and
enables both mission management and direct control over vehicle movement and
operations.

pyrealsense?

The library allows depth and color streaming, and provides intrinsic and extrinsic
calibration information. The library also offers synthetic streams (pointcloud,
depth aligned to color and vise-versa), and a built-in support for record and
playback of streaming sessions.

opencv

OpenCV (Open Source Computer Vision Library) is an open source computer
vision and machine learning software library. OpenCV was built to provide a
common infrastructure for computer vision applications and to accelerate the use
of machine perception in the commercial products. Being a BSD-licensed product,
OpenCV makes it easy for businesses to utilize and modify the code.

The library has more than 2500 optimized algorithms, which includes a
comprehensive set of both classic and state-of-the-art computer vision and
machine learning algorithms. These algorithms can be used to detect and
recognize faces, identify objects, classify human actions in videos, track camera
movements, track moving objects, extract 3D models of objects, produce 3D point

22

clouds from stereo cameras, stitch images together to produce a high resolution
image of an entire scene, find similar images from an image database, remove red
eyes from images taken using flash, follow eye movements, recognize scenery and
establish markers to overlay it with augmented reality, etc. OpenCV has more
than 47 thousand people of user community and estimated number of downloads
exceeding 14 million. The library is used extensively in companies, research
groups and by governmental bodies.

Along with well-established companies like Google, Yahoo, Microsoft, Intel, IBM,
Sony, Honda, Toyota that employ the library, there are many startups such as
Applied Minds, VideoSurf, and Zeitera, that make extensive use of OpenCV.
OpenCV’s deployed uses span the range from stitching streetview images
together, detecting intrusions in surveillance video in Israel, monitoring mine
equipment in China, helping robots navigate and pick up objects at Willow
Garage, detection of swimming pool drowning accidents in Europe, running
interactive art in Spain and New York, checking runways for debris in Turkey,
inspecting labels on products in factories around the world on to rapid face
detection in Japan.

It has C++, Python, Java and MATLAB interfaces and supports Windows,

Linux, Android and Mac OS. OpenCV leans mostly towards real-time vision
applications and takes advantage of MMX and SSE instructions when available. A
full-featured CUDA and OpenCL interfaces are being actively developed right now.
There are over 500 algorithms and about 10 times as many functions that
compose or support those algorithms. OpenCV is written natively in C++ and has a
templated interface that works seamlessly with STL containers.

23

HARDWARE WE USED
Px4:

PX4 is powerful open source autopilot flight stack.

Some of PX4's key features are:

Controls many different vehicle frames/types, including: aircraft (multicopters,
fixed wing aircraft and VTOLs), ground vehicles and underwater vehicles.
Great choice of hardware for vehicle controller, sensors and other peripherals.
Flexible and powerful flight modes and safety features.

upBoard:

UP is a credit card size board with the high performance and low
power consumption features of the latest tablet technology: the
Intel® Atom™ x5 Z8350 Processors (codename Cherry Trail)

64 bits up to 1.92GHz. The internal GPU is the new Intel Gen 8 HD
400 with 12 Execution Units up to 500MHz to deliver extremely
high 3D graphic performance. UP is equipped with 1GB/2GB/4GB
DDR3L RAM and 16GB/32GB/64GB eMMC.

UP has 40-pin General Purpose bus which provides the freedom to
makers to build up their shield. There are more interfaces available,
such as 4x port USB2.0 on connectors, 2x port USB2.0 + 1x UART on
header, 1x USB 3.0 OTG, 1x Gbit Ethernet (full speed), 1x DSI/eDP
port, 1x Camera (MIPI-CSI), 1x HMDI, RTC.

24

85.6 mm

B T SRR R cmmmmans cua)

40 Pin GP-Bus Intel X5-Z8350 up to 192 Ghz

2x USB 2.0

2x USB 20
Ix UART
Pin Header

2x USB 20

1x DSI
Ix eDP

565 mm

Ix MIPI-CSI
Ix Gb Ethernet

v RTC battery

DDR3L

Power pin 5V DC-IN
header Power Jack memory

* The information is from the upboard spec

25

Explanation about the project

CREATING A FRAMEWORK FOR COMPUTER VISION ON A DRONE

Controller B HLC > Flight <

aaaaaa

RSCamera

cv

PWMControl =< Controller

Keyboard HardCoded DKFlight

Here we can see the class diagram of our code, the main modules of our code are
the controller and the flight modules.

