Skip links to main content
Logo of Geometric Image Processing Laboratory,
Computer Science Department Home
Technion Home Page

Projects Proposed Projects

Please see propose projects for Spring and Winter upcoming semesters. This is a 4 academic point course. For further details please contact the laboratory engineer Yaron Honen (04-8295535, room 441).

Project Title:

Coronary angiography video segmentation method for assisting cardiovascular disease interventional treatment

Picture of Coronary angiography video segmentation method for assisting cardiovascular disease interventional treatment
Abstract:

Coronary heart disease is one of the diseases with the highest mortality rate. Due to the important position of cardiovascular disease prevention and diagnosis in the medical field, the segmentation of cardiovascular images has gradually become a research hotspot. How to segment accurate blood vessels from coronary angiography videos to assist doctors in making accurate analysis has become the goal of our research. In this project, the student will be required to implement a new method based on the U-net architecture. The proposed method includes three modules: the sequence encoder module, the sequence decoder module, and the sequence filter module. The high-level information of the feature is extracted in the encoder module. Multi-kernel pooling layers suitable for the extraction of blood vessels are added before the decoder module. In the filter block, we add a simple temporal filter to reduce inter-frame flickers.

Supervisors:
Requirements:
Deep learning Computer vision Design and train UNet or other networks with python (pytorch)
Project Title:

Augmenting Surface Scans with Thermal Texture

Picture of Augmenting Surface Scans with Thermal Texture
Abstract:

Traditional medical imaging techniques (CT, MRI, etc) ironically do not easily enable measurement of surface features. Topographic scans, like those provided by depth cameras, can provide fast objective measurements, but texture maps are typically in the visible spectrum.
Medical screening for scoliosis, inflammation, and skin cancer could potentially benefit from surface scans that include infrared information. Deep learning models that currently rely on RGB input channels could be augmented with a thermal input to improve classification accuracy.
In this project, students will implement a scanning system that combines multiple depth cameras (Azure Kinect) with a thermal camera to produce surface scans with RGB+IR texture.
Project goals:1. Design a calibration target and protocol to register depth/thermal cameras2. Control and record from depth/thermal cameras, in order to automatically calculate and optimize extrinsic camera parameters of an arbitrary number of cameras3. Using calibration parameters, map thermal information onto depth scans
https://doi.org/10.1016/j.procs.2020.05.045   

Supervisors:
Requirements:
Students should be proficient in C++ and basic computer vision concepts (pinhole camera model, feature detection etc). Exposure to optimization algorithms, experience working with peripheral devices, and familiarity with 3D data will be helpful but can be learned during the project.
Project Title:

Agriculture-Vision Semantic Segmentation Challenge

Picture of Agriculture-Vision Semantic Segmentation Challenge
Abstract:

In recent years, unmanned aerial vehicles (UAV) are exploited to capture images of large agricultural areas. For agricultural purposes, near infrared (NIR) or other spectral channels are acquired in addition to the RGB colors. These are then used for various tasks, especially semantic segmentation – the ability to distinguish between healthy plants, unwanted weeds, running or standing water, and other classes. We will use an existing semantic segmentation framework, test several network architectures, and employ pre-processing and post-processing algorithms for improved results. Our goal is to participate in an international agriculture segmentation challenge, and attempt to achieve high scores. 

Supervisors:
Requirements:
Basic understanding of deep learning for computer vision.
Python programming + pytorch and/or tensorflow.
Project Title:

High Accuracy Leaf Segmentation

Picture of High Accuracy Leaf Segmentation
Abstract:

Instance segmentation is the task of detecting and masking objects in an image and distinguishing between instances of the same class. Accurate segmentation of leaves in plant images is important in many agricultural applications. These include early detection of water and heat stress, identification of biological infection, monitoring of plant growth, and prediction of harvest yields. Our purpose is to use an existing instance segmentation deep neural network, and integrate it with image processing tools for better performance. In this project we will improve upon previous results, participate in an international leaf segmentation challenge, and attempt to achieve best scores

Supervisors:
Requirements:
Basic deep learning understanding and programming experience.
Project Title:

Nice or Spice? Cannabis Detection by Microscope Inspection

Picture of Nice or Spice? Cannabis Detection by Microscope Inspection
Abstract:

Synthetic cannabinoids are harmful products manufactured and distributed to circumvent legal regulations. Real cannabis can be distinguished from synthetic cannabinoids by inspecting their leaf cystoliths. Cystoliths are hairy appearing outgrowths on leaves and flowers of some plant species. The unaided eye cannot distinguish the real from the fake, but looking through a microscope, it is possible to do so. In this project we will build an artificial intelligence application for classifying real vs. fake cannabis. 

