
1

 Students

Ofir zeilig

Natan sela

Supervisors
David Dovrat

Yaron Honen

Drone project

2

PROJECT IDEA ... 3

USER MANUAL .. 4

SITL – FLIGHT SIMULATOR ... 4

CONTROLLING SERVO ... 9

ARDUPILOT ... 13

DRONEKIT ... 14

HOW TO USE OUR PROJECT ... 15

REAL SENSE ... 20

LIBRARIES THAT WE USED ... 22

HARDWARE WE USED .. 24

EXPLANATION ABOUT THE PROJECT... 26

CREATING A FRAMEWORK FOR COMPUTER VISION ON A DRONE... 26

DIFFICULTIES WE ENCOUNTERED AND INSIGHTS .. 30

WHAT HAVE WE LEARNT: ... 36

IN CONCLUSION: ... 46

3

Project idea

Drones can be used to various tasks and replace humans in many aspects in our

lives. Our goal was to create a system that will enable to control a drone using

computer vision that will enable it to fly autonomously. Eventually, we created a

framework that wraps all the parts that control the flight functionality of the

drone in a way that future projects could use it could focus only on computer

vision.

4

User manual

SITL – FLIGHT SIMULATOR
In order to test our code before trying to launch a drone we used the Silt flight

simulator.

SITL allows you to run ArduPilot on your PC directly, without any special

hardware. It takes advantage of the fact that ArduPilot is a portable autopilot that

can run on a very wide variety of platforms. Your PC is just another platform that

ArduPilot can be built and run on.

When running in SITL the sensor data comes from a flight dynamics model in a

flight simulator. ArduPilot has a wide range of vehicle simulators built in, and can

interface to several external simulators. This allows ArduPilot to be tested on a

very wide variety of vehicle types. For example, SITL can simulate:

• multi-rotor aircraft

• fixed wing aircraft

• ground vehicles

• underwater vehicles

• camera gimbals

• antenna trackers

• a wide variety of optional sensors, such as Lidars and optical flow sensors

Adding new simulated vehicle types or sensor types is straightforward.

A big advantage of ArduPilot on SITL is it gives you access to the full range of

development tools available to desktop C++ development, such as interactive

debuggers, static analyzers and dynamic analysis tools. This makes developing and

testing new features in ArduPilot much simpler.

5

The sitl architecture is:

How to use:

First, you need to setup the simulator using the guides that are provided by the

framework. Then, to start your simulator open Cygwin64 and type:

Cd ~ardupilot

Then :

./Tools/autotest/sim_vehicle.py -v ArduCopter --map --console --

out=tcpin:0.0.0.0:14552

6

And the following screens should appear:

If the map isn’t available, press view->service->googleMap

And now the drone is ready to fly,The way to control the drone is using MavProxy

which is a fully-functioning GCS for UAV's. The intent is for a minimalist, portable

and extendable GCS for any UAV supporting the MAVLink protocol (such as the

APM).

• It is a command-line, console based app. There are plugins included in

MAVProxy to provide a basic GUI.

• Can be networked and run over any number of computers.

7

• It's portable; it should run on any POSIX OS with python, pyserial,

and select() function calls, which means Linux, OS X, Windows, and others.

• The light-weight design means it can run on small netbooks with ease.

• It supports loadable modules, and has modules to support console/s, moving

maps, joysticks, antenna trackers, etc

Tab-completion of commands.

Mavproxy offers various commands which controls the vehicle:

8

Refrence:

http://ardupilot.github.io/MAVProxy/html/_static/files/MAVProxyCheetsheet.pdf

The last thing you need in order to control the simulator using a code is the

connection string that is required to send to the dronekit command: connect.

connect(tcp:127.0.0.1:14552, wait_ready=True) and a vehicle will return that is
ready for instructions.

http://ardupilot.github.io/MAVProxy/html/_static/files/MAVProxyCheetsheet.pdf

9

CONTROLLING SERVO WITH UP-BOARD USING PINS

Servomotor

A servomotor is a rotary actuator that allows for precise control of angular

position, velocity and acceleration. It consists of a suitable motor coupled to a

sensor for position feedback. It also requires a relatively sophisticated controller,

often a dedicated module designed specifically for use with servomotors.

A servomotor is a closed-loop servomechanism that uses position feedback to

control its motion and final position. The input to its control is a signal (either

analogue or digital) representing the position commanded for the output shaft.

Pwm Signal

Pulse-width modulation (PWM), is a modulation technique used to encode

a message into a pulsing signal. Although this modulation technique can be used

to encode information for transmission, its main use is to allow the control of the

power supplied to electrical devices, especially for motors.