The Controller is @ module responsible for making the decision and sending flight
commands, based on hard coded data, user input, or live image processing.

The Flight module is an object running on a separate thread, and constantly
sending flight commands to the drone or simulator.

The HLC module (High Level Controller) is responsible of translating high level
instructions received from the controller, (such as left, right, etc.) to instructions
the Flight module will understand. In addition, since the Flight object runs on a
second thread the HLC module is responsible for the communication between
those threads

Communication between the two threads is done with shared data. Two objects
named Safe command and Safe Response are shared between the threads. These
objects contain a lock and some variables, and know how to read the variables
and write to them threads safely using locks. Using those variables, the HLC

26

module can pass flights commands (as vector directions) and ask for flight
telemetry data.

Modularity - all our code is very modular, it means every part of it can be changed in
the future in order to fit with other requirements:

another controller can be written immediately and control it differently
using other inputs or other decision lines

another Flight module — for example one which doesn’t use Dronekit (it
can use Parrot’s library for example)

while using our CV Stab one can always change the camera by using
another camera module inheriting from Camera Handler.

Design Tradeoffs

Threads — to enable sending continuous flight commands to the vehicle and
letting the controller process images without thinking about it.
Theoretically we could have used only one thread which will do some
image processing, decide on the next command and then send it to the
vehicle but in the reality, that means letting the vehicle with no commands
for too long what can even cause a disconnection. Even without fearing of
disconnection the idea of letting the vehicle without repeatedly telling it
what to do is not correct, and the thread’s separation of the code s.t one
thread only do image processing and the other constantly send commands
to the vehicle is more right.

HZ vs FPS — the rate in which we send commands to the vehicle is called HZ,
and the rate in which we receive images from the camera and process them
is called FPS. In an ideal world, we would have wanted both to be very high,
but unfortunately, this is not possible. This is not possible since it would
cause the processor to over power and both threads would fight on the
communication between them what will lead to a decrease in one of their
rate. This is when we should decide which thread would have more
resource power. By increasing the Drone communication rate (HZ) we can
make sure the drone is more controlled and not leaved alone for
unsupervised commands, and by increasing the controller frame rate of
image processing we can obtain more adjusts commands.

27

e HLC doesn’t create the Flight module — the other option could have been
simpler and could give the possibility of knowing the HLC from the Flight
module what would let the option of sending messages from the Flight
module to the HLC. Since it was less modular we have chosen not to design
it that way.

e Who initiate events. As explained one of the design options was to let the
Flight module knowing the HLC. In that way, the Flight module could have
initiated messages by himself, for example, in case of very low battery the
Flight module could have decided that it send immediately a message to
the HLC and so on to the controller letting him know that the battery is
critical so that the controller could have acted correctly. In our project,
there are no such urgent and real time messages and so we preferred
letting the controller polling the flight module once a while and knowing
about necessary messages.

28

Sequence Diagram

mera ontroller al ale
Response Command
User i i i i i
| | | | |
1 1 1 1 1
Start 1 1 1 1
T .l ! 1 1 1
| | | |
1 1 1 Takeoff 1
| T T
| | |
: : : ¢‘ Has taken off ’D
1 1 1 1
1 1 1 Did take off? 1 1
| |
| Lk] |
] [1o TTTTTTTTTTT 1]
1 1 1 1 1
loop!) : : ! Get Command !
| | |
1 1 N Direction _ _ _ >
| | |
1 1 1 Set Telem 1
| _ Get Frames ! [:]" ;
1 1
- - Frames | _ - Get Telem o | d d
| | |
: <. - Jelem _ : :
: : Set direction ! :
1 I >|'JI] 1
| | | |
1 1 1 Get Command
i i i I
| | N [Diectian. o m o - >
| | | |
1 Get Frames 1 1 Set Telem 1
L
e .
| |
| | |
! Get Telem ! ! !
: Telem : :
1 G- 1 1
1 1 Set Direction 1 1
1 1 Pu 1
! ! !
| | | |
| | | |
1 1 Land 1 1
I 1 PD I
1 1 1
| | | |
| | 1 1
| |
| |
| |
1 1

—————— -1

the sequence diagram describes the objects and threads interactions arranged in
times sequences.

When the user asks from the project to start the controller will be created
automatically along with the Flight modules and the safe variables. Then, the
controller will ask from the Flight to take off and wait until the take-off is
complete.