Supervisors:
Requirements:
Basic deep learning understanding and programming experience
Project Title:

Computational oncology by deep learning-based analysis of histopathology slide images

Picture of Computational oncology by deep learning-based analysis of histopathology slide images
Abstract:

A few years ago, we showed for the first time that the molecular profile of cancer can be predicted by analysis of biopsy images, without using molecular assays. In other words, the shape of the tumor cells and the tissue architecture hold information that allows to accurately predict molecular expression, even though such molecules cannot be seen by humans by visual examination of biopsy images.  Based on these findings, in the past two years we established collaborations with several medical data hospitals in Israel and abroad and extended the scope of our research to different prediction tasks in breast cancer, lung cancer, and Leukemia. We collected and scanned high quality well annotated tens of thousands of histology slides, and extended our research team, consisting of data scientists, graduate and postdoctoral students and clinical collaborators and advisors. We have recently shown how to steer our technology into assisting personalized medicine procedures. Take a part in developing an AI-based framework for analysis of histology images for improving personalized oncology  -  Link to the article 

Supervisors:
Requirements:
Python – must. Experience/courses in deep learning, image processing, and computer vision – a big advantage
Project Title:

Cardiothoracic surgery

Picture of Cardiothoracic surgery
Abstract:

The main task is to adjust a 3D (pre-prepared) CT model on a patient's abdomen and chest, while finding the location and angle at which the model should be allocated, so that it fits exactly to the patient's body position. The project extensively uses voice commands, spatial mapping construction, and receiving and processing data from the sensors on the HoloLens glasses, as well as using an ICP algorithm for the purpose of fitting the model onto the patient. As the major problem the system still misses is the accurate registration of the images delivered by the augmented device (Microsoft Hololens) on the patient’s body. Here is where your knowledge will transform digital work into daily medicine. The student will be part of the development team here in Sheba, coming to the operating room and working with the patients and the surgeons.

Supervisors:
Requirements:
לפחות אחד מהקורסים לעיבוד תמונה או ראיה חישובית 
Project Title:

מערכת התראה לצנתורים

Picture of מערכת התראה לצנתורים
Abstract:

מחלת לב איסכמית נגרמת כתוצאה מהיצרויות וסתימות של כלי דם כליליים. הטיפול כולל תרופות, צנתורים וניתוח מעקפים במידת הצורך.

בצנתור לב מוזרק חומר ניגוד דרך קטטר לעורקים הכליליים תוך כדי שיקוף וכך מופק סרטון בו ניתן לראות הצירויות או חסימות של כלי הדם. במידה ויש צורך בטיפול מועבר תיל דרך ההיצרות ועל גבי התיל מועבר בלון ו/או סטנט לצורך פתיחת ההיצרות.

בארה״ב נעשים כמיליון צנתורים טיפוליים בשנה. כחצי המצנתרים אינם מבצעים את מינימום הצנתורים הנדרש ע״י האיגוד המקצועי ע״מ לשמור על כשירות.

 בכ- 1.1% מהצינתורים מופיע סיבוך של דיסקציה (היפרדות דפנות העורק) של העורק הכלילי כתוצאה מהקטטר, ובכ- 0.35% מהצינתורים פרפורציה של עורק עקב התיל. סיבוכים אלו כרוכים בעליה משמעותית בתמותה ותחלואה של החולים וניתנים למניעה ע״י ביצוע צינתור באופן זהיר ובטיחותי בחלק ניכר מהמקרים.

הסטודנטים יפתחו מערכת עיבוד תמונה המזהה מסרטון הצנתור, בזמן אמת, מצבים מסוכנים שעלולים לגרום לסיבוכים של דיסקציה או פרפורציה של כלי דם כליליים ומתריעה בהתאם, בשיטות של למידת מכונה תוך שימוש במאגר צנתורים של רמב״מ 

Supervisors:
Requirements:

רקע בעיבוד תמונות

נסיון בשיטות למידה 

Copyright © 2016 by Geometric Image Processing Lab. All rights reserved.