The term duty cycle describes the proportion of 'on' time to the regular interval or

'period' of time. a low duty cycle corresponds to low power, because the power is

off for most of the time. Duty cycle is expressed in percent, 100% being fully on.

https://en.wikipedia.org/wiki/Message
https://en.wikipedia.org/wiki/Pulse_(signal_processing)

10

Pwm pins

Using an up-board we have 40 pins connected to our board, some of them

support pwm. Each pwm pin has a physical number and a pwm number. For

example, the pin we used is physical pin 32 which is pwm pin 0

The pins we used are: 1 for Power supply, 6 for ground, and 32 for pwm0.

11

How to Control a servo via PWM on Ubuntu

Exporting a pin

Before sending any command, we need to open a new connection on whatever

pin we’ve chosen. To do that, chose a pin supporting pwm, then through terminal

write the pin number to a file named export situated in the pwm directory

• echo <pwm number> > /sys/class/pwm/pwmchip0/export

after exporting the pin, a new directory will be created named pwm<pwm number>

containing several files.

Unexporting a pin

At the end, when the pin is not needed anymore, it need to be unexported.

• echo <pwm number> > /sys/class/pwm/pwmchip0/unexport

Setting pin’s Direction

To begin using the pin, we first need to set it direction i.e. do we want to use the

pin for sending information or for receiving it. Notice that after exporting the pin

a new directory was created named pwm<pwm number> (for example pwm0 in our

case) containing several files. One of those files is named direction and need to be

set to out

• echo out > /sys/class/pwm/pwmchip0/pwm<pwm num>/direction

Setting Period time and Duty Cycle

12

As explained, a pwm pin is controlled with the period time and duty cycle of the

sent signal.

To set both values, use the same commands we have used so far,

• echo <value> > /sys/class/pwm/pwmchip0/pwm<pwm num>/period
• echo <value> > /sys/class/pwm/pwmchip0/pwm<pwm num>/duty_cycle

Enable the pin

Now that the pin is configured, the last thing to do is start sending the signal, to

do that, we need to enable the pin – send 1 to the file “enable” located at the

new directory that were created after exporting the pin.

• echo 1 > /sys/class/pwm/pwmchip0/pwm<pwm num>/enable

Writing Permission

While writing to these files they may be some permissions problems, to solve that

you can set the permission correctly with chmod (note that after exporting the

pin, new files will be created with permissions issues) or simply use these

commands as root with sudo.

Working with our python class

We offer a new class named Pwm, which manage all pwm setting-up.

• def __init__(self , p=0): - create a new pwm controller with pin number p.
• def setupPin(self , enable=True): - setup all needed
• def turnTo(self, degree): - turn the servo to angle degree.

There are more specific functions that do every step mentioned before, but all of

them are hidden in those methods.

13

ARDUPILOT

Ardupilot is the most advanced, full-

featured and reliable open source

autopilot software available. It has been

developed over 5+ years by a team of

diverse professional engineers and

computer scientists. It is the only autopilot

software capable of controlling any vehicle system imaginable, from conventional

airplanes, multirotors, and helicopters, to boats and even submarines. And now

being expanded to feature support for new emerging vehicle types such as quad-

planes and compound helicopters.

Installed in over 1,000,000 vehicles world-wide, and with its advanced data-

logging, analysis and simulation tools, Ardupilot is the most tested and proven

autopilot software. The open-source code base means that it is rapidly evolving,

always at the cutting edge of technology development. With many peripheral

suppliers creating interfaces, users benefit from a broad ecosystem of sensors,

companion computers and communication systems. Finally, since the source code

is open, it can be audited to ensure compliance with security and secrecy

requirements.

The software suite is installed in aircraft from many OEM UAV companies, such as

3DR, jDrones, PrecisionHawk, AgEagle and Kespry. It is also used for testing and

development by several large institutions and corporations such as NASA, Intel

and Insitu/Boeing, as well as countless colleges and universities around the world.

Ardu pilot documentation can be found here

http://ardupilot.org/

14

DRONEKIT
DroneKit-Python allows developers to create apps that run on an

onboard companion computer and communicate with the ArduPilot flight

controller using a low-latency link. Onboard apps can significantly enhance the

autopilot, adding greater intelligence to vehicle behaviour, and performing tasks

that are computationally intensive or time-sensitive (for example, computer

vision, path planning, or 3D modelling). DroneKit-Python can also be used for

ground station apps, communicating with vehicles over a higher latency RF-link.

The API communicates with vehicles over MAVLink. It provides programmatic

access to a connected vehicle’s telemetry, state and parameter information, and

enables both mission management and direct control over vehicle movement and

operations.