29

DIFFICULTIES WE ENCOUNTERED AND INSIGHTS
While working on the project we encountered many difficulties which delayed our
progress for weeks at a time, here are some of the difficulties:

e Trying to control the drone using c++:
In most of the semester we worked with the conclusions of the previous
project, which claimed that using python is slow and that we should work
only with c++. Therefore, we searched the web for ways to communicate
with the drone using c++ and found ways to connect and receive messages.
We found the following git project:

D 79 commits ¥ 1 branch 50 releases 21 4 contributors
Branch: master = Find file
1 LerenzMeier Update READMEmd Latest commit 481133 on May 11
| mavlink/include/mavlink .gitsubmodule 4 years ago
E) .gitignore name massaging, fix exit during message check 4 years ago
E .gitmodules .gitsubmodule 4 years ago
[E] README.md Update README.md 3 months ago
E) autopilot_interface.cpp Minor fixes. Code needs to be simplified / cleaned up further 2 years ago
E) autopilot_interface.h name massaging, fix exit during message check 4 years ago
E) makefile Minor fixes, Code needs to be simplified / cleaned up further 2 years ago
E] mavlink_control.cpp Minor fixes, Code needs to be simplified / cleaned up further 2 years ago
E) mavlink_control.h update copyright 4 years ago
E) serial_port.cpp All minor changes: 3 years agoe
[E] serial_porth All minor changes: 3 years ago

https://github.com/mavlink/c uart interface example

This project is suppose to control the drone using c++ via mavlink
messages. After a lot of research and code reading of the projects who runs
a few threads parallelly and few different redundant objects which
complicated the task severely. we were enable to extract from this
repository the relevant code that is needed to establish a connection and
created the following code:

30

https://github.com/mavlink/c_uart_interface_example

int main(int argc, const char * argv[]){
const char *xuart_name = (charx)"/dev/tty.usbmodeml";
int baudrate = 57600;

//open the connection
int fd = open(uart_name, O_RDWR | O_NOCTTY | O_NDELAY);

uint8_t cp;
mavlink_status_t status;
uint8_t msgReceived = false;

mavlink_message_t message;

bool received_all = false;

while (!received_all) {
int result = read(fd, &cp, 1);

if (result > @)

{
// the parsing
msgReceived = mavlink_parse_char(MAVLINK_COMM_1, cp, &message, &status);
positionMessage(message);
}
}
return 9;

The problem was that the messages weren’t parsed correctly because it
wasn’t read in the right way- for example, it should have read the size of
the message according to the second byte, but it didn’t do it.

* Important insight: after we learnt about correct usage of git, we now
know that we shouldn’t have wasted so much time on this repository

because it is clearly under developed- as we can infer from the number of

branches and commits.

31

® Trying to bypass the file system in order to control the pwm:
Another assumption we worked with was that using the file system (the
standard way) to control the gimble, is too slow. So, we searched for other
ways to do it. We found alternative library called mraa:
http://iotdk.intel.com/docs/master/mraa/python/
Their main purpose is exactly what we needed, and supplies a convenient
interface for that purpose:

mraa_pwm_init

Pwm ——®» mraa_pwm_init_raw

Mraa_pwm_owner

* This is the call graph of the constructor of the class, helps conveying the
complexity of it. Reference:
https://iotdk.intel.com/docs/master/mraa/classmraa 1 1 pwm.html

But after we were enabled to use it we checked the code source and found
out that they are also using the file system.

* Important insight: looking back we understand that our efforts were futile
because in linux everything is a file, thus trying to bypass will lead to dead
ends.

32

http://iotdk.intel.com/docs/master/mraa/python/
https://iotdk.intel.com/docs/master/mraa/classmraa_1_1_pwm.html

® Deciding which mavlink command is the best to control the movement of
the drone:

There are many mavlink commands that dronekit supports which can
control elements in the drone, some are deprecated, some don’t work well.
We tried various ways, one of them directly controlled the thrust:

def set_sttitude(roll_angle = 8.8, pitch_angle = @.8, yaw_rate = 8.8, thrust = 8.5, duration = @):

will drop back to zero). In AC3.2.1 and earlier t

with no message the wvelocity

velocity persists wuntil it is canceled. The cede below should work cn either vers

{sending the message multiple times does not cause problems).