API features

The API provides classes and methods to:

• Connect to a vehicle (or multiple vehicles) from a script
• Get and set vehicle state/telemetry and parameter information.
• Receive asynchronous notification of state changes.
• Guide a UAV to specified position (GUIDED mode).
• Send arbitrary custom messages to control UAV movement and other

hardware (GUIDED mode).
• Create and manage waypoint missions (AUTO mode).
• Override RC channel settings.

A complete API reference is available here.

http://python.dronekit.io/automodule.html#api-reference

15

HOW TO USE OUR PROJECT

Run the project

In order to start the project one will need to run the following commands:

• Open a simulator – SITL (you can just run the commands in the file
sitl_lunch.py – not run the script! A python shell must be open with the
simulator in it)

• Optional – Open a map module (In case you didn’t succeed downloading
the official map simulator) python MapScriptListener.py

• Python __main.py__

Problems…

• While trying to run the project, you can encounter few problems. To solve
them try running the help script DroneRequiements.sh

• Opening an ssh connection might not work, the first line of the

DroneRequiements.sh script might do the work.

•
__main__

To run our project, after lunching the simulator, you should run the main script

with a simple python command.

The main script consists of setting up all the project, and letting him run by

himself. For that few things are created on the main script:

• A config file is read, from which we can receive thee wanted connection
string and additional parameters.

• A flight object is created – any object inheriting from Flight module i.e.
implements addSafeCommands and run methods, would do it. In our case,
we use DKFlight (Dronekit) which connect and control the vehicle using
dronekit library.

• An HLC object is created which is responsible for translating high level
instructions received from the controller and prepare the real commands
for the Flight module in a way that would be threads safe.

16

• Finally, the controller is created and the main call the controller’s method
run which will start the entire process and make it works.

Flight

The flight module is the one responsible for talking to the drone consistently. Any

object inheriting from Flight module must implements the following methods:

def run(self):

this method will automatically start the thread life, and make the drone begin

flying.

DKFlight

The DKflight control the drone using dronekit library, that means it connect to the

drone or simulator using dronekit connect function and control the drone using

Mavlink messages.

After the method run is called, the new thread is created the thread begin and do

3 things sequentially:

• Taking off – the Flight will ask from the drone to take off to a certain height
and maintain the hight.

Take off Flight loop Land

17

• Flight loop – During this loop the Flight module will look up for the recent
command in the shared safe command variable and send it via Mavlink to
the drone and ask it for telemetry data which it will put in the safe
Response shared variable so that the HLC could ask for the recent
telemetry data anytime without waiting.

• Land – the Fight module will ask the drone to return to the home location
and land.

After those three missions are done, the Flight thread will end.

HLC

The HLC module is responsible of receiving High level instructions (such as ‘left’,

‘right’, etc), preparing the real direction for the Flight module (as vector direction)

and send it to him thread safely. To use correctly the HLC module one must use

the following methods:

• Takeoff – with parameter wait which indicate whether the method will wait
for the vehicle to take off or not.

• hasTakenOff - returns whether the vehicle has finished taking off or not

• gotoDirection – receive a high level direction as specified and send it to the
Flight thread.

• getTelemtry – get the most recent telemetry data.

• Finish – when the controller want to finish the flight and land, it should call
HLC’s Finish method.

Controller

The Controller module is the one controlling the flight. It’s flight decisions can be

based on input coming from the user (keyboard) or sensors (camera). It is an

abstract class, i.e. there is no any instance of controller in the project but a lot of

classes inherits from controller and are implemented.

The controller init method first of all receive an HLC object so it could control the

flight and send flight directions using it.

Any class inheriting from controller should implement init as it needs and receive

the needed modules (such as camera, servo controller, etc.) and must implement

the following method:

18

def start(self):

The method will automatically start the flight and after taking off start compute

and send the wanted directions.

Hard Coded Controller

The hard coded controller is a demo controller which only take off, send 4 simple

direction commands, and land.

Keyboard Controller

The keyboard controller is a controller which make its decisions based on user

input. After taking off, the controller waits for user input and send flight

commands according to the received direction.

CV Controller

This is a stab controller, i.e. it is not ready to use and must be implemented!

This Controller is ready to implement while the only missing code is given recent

frames, after image processing, decide the next flight direction and other

commands (such as rotating the camera for example.)

19

Safe Command and Safe Response

These are two class representing a thread protected variable i.e. a variable that

when accessing it, the Safe class is re sponsible of acquiring a lock before and

releasing it after it.

Camera Handler

This class is an abstract class responsible of connecting to a camera and receiving

frames from it. Any class inheriting from Camera Handler must implement the

following method:

def getFrames(self):

in which the inheriting module will ask for frames from the camera and return

them as cv matrices.

RSCamera

The RSCamera is a module connecting to a realsense 2 camera. To do that, the

module open a connection with the camera and when asked for, it get the three

recent frames – color frame, I.R frame, Depth frame.

PWM

This class knows how to control servos using pwm signals. It assumes the

connected servo is a 180-degree servo. To more information about controlling

servos via PWM pins look up for Controlling Servo with Up-Board using pins

20

REAL SENSE

Intel RealSense Technology, is a

suite of depth and tracking

technologies designed to give

machines and devices depth

perceptions capabilities that will

enable them to “see” and

understand the world. There are

many uses for these computer

vision capabilities including

autonomous drones, robots,

AR/VR, smart home devices

amongst many others broad

market products. RealSense

technology is made of Vision

Processors, Depth and Tracking Modules, and Depth Cameras, supported by an

open source, cross-platform SDK called librealsense that simplifies supporting

cameras for third party software developers, system integrators, ODMs and

OEMs.

The D435 Camera

By introducing the Intel® RealSenseTM Depth Camera D435 into the Intel

RealSenseTM product lineup, Intel continues our commitment to developing

cutting-edge new vision sensing products. Placing an Intel module and vision

processor into a small form factor results in a combined solution ideal for

development or productization. Lightweight, powerful, and low- cost, this

complete package pairs with customizable software to enable the development of

next-generation sensing solutions and devices that can understand and interact

with their surroundings.

For more information about Pyrealsense enter here

Pyrealsense library

https://realsense.intel.com/

21

To use the intel realsense camera programmatically, we use the library

Pyrealsense.

The library allows depth and color streaming, and provides intrinsic and extrinsic

calibration information. The library also offers synthetic streams (pointcloud,

depth aligned to color and vise-versa), and a built-in support for record and

playback of streaming sessions.

For more information about Pyrealsense enter here.

https://pypi.org/project/pyrealsense/

22

LIBRARIES THAT WE USED

Dronekit:

DroneKit-Python allows developers to create apps that run on an
onboard companion computer and communicate with the ArduPilot flight
controller using a low-latency link. Onboard apps can significantly enhance the
autopilot, adding greater intelligence to vehicle behaviour, and performing tasks
that are computationally intensive or time-sensitive (for example, computer
vision, path planning, or 3D modelling). DroneKit-Python can also be used for
ground station apps, communicating with vehicles over a higher latency RF-link.

The API communicates with vehicles over MAVLink. It provides programmatic
access to a connected vehicle’s telemetry, state and parameter information, and
enables both mission management and direct control over vehicle movement and
operations.

pyrealsense2

The library allows depth and color streaming, and provides intrinsic and extrinsic
calibration information. The library also offers synthetic streams (pointcloud,
depth aligned to color and vise-versa), and a built-in support for record and
playback of streaming sessions.

opencv

OpenCV (Open Source Computer Vision Library) is an open source computer
vision and machine learning software library. OpenCV was built to provide a
common infrastructure for computer vision applications and to accelerate the use
of machine perception in the commercial products. Being a BSD-licensed product,
OpenCV makes it easy for businesses to utilize and modify the code.

The library has more than 2500 optimized algorithms, which includes a
comprehensive set of both classic and state-of-the-art computer vision and
machine learning algorithms. These algorithms can be used to detect and
recognize faces, identify objects, classify human actions in videos, track camera
movements, track moving objects, extract 3D models of objects, produce 3D point

23

clouds from stereo cameras, stitch images together to produce a high resolution
image of an entire scene, find similar images from an image database, remove red
eyes from images taken using flash, follow eye movements, recognize scenery and
establish markers to overlay it with augmented reality, etc. OpenCV has more
than 47 thousand people of user community and estimated number of downloads
exceeding 14 million. The library is used extensively in companies, research
groups and by governmental bodies.

Along with well-established companies like Google, Yahoo, Microsoft, Intel, IBM,
Sony, Honda, Toyota that employ the library, there are many startups such as
Applied Minds, VideoSurf, and Zeitera, that make extensive use of OpenCV.
OpenCV’s deployed uses span the range from stitching streetview images
together, detecting intrusions in surveillance video in Israel, monitoring mine
equipment in China, helping robots navigate and pick up objects at Willow
Garage, detection of swimming pool drowning accidents in Europe, running
interactive art in Spain and New York, checking runways for debris in Turkey,
inspecting labels on products in factories around the world on to rapid face
detection in Japan.