The roll and pitch rate cannot be controllbed with rate in radian in AC3.4.4 or earlier,

50 you must use quaternion to control the pitch and roll for those vehicles.

+
2
"
+
T
5

+
Ey
it

== 9.5: Hold the altitude

rust < @.5: Descend

+
2

msg = vehicle.message_factory.set_attitude_target_encode(

a,

1,

1,

Oo03e0e088, # Type mask: bit 1 is LSE
to_guaternion(roll_angle, pitch_angle), # Quaternion
@, # Bo roll rate 1 a

@, # Body pitch rate radian

math.radians(yaw_rate), # Body yaw rate in radian
thrust # Thrust

3

4

vehicle.send_mavlink{msg)

start = time.time()

while time.time() - start < duration:

vehicle.send_mavlink(msg)

time.sleep(@.1)

Reference: https://github.com/dronekit/dronekit-
python/blob/master/examples/set attitude target/set attitude target.py

But the response was too slow and we couldn’t get the sensitivity we
needed.

* Important insight: controlling and stabilizing a drone requires much more
then just pushing the throttle, it requires a Pld controller (proportional—
integral—derivative controller) which is a control loop feedback
mechanism widely used in industrial control systems and a variety of other

33

https://github.com/dronekit/dronekit-python/blob/master/examples/set_attitude_target/set_attitude_target.py
https://github.com/dronekit/dronekit-python/blob/master/examples/set_attitude_target/set_attitude_target.py

applications requiring continuously modulated control. A PID controller
continuously calculates an error value as the difference between a

desired setpoint and a measured process variable (PV) and applies a
correction based on proportional, integral, and derivative terms. This is the
reason that we need to use the PX4 , so trying to control the thrust directly
wont work.

34

® Decide which operating system will be the best for our project:
In the early stages of the project we needed to choose the operating
system to install on our upboard. We needed an operating system that
supports control of 40 pins and supports the realsense camera. Because it
was the beginning of the project and we didn’t know anything about
operating systems, or realsense, or PWM, we had difficulties to fully
understand the requirements of the operating system. So we chose the
most common OS that we found for upboard which is Ubuntu 16.04.
Refrence: https://wiki.up-community.org/Ubuntu

* Important insight: looking back, it would have been better to choose an
operating system that doesn’t have a Ul because it requires much more
processing power then we needed, which can cost much more overhead.

® Enabling the Realsense camera on the upboard:
When we wrote our code which controlled the realsense camera it worked
well on our private computer, but when we tried to test it on the drone the
image didn’t appear. First we thought that the problem was that we didn’t
use the usb3 port, so we needed to order a cable that is compatible to the
port. But after the cable didn’t fix the problem we researched some more
we discovered that it was because the realsense needed to update its
drivers.

Refrence:
https://www.intel.com/content/www/us/en/support/articles/000023694/
emerging-technologies/intel-realsense-technology.html

35

https://wiki.up-community.org/Ubuntu
https://www.intel.com/content/www/us/en/support/articles/000023694/emerging-technologies/intel-realsense-technology.html
https://www.intel.com/content/www/us/en/support/articles/000023694/emerging-technologies/intel-realsense-technology.html

WHAT HAVE WE LEARNT:
While working on the project we learnt many new things here are some of them:

® Git best practices:
We learnt how to use git correctly in team projects. The main idea is to
create many branches and promote the project only be working on the
branches and merging it to the main branch. The main branch is called
master, it is promoted only by merging with the version branches. It should
always be documented, tested, is abled to compile and have a version
number. The main purpose of the branch is to contain the latest most
stable version of the project, that can be distributed.
The second most important branch is the develop branch, it is the main
branch that the develop team uses and is created from the master branch.
Mostly, we don’t commit directly on this branch because the development
happens in the features branches and after adding a new feature, we
merge it to the develop branch. The minimum requirement of this branch is
that it should compile at all time.
Feature branch is a branch that each developer works on a feature, it can
be in any condition because usually only one person works on it and
doesn’t share it with other developers- until it branches with the develop.
The feature branches are created from the develop branch, each developer
takes a snapshot of the current state of the project and add a new feature.
Version branch is a branch that is created when we decide to publish a new
version, all the features that were merged into the develop branch before
the creation of the version will be inserted to the current version and the
other wont. In this branch most of the work is bug fixes, the developers
make sure that the version that is about to be published and there are
minimum number of bugs, and the merges are bug fixes. At all time this
branch should be able to compile and have a version number.