It has C++, Python, Java and MATLAB interfaces and supports Windows,
Linux, Android and Mac OS. OpenCV leans mostly towards real-time vision
applications and takes advantage of MMX and SSE instructions when available. A
full-featured CUDA and OpenCL interfaces are being actively developed right now.
There are over 500 algorithms and about 10 times as many functions that
compose or support those algorithms. OpenCV is written natively in C++ and has a
templated interface that works seamlessly with STL containers.

24

HARDWARE WE USED
Px4:

PX4 is powerful open source autopilot flight stack.

Some of PX4's key features are:

• Controls many different vehicle frames/types, including: aircraft (multicopters,
fixed wing aircraft and VTOLs), ground vehicles and underwater vehicles.

• Great choice of hardware for vehicle controller, sensors and other peripherals.
• Flexible and powerful flight modes and safety features.

upBoard:

UP is a credit card size board with the high performance and low
power consumption features of the latest tablet technology: the
Intel® Atom™ x5 Z8350 Processors (codename Cherry Trail)
64 bits up to 1.92GHz. The internal GPU is the new Intel Gen 8 HD
400 with 12 Execution Units up to 500MHz to deliver extremely
high 3D graphic performance. UP is equipped with 1GB/2GB/4GB
DDR3L RAM and 16GB/32GB/64GB eMMC.
UP has 40-pin General Purpose bus which provides the freedom to
makers to build up their shield. There are more interfaces available,
such as 4x port USB2.0 on connectors, 2x port USB2.0 + 1x UART on
header, 1x USB 3.0 OTG, 1x Gbit Ethernet (full speed), 1x DSI/eDP
port, 1x Camera (MIPI-CSI), 1x HMDI, RTC.

25

* The information is from the upboard spec

26

Explanation about the project

CREATING A FRAMEWORK FOR COMPUTER VISION ON A DRONE

Here we can see the class diagram of our code, the main modules of our code are

the controller and the flight modules.

The Controller is a module responsible for making the decision and sending flight

commands, based on hard coded data, user input, or live image processing.

The Flight module is an object running on a separate thread, and constantly

sending flight commands to the drone or simulator.

The HLC module (High Level Controller) is responsible of translating high level

instructions received from the controller, (such as left, right, etc.) to instructions

the Flight module will understand. In addition, since the Flight object runs on a

second thread the HLC module is responsible for the communication between

those threads

Communication between the two threads is done with shared data. Two objects

named Safe command and Safe Response are shared between the threads. These

objects contain a lock and some variables, and know how to read the variables

and write to them threads safely using locks. Using those variables, the HLC

27

module can pass flights commands (as vector directions) and ask for flight

telemetry data.

Modularity – all our code is very modular, it means every part of it can be changed in

the future in order to fit with other requirements:

• another controller can be written immediately and control it differently
using other inputs or other decision lines

• another Flight module – for example one which doesn’t use Dronekit (it
can use Parrot’s library for example)

• while using our CV Stab one can always change the camera by using
another camera module inheriting from Camera Handler.

Design Tradeoffs

• Threads – to enable sending continuous flight commands to the vehicle and
letting the controller process images without thinking about it.
Theoretically we could have used only one thread which will do some
image processing, decide on the next command and then send it to the
vehicle but in the reality, that means letting the vehicle with no commands
for too long what can even cause a disconnection. Even without fearing of
disconnection the idea of letting the vehicle without repeatedly telling it
what to do is not correct, and the thread’s separation of the code s.t one
thread only do image processing and the other constantly send commands
to the vehicle is more right.

• HZ vs FPS – the rate in which we send commands to the vehicle is called HZ,
and the rate in which we receive images from the camera and process them
is called FPS. In an ideal world, we would have wanted both to be very high,
but unfortunately, this is not possible. This is not possible since it would
cause the processor to over power and both threads would fight on the
communication between them what will lead to a decrease in one of their
rate. This is when we should decide which thread would have more
resource power. By increasing the Drone communication rate (HZ) we can
make sure the drone is more controlled and not leaved alone for
unsupervised commands, and by increasing the controller frame rate of
image processing we can obtain more adjusts commands.

28

• HLC doesn’t create the Flight module – the other option could have been
simpler and could give the possibility of knowing the HLC from the Flight
module what would let the option of sending messages from the Flight
module to the HLC. Since it was less modular we have chosen not to design
it that way.

• Who initiate events. As explained one of the design options was to let the
Flight module knowing the HLC. In that way, the Flight module could have
initiated messages by himself, for example, in case of very low battery the
Flight module could have decided that it send immediately a message to
the HLC and so on to the controller letting him know that the battery is
critical so that the controller could have acted correctly. In our project,
there are no such urgent and real time messages and so we preferred
letting the controller polling the flight module once a while and knowing
about necessary messages.