36

Bugfix Branch are branches that are created from the version branch, as
said earlier, their purpose is to fix bugs in the version branch. All time

should contain a version number.

feature

branches develop hotfixes
—
il
S - 1

Major
feature for
next release

Feature
for future
release

“next release”
means the release
after 1.0

References:

https://nvie.com/posts/a-successful-git-branching-model/

From this point on, \

release
branches

fixed for
preduction:

Startof
release

37

y

master

. Tag
0.1

Tag
0.2

https://nvie.com/posts/a-successful-git-branching-model/

® Controlling PWM based hardware:
Pulse-width modulation (PWM), or pulse-duration modulation (PDM), is
a modulation technique used to encode a message into a pulsing signal.
Although this modulation technique can be used to encode information for
transmission, its main use is to allow the control of the power supplied to
electrical devices, especially to internal] loads such as motors. In addition,
PWM is one of the two principal algorithms used in photovoltaic solar
battery chargers, the other being maximum power point tracking.
The average value of voltage (and current) fed to the load is controlled by
turning the switch between supply and load on and off at a fast rate. The
longer the switch is on compared to the off periods, the higher the total
power supplied to the load.
The PWM switching frequency must be much higher than what would
affect the load (the device that uses the power), which is to say that the
resultant waveform perceived by the load must be as smooth as possible.
The rate (or frequency) at which the power supply must switch can vary
greatly depending on load and application, for example
Switching has to be done several times a minute in an electric stove;
120 Hz in a lamp dimmer; between a few kilohertz (kHz) and tens of kHz for
a motor drive; and well into the tens or hundreds of kHz in audio amplifiers
and computer power supplies.
The term duty cycle describes the proportion of 'on' time to the regular
interval or 'period’ of time; a low duty cycle corresponds to low power,
because the power is off for most of the time. Duty cycle is expressed in
percent, 100% being fully on.
The main advantage of PWM is that power loss in the switching devices is
very low. When a switch is off there is practically no current, and when it is
on and power is being transferred to the load, there is almost no voltage
drop across the switch. Power loss, being the product of voltage and
current, is thus in both cases close to zero. PWM also works well with
digital controls, which, because of their on/off nature, can easily set the
needed duty cycle.

38

https://en.wikipedia.org/wiki/Hertz

PWM has also been used in certain communication systems where its duty
cycle has been used to convey information over a communications channel.

References:
https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://en.wikipedia.org/wiki/Pulse-width modulation

39

https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation

® UML Diagrams

While planning our design we were introduced with UML 2 and the various
diagrams that it offers. UML defines the notation and semantics for the following
domains:

« The User Interaction or Use Case Model - describes the boundary and
interaction between the system and users. Corresponds in some respects to a
requirements model.

« The Interaction or Communication Model - describes how objects in the
system will interact with each other to get work done.

« The State or Dynamic Model - State charts describe the states or conditions
that classes assume over time. Activity graphs describe the workflows the
system will implement.

« The Logical or Class Model - describes the classes and objects that will
make up the system.

« The Physical Component Model - describes the software (and sometimes
hardware components) that make up the system.

« The Physical Deployment Model - describes the physical architecture and
the deployment of components on that hardware architecture.

There are a few types of UML diagrams:

Structure diagrams

Structure diagrams emphasize the things that must be present in the system being
modeled. Since structure diagrams represent the structure, they are used
extensively in documenting the software architecture of software systems. For
example, the component diagram describes how a software system is split up into
components and shows the dependencies among these components.

Behavior diagrams

Behavior diagrams emphasize what must happen in the system being modeled.
Since behavior diagrams illustrate the behavior of a system, they are used
extensively to describe the functionality of software systems. As an example,

the activity diagram describes the business and operational step-by-step activities
of the components in a system.

40

Interaction diagrams

Interaction diagrams, a subset of behavior diagrams, emphasize the flow of control

and data among the things in the system being modeled. For example, the sequence
diagram shows how objects communicate with each other regarding a sequence of

messages.

References:

https://www.sparxsystems.com.au/resources/uml|?2 tutorial/index.html

https://en.wikipedia.org/wiki/Unified Modeling Language

41

https://www.sparxsystems.com.au/resources/uml2_tutorial/index.html
https://en.wikipedia.org/wiki/Unified_Modeling_Language

e Mavlink protocol:
In the semester we learnt a lot about the mavlink protocol, what is the
structure of the packets, how to generate new messages and various types of
messages.