29

Sequence Diagram

the sequence diagram describes the objects and threads interactions arranged in

times sequences.

When the user asks from the project to start the controller will be created

automatically along with the Flight modules and the safe variables. Then, the

controller will ask from the Flight to take off and wait until the take-off is

complete.

30

DIFFICULTIES WE ENCOUNTERED AND INSIGHTS
While working on the project we encountered many difficulties which delayed our

progress for weeks at a time, here are some of the difficulties:

• Trying to control the drone using c++:

In most of the semester we worked with the conclusions of the previous

project, which claimed that using python is slow and that we should work

only with c++. Therefore, we searched the web for ways to communicate

with the drone using c++ and found ways to connect and receive messages.

We found the following git project:

https://github.com/mavlink/c_uart_interface_example

This project is suppose to control the drone using c++ via mavlink

messages. After a lot of research and code reading of the projects who runs

a few threads parallelly and few different redundant objects which

complicated the task severely. we were enable to extract from this

repository the relevant code that is needed to establish a connection and

created the following code:

https://github.com/mavlink/c_uart_interface_example

31

The problem was that the messages weren’t parsed correctly because it

wasn’t read in the right way- for example, it should have read the size of

the message according to the second byte, but it didn’t do it.

* Important insight: after we learnt about correct usage of git, we now

know that we shouldn’t have wasted so much time on this repository

because it is clearly under developed- as we can infer from the number of

branches and commits.

32

⚫ Trying to bypass the file system in order to control the pwm:

Another assumption we worked with was that using the file system (the

standard way) to control the gimble, is too slow. So, we searched for other

ways to do it. We found alternative library called mraa:

http://iotdk.intel.com/docs/master/mraa/python/

Their main purpose is exactly what we needed, and supplies a convenient

interface for that purpose:

* This is the call graph of the constructor of the class, helps conveying the

complexity of it. Reference:

https://iotdk.intel.com/docs/master/mraa/classmraa_1_1_pwm.html

But after we were enabled to use it we checked the code source and found

out that they are also using the file system.

* Important insight: looking back we understand that our efforts were futile

because in linux everything is a file, thus trying to bypass will lead to dead

ends.

http://iotdk.intel.com/docs/master/mraa/python/
https://iotdk.intel.com/docs/master/mraa/classmraa_1_1_pwm.html

33

⚫ Deciding which mavlink command is the best to control the movement of

the drone:

There are many mavlink commands that dronekit supports which can

control elements in the drone, some are deprecated, some don’t work well.

We tried various ways, one of them directly controlled the thrust:

Reference: https://github.com/dronekit/dronekit-

python/blob/master/examples/set_attitude_target/set_attitude_target.py

But the response was too slow and we couldn’t get the sensitivity we

needed.

* Important insight: controlling and stabilizing a drone requires much more

then just pushing the throttle, it requires a PId controller (proportional–

integral–derivative controller) which is a control loop feedback

mechanism widely used in industrial control systems and a variety of other

https://github.com/dronekit/dronekit-python/blob/master/examples/set_attitude_target/set_attitude_target.py
https://github.com/dronekit/dronekit-python/blob/master/examples/set_attitude_target/set_attitude_target.py

34

applications requiring continuously modulated control. A PID controller

continuously calculates an error value as the difference between a

desired setpoint and a measured process variable (PV) and applies a

correction based on proportional, integral, and derivative terms. This is the

reason that we need to use the PX4 , so trying to control the thrust directly

wont work.

35

⚫ Decide which operating system will be the best for our project:

In the early stages of the project we needed to choose the operating

system to install on our upboard. We needed an operating system that

supports control of 40 pins and supports the realsense camera. Because it

was the beginning of the project and we didn’t know anything about

operating systems, or realsense, or PWM, we had difficulties to fully

understand the requirements of the operating system. So we chose the

most common OS that we found for upboard which is Ubuntu 16.04.

Refrence: https://wiki.up-community.org/Ubuntu

* Important insight: looking back, it would have been better to choose an

operating system that doesn’t have a UI because it requires much more

processing power then we needed, which can cost much more overhead.

⚫ Enabling the Realsense camera on the upboard:

When we wrote our code which controlled the realsense camera it worked

well on our private computer, but when we tried to test it on the drone the

image didn’t appear. First we thought that the problem was that we didn’t

use the usb3 port, so we needed to order a cable that is compatible to the

port. But after the cable didn’t fix the problem we researched some more

we discovered that it was because the realsense needed to update its

drivers.

Refrence:

https://www.intel.com/content/www/us/en/support/articles/000023694/

emerging-technologies/intel-realsense-technology.html

https://wiki.up-community.org/Ubuntu
https://www.intel.com/content/www/us/en/support/articles/000023694/emerging-technologies/intel-realsense-technology.html
https://www.intel.com/content/www/us/en/support/articles/000023694/emerging-technologies/intel-realsense-technology.html

36

WHAT HAVE WE LEARNT:
While working on the project we learnt many new things here are some of them:

⚫ Git best practices:

We learnt how to use git correctly in team projects. The main idea is to

create many branches and promote the project only be working on the

branches and merging it to the main branch. The main branch is called

master, it is promoted only by merging with the version branches. It should

always be documented, tested, is abled to compile and have a version

number. The main purpose of the branch is to contain the latest most

stable version of the project, that can be distributed.

The second most important branch is the develop branch, it is the main

branch that the develop team uses and is created from the master branch.

Mostly, we don’t commit directly on this branch because the development

happens in the features branches and after adding a new feature, we

merge it to the develop branch. The minimum requirement of this branch is

that it should compile at all time.

Feature branch is a branch that each developer works on a feature, it can

be in any condition because usually only one person works on it and

doesn’t share it with other developers- until it branches with the develop.

The feature branches are created from the develop branch, each developer

takes a snapshot of the current state of the project and add a new feature.

Version branch is a branch that is created when we decide to publish a new

version, all the features that were merged into the develop branch before

the creation of the version will be inserted to the current version and the

other wont. In this branch most of the work is bug fixes, the developers

make sure that the version that is about to be published and there are

minimum number of bugs, and the merges are bug fixes. At all time this

branch should be able to compile and have a version number.

37

Bugfix Branch are branches that are created from the version branch, as

said earlier, their purpose is to fix bugs in the version branch. All time

should contain a version number.

References:

https://nvie.com/posts/a-successful-git-branching-model/

https://nvie.com/posts/a-successful-git-branching-model/

38

⚫ Controlling PWM based hardware:

Pulse-width modulation (PWM), or pulse-duration modulation (PDM), is

a modulation technique used to encode a message into a pulsing signal.

Although this modulation technique can be used to encode information for

transmission, its main use is to allow the control of the power supplied to

electrical devices, especially to internal] loads such as motors. In addition,

PWM is one of the two principal algorithms used in photovoltaic solar

battery chargers, the other being maximum power point tracking.

The average value of voltage (and current) fed to the load is controlled by

turning the switch between supply and load on and off at a fast rate. The

longer the switch is on compared to the off periods, the higher the total

power supplied to the load.

The PWM switching frequency must be much higher than what would

affect the load (the device that uses the power), which is to say that the

resultant waveform perceived by the load must be as smooth as possible.

The rate (or frequency) at which the power supply must switch can vary

greatly depending on load and application, for example

Switching has to be done several times a minute in an electric stove;

120 Hz in a lamp dimmer; between a few kilohertz (kHz) and tens of kHz for

a motor drive; and well into the tens or hundreds of kHz in audio amplifiers

and computer power supplies.

The term duty cycle describes the proportion of 'on' time to the regular

interval or 'period' of time; a low duty cycle corresponds to low power,

because the power is off for most of the time. Duty cycle is expressed in

percent, 100% being fully on.

The main advantage of PWM is that power loss in the switching devices is

very low. When a switch is off there is practically no current, and when it is

on and power is being transferred to the load, there is almost no voltage

drop across the switch. Power loss, being the product of voltage and

current, is thus in both cases close to zero. PWM also works well with

digital controls, which, because of their on/off nature, can easily set the

needed duty cycle.

https://en.wikipedia.org/wiki/Hertz

39

PWM has also been used in certain communication systems where its duty

cycle has been used to convey information over a communications channel.

References:

https://learn.sparkfun.com/tutorials/pulse-width-modulation

https://en.wikipedia.org/wiki/Pulse-width_modulation

https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation

40

⚫ UML Diagrams

While planning our design we were introduced with UML 2 and the various

diagrams that it offers. UML defines the notation and semantics for the following

domains:

• The User Interaction or Use Case Model - describes the boundary and

interaction between the system and users. Corresponds in some respects to a

requirements model.

• The Interaction or Communication Model - describes how objects in the

system will interact with each other to get work done.

• The State or Dynamic Model - State charts describe the states or conditions

that classes assume over time. Activity graphs describe the workflows the

system will implement.

• The Logical or Class Model - describes the classes and objects that will

make up the system.

• The Physical Component Model - describes the software (and sometimes

hardware components) that make up the system.

• The Physical Deployment Model - describes the physical architecture and

the deployment of components on that hardware architecture.