The packet structure is the following:

. Index
Field name (Bytes) Purpose

Start-of-frame | 0 Denotes the start of frame transmission (v1.0: OXFE)

Payload-

length 1 length of payload (n)

Packet 5 Each component counts up their send sequence. Allows for detection

sequence of packet loss.
Identification of the SENDING system. Allows to differentiate different

System ID 3
systems on the same network.

Component Identification of the SENDING component. Allows to differentiate

D P 4 different components of the same system, e.g. the IMU and the
autopilot.

Message ID 5 Identification of the message - the id defines what the payload

9 “means” and how it should be correctly decoded.
Payload 6 to (n+6) | The data into the message, depends on the message id.

(n+7) to Check-sum of the entire packet, excluding the packet start sign (LSB

Gxe (n+8) to MSB)

42

It is possible to generate a message using xml in the following pattern:

<?xml version="1.0"?>

<mavlink>

<include>common.xml</include>

<!l--

NOTE: If the included file already contains a version tag, remove

the version tag here, else uncomment to enable. -->

<!--<version>»3</version>-->

<enums>

</enums>

<{messages>

<message id="150" name="RUDDER_RAW">

<description>This message encodes all of the raw rudder

sensor data from the USV.</description>

the position

rudder limit
hit. If this

rudder limit
hit. If this

<field type="uintl6_t" name="position">The raw data from

sensor, generally a potentiometer.</field>

<field type="uint8_t" name="port_limit">Status of the
sensor, port side. © indicates off and 1 indicates that the limit is

sensor is inactive set to OxFF.</field>
<field type="uint8 t" name="center_limit">Status of the

sensor, port side. © indicates off and 1 indicates that the limit is

sensor is inactive set to OxFF.</field>

43

<field type="uint8_t" name="starboard_limit">Status of
the rudder limit sensor, starboard side. © indicates off and 1 indicates that the

limit is hit. If this sensor is inactive set to OxFF.</field>
</message>
</messages>

</mavlink>

And generating the message using mavgen:

usage: mavgen.py [-h] [-o OQUTPUT]
[--lang {C,CS,JavaScript,Python,Wlua,0bjC,5wift, Java,C+411}]
[--wire-protoccl {©.9,1.8,2.8}] [--no-validate]
[--error-limit ERROR_LIMIT] [--strict-units]

XML [XML ...]
This tool generate implementations from MAVLink message definitions

positional arguments:

XML MaVLink definitions

optional arguments:
-h, --help show this help message and exit
-0 QUTPUT, --output OUTPUT
output directory.
--lang {C,CS,JlavaScript,Python,Wlua,0bjC,Swift,Java,C++11}
language of generated code [default: Python]
--wire-protocol {2.9,1.8,2.8}
MAVLink protocol version. [default: 1.8]
--no-validate Do not perform XML validation. Can speed up code
generation if XML files are known to be correct.
--error-limit ERROR_LIMIT
maximum number of walidatien errors to display

--strict-units Perform validation of units attributes.

Refrences:

https://mavlink.io/en/
http://ggroundcontrol.org/mavlink/start
https://en.wikipedia.org/wiki/MAVLink

44

https://mavlink.io/en/
http://qgroundcontrol.org/mavlink/start
https://en.wikipedia.org/wiki/MAVLink

® System design

As we described earlier we encountered many dilemmas while designing
our system. Each decision has a tradeoff between each possibility and each
possibility has its own pros and cons. For more information about our
specific design look at previous chapter. The main thing we learnt is that if
the design is planed correctly and thoroughly, most of the decisions that
are made would be easy, because if we consider all of our goals and
constraints, many times there is only one logical solution.

® \Working in linux based environment:

In the beginning, we had no experience with linux operating system and
using open source projects, but during the past months we gained much
experience with when we needed to update drivers and changing things
using the file system. Also, during our struggles for searching the best ways
to implement things, we found many open source projects that we
downloaded and integrated in our system.

45

In Conclusion:

We offer a framework which can incorporate Computer Vision in drone
missions, which we hope the GIP lab could utilize in the future. The
framework covers everything you need in order to control the drone from
end to end. We believe that it will be very beneficial for any computer
vision purpose, and every developer that whishes to create computer
vision-based missions will find it very easy to understand it and enhance its
functionality.

46