There are a few types of UML diagrams:

Structure diagrams

Structure diagrams emphasize the things that must be present in the system being

modeled. Since structure diagrams represent the structure, they are used

extensively in documenting the software architecture of software systems. For

example, the component diagram describes how a software system is split up into

components and shows the dependencies among these components.

Behavior diagrams

Behavior diagrams emphasize what must happen in the system being modeled.

Since behavior diagrams illustrate the behavior of a system, they are used

extensively to describe the functionality of software systems. As an example,

the activity diagram describes the business and operational step-by-step activities

of the components in a system.

41

Interaction diagrams

Interaction diagrams, a subset of behavior diagrams, emphasize the flow of control

and data among the things in the system being modeled. For example, the sequence

diagram shows how objects communicate with each other regarding a sequence of

messages.

References:

https://www.sparxsystems.com.au/resources/uml2_tutorial/index.html

https://en.wikipedia.org/wiki/Unified_Modeling_Language

https://www.sparxsystems.com.au/resources/uml2_tutorial/index.html
https://en.wikipedia.org/wiki/Unified_Modeling_Language

42

• Mavlink protocol:

In the semester we learnt a lot about the mavlink protocol, what is the

structure of the packets, how to generate new messages and various types of

messages.

The packet structure is the following:

Field name
Index

(Bytes)
Purpose

Start-of-frame 0 Denotes the start of frame transmission (v1.0: 0xFE)

Payload-
length

1 length of payload (n)

Packet
sequence

2
Each component counts up their send sequence. Allows for detection
of packet loss.

System ID 3
Identification of the SENDING system. Allows to differentiate different
systems on the same network.

Component
ID

4
Identification of the SENDING component. Allows to differentiate
different components of the same system, e.g. the IMU and the
autopilot.

Message ID 5
Identification of the message - the id defines what the payload
“means” and how it should be correctly decoded.

Payload 6 to (n+6) The data into the message, depends on the message id.

CRC
(n+7) to
(n+8)

Check-sum of the entire packet, excluding the packet start sign (LSB
to MSB)

43

It is possible to generate a message using xml in the following pattern:

<?xml version="1.0"?>

<mavlink>

 <include>common.xml</include>

 <!-- NOTE: If the included file already contains a version tag, remove

the version tag here, else uncomment to enable. -->

 <!--<version>3</version>-->

 <enums>

 </enums>

 <messages>

 <message id="150" name="RUDDER_RAW">

 <description>This message encodes all of the raw rudder

sensor data from the USV.</description>

 <field type="uint16_t" name="position">The raw data from

the position sensor, generally a potentiometer.</field>

 <field type="uint8_t" name="port_limit">Status of the

rudder limit sensor, port side. 0 indicates off and 1 indicates that the limit is

hit. If this sensor is inactive set to 0xFF.</field>

 <field type="uint8_t" name="center_limit">Status of the

rudder limit sensor, port side. 0 indicates off and 1 indicates that the limit is

hit. If this sensor is inactive set to 0xFF.</field>

44

 <field type="uint8_t" name="starboard_limit">Status of

the rudder limit sensor, starboard side. 0 indicates off and 1 indicates that the

limit is hit. If this sensor is inactive set to 0xFF.</field>

 </message>

 </messages>

</mavlink>

And generating the message using mavgen:

Refrences:

https://mavlink.io/en/

http://qgroundcontrol.org/mavlink/start

https://en.wikipedia.org/wiki/MAVLink

https://mavlink.io/en/
http://qgroundcontrol.org/mavlink/start
https://en.wikipedia.org/wiki/MAVLink

45

⚫ System design

As we described earlier we encountered many dilemmas while designing

our system. Each decision has a tradeoff between each possibility and each

possibility has its own pros and cons. For more information about our

specific design look at previous chapter. The main thing we learnt is that if

the design is planed correctly and thoroughly, most of the decisions that

are made would be easy, because if we consider all of our goals and

constraints, many times there is only one logical solution.

⚫ Working in linux based environment:

In the beginning, we had no experience with linux operating system and

using open source projects, but during the past months we gained much

experience with when we needed to update drivers and changing things

using the file system. Also, during our struggles for searching the best ways

to implement things, we found many open source projects that we

downloaded and integrated in our system.

46

In Conclusion:

We offer a framework which can incorporate Computer Vision in drone

missions, which we hope the GIP lab could utilize in the future. The

framework covers everything you need in order to control the drone from

end to end. We believe that it will be very beneficial for any computer

vision purpose, and every developer that whishes to create computer

vision-based missions will find it very easy to understand it and enhance its

functionality.

